牛 騰, 尹洪超, 劉 紅, 馮恩民
考慮多類型不確定性的蒸汽動(dòng)力系統(tǒng)運(yùn)行優(yōu)化
牛 騰1, 尹洪超1, 劉 紅1, 馮恩民2
(1. 大連理工大學(xué) 能源與動(dòng)力學(xué)院, 遼寧 大連 116024;2. 大連理工大學(xué) 數(shù)學(xué)科學(xué)學(xué)院, 遼寧 大連 116024)
針對蒸汽動(dòng)力系統(tǒng)中包含的多類型不確定性,根據(jù)基于時(shí)間表達(dá)、基于發(fā)生概率表達(dá)和基于集合表達(dá)劃分不確定變量。多周期離散化操作解決基于時(shí)間表達(dá)的不確定變量;在各個(gè)周期內(nèi),耦合機(jī)會(huì)約束規(guī)劃和魯棒優(yōu)化解決基于發(fā)生概率表達(dá)和基于集合表達(dá)的不確定變量,建立了機(jī)會(huì)約束魯棒優(yōu)化模型。以某石化企業(yè)蒸汽動(dòng)力系統(tǒng)實(shí)例為背景,將該模型和傳統(tǒng)模型的最優(yōu)操作方案進(jìn)行對比和分析。結(jié)果表明,該模型權(quán)衡系統(tǒng)經(jīng)濟(jì)性和穩(wěn)定性,可獲得在復(fù)雜不確定性下具有可接受風(fēng)險(xiǎn)的魯棒性決策。
蒸汽動(dòng)力系統(tǒng);最優(yōu)化;不確定性;機(jī)會(huì)約束規(guī)劃;魯棒優(yōu)化
蒸汽動(dòng)力系統(tǒng)通過將一次能源(燃料等)轉(zhuǎn)化為二次能源(電、蒸汽等),為過程工業(yè)提供所需要的工藝蒸汽、熱能和動(dòng)力[1-2]。在蒸汽動(dòng)力系統(tǒng)的實(shí)際優(yōu)化調(diào)度中不可避免包含不確定因素。不確定因素會(huì)使系統(tǒng)現(xiàn)有操作偏離最優(yōu)狀態(tài),造成過程的不合理,甚至帶來安全隱患,所以在蒸汽動(dòng)力系統(tǒng)優(yōu)化調(diào)度中進(jìn)行不確定優(yōu)化研究具有重要的理論和實(shí)際意義[3-4]。
對于蒸汽動(dòng)力系統(tǒng)的不確定優(yōu)化調(diào)度研究,傳統(tǒng)的處理方法是將不確定問題轉(zhuǎn)變?yōu)榇_定性多周期問題進(jìn)行求解,即劃分成多個(gè)周期,在每個(gè)周期內(nèi)取不確定變量的期望值進(jìn)行優(yōu)化[5-10]。但實(shí)際上在每個(gè)周期內(nèi)外部工藝或生產(chǎn)過程的隨機(jī)波動(dòng)還會(huì)引起不確定變量的隨機(jī)變化,傳統(tǒng)確定性方法不能真實(shí)地反映不確定變量對優(yōu)化目標(biāo)和約束條件的影響,可能導(dǎo)致設(shè)計(jì)和操作偏離最優(yōu)狀態(tài)[3-4,11]。目前解決不確定優(yōu)化問題的主要數(shù)學(xué)規(guī)劃方法有隨機(jī)規(guī)劃[12-14]、模糊規(guī)劃[15-17]、魯棒優(yōu)化[18-20]和區(qū)間規(guī)劃[21-22]等。廖組維等[23]針對不精確的過程數(shù)據(jù),提出在不確定情況下蒸汽動(dòng)力系統(tǒng)調(diào)度問題的模糊模型;Sun等[24]考慮設(shè)備故障和汽電需求不確定變化建立了帶補(bǔ)償?shù)膬呻A段隨機(jī)規(guī)劃模型;蓋麗梅等[3,11]將不確定變量劃分為基于時(shí)間表達(dá)和基于發(fā)生概率表達(dá)兩類,提出了帶補(bǔ)償?shù)膬呻A段隨機(jī)規(guī)劃模型。
然而,實(shí)際系統(tǒng)中存在多種不確定性,且這些不確定性通常不是單獨(dú)存在的。單一的不確定優(yōu)化方法在解決實(shí)際問題中都有各自的適用條件和優(yōu)缺點(diǎn),不能應(yīng)對復(fù)雜的不確定系統(tǒng)。因此,不確定優(yōu)化方法耦合解決復(fù)雜的不確定問題已經(jīng)成為眾多領(lǐng)域的研究熱點(diǎn)[25-31]。目前不確定方法耦合鮮有應(yīng)用于公用工程,特別是蒸汽動(dòng)力系統(tǒng)的設(shè)計(jì)和優(yōu)化。本文考慮蒸汽動(dòng)力系統(tǒng)優(yōu)化模型中同時(shí)存在的多類型不確定變量,并將不確定變量劃分為2個(gè)等級(jí)。第1等級(jí)是基于時(shí)間表達(dá)的不確定變量,進(jìn)行多周期離散化處理。第2等級(jí)出現(xiàn)在各個(gè)周期,包括基于發(fā)生概率表達(dá)和基于集合表達(dá)的不確定變量,耦合機(jī)會(huì)約束規(guī)劃和魯棒優(yōu)化,建立機(jī)會(huì)約束魯棒優(yōu)化模型。通過實(shí)際案例將本文模型與傳統(tǒng)模型進(jìn)行分析對比。
證明問題(2)等價(jià)于問題(1)。
證明:為表述方便,定義
則
由式(4)和(5)可得
由式(6)和(7)可得
綜上,問題(2)等價(jià)于問題(1)。定理得證。
在蒸汽動(dòng)力系統(tǒng)中,鍋爐以燃料油或燃料氣等為燃料,將水加熱成高溫高壓蒸汽,用以滿足生產(chǎn)加工過程中換熱、做功或發(fā)電的需要。根據(jù)能量守恒定律,鍋爐的所有供給能量之和等于流出能量之和,如式(9)所示。
汽輪機(jī)將蘊(yùn)含在高溫高壓蒸汽中的熱能轉(zhuǎn)化為機(jī)械能或電能。在實(shí)際生產(chǎn)中,改變汽輪機(jī)的抽汽量是調(diào)節(jié)蒸汽管網(wǎng)中不同等級(jí)蒸汽平衡的重要手段之一。Shang等[32]改進(jìn)了背壓式汽輪機(jī)的數(shù)學(xué)模型,提高了模型的精度,如式(10)所示。
在煉廠中,設(shè)備的平穩(wěn)運(yùn)行對于安全生產(chǎn)至關(guān)重要,設(shè)備頻繁啟停一方面會(huì)減少設(shè)備使用壽命,增加維修成本,另一方面還會(huì)影響正常的工作質(zhì)量,降低煉油企業(yè)生產(chǎn)效益,所以需要對設(shè)備運(yùn)行狀態(tài)的變化進(jìn)行約束。
供需約束主要是滿足蒸汽動(dòng)力系統(tǒng)對蒸汽、動(dòng)力和電力的需求??紤]汽電需求等不確定變量且在每一周期基于發(fā)生概率表達(dá),應(yīng)用機(jī)會(huì)約束規(guī)劃策略。機(jī)會(huì)約束規(guī)劃是隨機(jī)規(guī)劃的重要分支,主要針對約束條件中含有隨機(jī)變量,且必須在觀測到隨機(jī)變量的實(shí)現(xiàn)之前作出決策的情況??紤]到所做決策在不利情況發(fā)生時(shí)可能不滿足約束條件,而采取一整原則:即允許所做決策在一定程度上不滿足約束條件,但該決策應(yīng)使約束條件成立的概率不小于某一置信水平[12,33]。得到機(jī)會(huì)約束式(17)、(18)如下所示:
蒸汽需求約束:
電力需求約束:
處理機(jī)會(huì)約束規(guī)劃的方法是把機(jī)會(huì)約束轉(zhuǎn)化為各自的確定等價(jià)形式[34]。機(jī)會(huì)約束式(17)、(18)的確定等價(jià)形式分別為
圖1 蒸汽動(dòng)力系統(tǒng)的流程圖
表1 鍋爐參數(shù)
表2 汽輪機(jī)參數(shù)
表3 各周期汽電需求標(biāo)稱值
表4 價(jià)格數(shù)據(jù)
基于LINGO 11.0求解器,確定在不確定環(huán)境下的最優(yōu)運(yùn)行策略。決策變量包括各周期鍋爐、汽輪機(jī)和減溫減壓器負(fù)荷、鍋爐燃料消耗、外購高壓蒸汽量、外購電量和設(shè)備的二元變量。本文模型包含162個(gè)連續(xù)變量,78個(gè)離散變量,415個(gè)線性約束和6個(gè)非線性約束。傳統(tǒng)模型包含162個(gè)線性變量,48個(gè)離散變量,378個(gè)線性約束和1個(gè)非線性約束。如圖2和3所示分別為本文模型和傳統(tǒng)模型計(jì)算得到的鍋爐的最優(yōu)操作方案。從圖中可以看出,在全周期內(nèi)本文模型的優(yōu)化方案中只有鍋爐B3有一次啟停;傳統(tǒng)模型的優(yōu)化方案中B3,B4都存在啟停情況;另外,相比于傳統(tǒng)模型,本文模型的鍋爐優(yōu)化運(yùn)行負(fù)荷較穩(wěn)定,變化幅度不大,且運(yùn)行負(fù)荷較高使得設(shè)備運(yùn)行效率也更高。綜上所述,本文模型的鍋爐優(yōu)化方案一方面能更有效地避免由于設(shè)備頻繁啟?;蛘哓?fù)荷波動(dòng)過大而引起的設(shè)備故障問題,另一方面能提高鍋爐運(yùn)行效率,經(jīng)濟(jì)性越好。
圖2 本文模型的鍋爐最優(yōu)操作方案
圖3 傳統(tǒng)模型的鍋爐最優(yōu)操作方案
如圖4和5所示為本文模型和傳統(tǒng)模型計(jì)算得到的汽輪機(jī)的最優(yōu)操作方案。從圖中可以看出,2種模型的優(yōu)化方案中汽輪機(jī)都不存在啟停情況,不過運(yùn)行負(fù)荷都存在較大波動(dòng);在第4周期本文模型的汽輪機(jī)以較大功率運(yùn)行,所以在全周期內(nèi)本文模型的優(yōu)化方案中自產(chǎn)電量明顯高于傳統(tǒng)模型的自產(chǎn)電量。從而導(dǎo)致本文模型的外購電量相比如傳統(tǒng)模型大幅度減少,見圖6和7。另外,本文模型的優(yōu)化方案中需要外購少量的高壓蒸汽。如圖8和9所示為2種模型的減溫減壓器最優(yōu)操作方案。從圖中可以看出,2種操作方案都存在少量的能源浪費(fèi)。
圖4 本文模型的汽輪機(jī)最優(yōu)操作方案
圖5 傳統(tǒng)模型的汽輪機(jī)最優(yōu)操作方案
圖7 傳統(tǒng)模型的最優(yōu)外購方案
圖8 本文模型的減溫減壓器最優(yōu)操作方案
圖9 傳統(tǒng)模型的減溫減壓器最優(yōu)操作方案
蒸汽動(dòng)力系統(tǒng)在各個(gè)周期內(nèi)提供的電力、蒸汽量在滿足用戶需求的條件下,增加系統(tǒng)自身負(fù)荷,減少外購是降低成本的最優(yōu)方案。在設(shè)備的額定工況內(nèi),設(shè)備的運(yùn)行負(fù)荷越大,設(shè)備的運(yùn)行效率就越高,經(jīng)濟(jì)性越好。與傳統(tǒng)模型相比,本文模型的優(yōu)化方案中大量的自產(chǎn)電導(dǎo)致設(shè)備燃料消耗增加,燃料花費(fèi)增加了6.68%,環(huán)境成本增加了22.5%,不過外購電力以及設(shè)備啟停次數(shù)的減少使得本文模型的優(yōu)化方案總花費(fèi)降低了1.7%,這證明了本文模型的經(jīng)濟(jì)性能,見表5。
表5 費(fèi)用對比
(1) 本文針對蒸汽動(dòng)力系統(tǒng)中的不確定性進(jìn)行分析分類,不同類型不確定性應(yīng)用不同的策略建立其對目標(biāo)函數(shù)和約束的影響。建立蒸汽動(dòng)力系統(tǒng)運(yùn)行優(yōu)化模型。案例研究表明:與傳統(tǒng)模型相比,本文模型的優(yōu)化方案不僅使總花費(fèi)降低了1.7%,而且能獲得在復(fù)雜不確定性下具有可接受風(fēng)險(xiǎn)的魯棒性決策,保證系統(tǒng)應(yīng)對不同類型的不確定變量而安全穩(wěn)定運(yùn)行。
(2) 本文模型的優(yōu)化方案相對保守,且設(shè)備故障等不確定性問題還沒有考慮。下一步將繼續(xù)研究系統(tǒng)中存在的不確定性,針對不同類型不確定性開發(fā)更好的處理策略。
[1] 徐樂, 陳穎, 羅向龍. 考慮減排措施的蒸汽動(dòng)力系統(tǒng)結(jié)構(gòu)優(yōu)選 [J]. 熱科學(xué)與技術(shù), 2011, 10(4): 371-376.
XU L, CHEN Y, LUO X L. Structure optimization of steam power system with emission reduction technology concerns [J]. Journal of Thermal Science and Technology, 2011, 10(4): 371-376.
[2] 李帥, 姜曉濱, 賀高紅, 等. 蒸汽動(dòng)力系統(tǒng)柔性設(shè)計(jì)和多目標(biāo)優(yōu)化研究進(jìn)展 [J]. 化工進(jìn)展, 2017, 36(6): 1989-1996.
LI S, JIANG X B, HE G H,Research progress for flexible design and multi-objective optimization of steam power network [J]. Chemical Industry and Engineering Progress, 2017, 36(6): 1989-1996.
[3] 蓋麗梅, 孫力, 劉暢, 等. 基于帶補(bǔ)償隨機(jī)規(guī)劃的蒸汽動(dòng)力系統(tǒng)優(yōu)化設(shè)計(jì) [J]. 化工學(xué)報(bào), 2014, 65(11): 4509-4516.
GAI L M, SUN L, LIU C,. Steam power system optimization design based on stochastic programming with recourse [J]. CIESC Jorunal,2014, 65(11): 4509-4516.
[4] 蓋麗梅. 基于隨機(jī)規(guī)劃的不確定蒸汽動(dòng)力系統(tǒng)優(yōu)化設(shè)計(jì) [D]. 大連: 大連理工大學(xué), 2015.
GAI L M. Optimal design of uncertain steam power system based on stochastic programming [D]. Dalian: Dalian University of Technology, 2015.
[5] IYER R R, GROSSMANN I E. Synthesis and operational planning of utility systems for multiperiod operation [J]. Computers & Chemical Engineering, 1998, 22(7-8): 979-993.
[6] YI H S, HAN C, YEO Y K. Optimal multiperiod planning of utility systems considering discrete/continuous variance in internal energy demand based on decomposition method [J]. Journal of Chemical Engineering of Japan, 2000, 33(3): 456-467.
[7] AGUILAR O, PERRY S J, KIM J K. Design and optimization of flexible utility systems subject to variable conditions(q): Methodology and applications [J]. Chemical Engineering Research and Design, 2007, 85(8): 1149-1168.
[8] 羅向龍, 陳穎, 華賁. 參數(shù)不確定性條件下蒸汽動(dòng)力系統(tǒng)的運(yùn)行優(yōu)化 [J]. 石油學(xué)報(bào)(石油加工), 2009, 25(2): 233-240.
LUO X L, CHEN Y, HUA B. Operational planning optimization of utility system under parameters uncertainty [J]. Acta Petrolei Sinica (Petroleum Processing Section),2009, 25(2): 233-240
[9] 李暉, 孫力, 賀高紅. 考慮不確定汽電需求的蒸汽動(dòng)力系統(tǒng)優(yōu)化設(shè)計(jì) [J]. 化工學(xué)報(bào), 2013, 64(1): 325-332.
LI H, SUN L, HE G H. Design and optimization of steam power system with uncertain steam and power demands [J]. CIESC Journal, 2013, 64(1): 325-332.
[10] 徐東, 史彬, 鄢烈祥. 基于不同碳減排目標(biāo)的蒸汽動(dòng)力系統(tǒng)優(yōu)化 [J]. 計(jì)算機(jī)與應(yīng)用化學(xué), 2017, 34(2): 114-118.
XU D, SHI B, YAN L X. Optimization for steam power system based on different carbon reduction targets [J]. Computers and Applied Chemistry, 2017, 34(2): 114-118.
[11] SUN L, GAI L M, SMITH R. Site utility system optimization with operation adjustment under uncertainty [J]. Applied Energy, 2017, 186(3): 450-456.
[12] SHAPIRO A, DENTCHEVA D, RUSZYNSKI A.Lectures on stochastic programming: Modeling and theory[M]. Philadelphia: Society for Industrial Mathematics, 2009.
[13] 張冰劍, 陳清林, 華賁. 油輪到達(dá)時(shí)間不確定條件下的原油調(diào)度優(yōu)化 [J]. 高校化學(xué)工程學(xué)報(bào), 2009, 23(3): 500-509.
ZHANG B J, CHEN Q L, HUA B. Optimizing crude oil scheduling under the uncertainty of tank ship arrival time [J]. Journal of Chemical Engineering of Chinese Universities, 2009, 23(3): 500-509.
[14] ALIPOUR M, ZARE K, SEYEDI H. A multi follower Bi-level stochastic programming approach for energy management of combined heat and power micro-grids [J]. Energy, 2018, 149(15): 135-146.
[15] 錢宇, 肖宏亮. 模糊系統(tǒng)的模型化和優(yōu)化 [J]. 高?;瘜W(xué)工程學(xué)報(bào), 1996, 10(3): 309-315.
QIAN Y, XIAO H L. Modelling and optimization for fuzzy systems [J]. Journal of Chemical Engineering of Chinese Universities, 1996, 10(3): 309-315.
[16] LENCE B J, MOOSAVIAN N, DALIRI H. Fuzzy programming approach for multiobjective optimization of water distribution systems [J]. Journal of Water Resources Planning and Management, 2017, 143(7): 04017020.
[17] REN C, LI Z, ZHANG H. Integrated multi-objective stochastic fuzzy programming and AHP method for agricultural water and land optimization allocation under multiple uncertainties [J]. Journal of Cleaner Production, 2019, 210(10): 12-24.
[18] BEN-TAL A, NEMIROVSKI A. Robust optimization-methodology and applications [J]. Mathematical Programming, 2002, 92(3): 453-480.
[19] VAN BAREL A, VANDEWALLE S. Robust optimization with a multilevel monte carlo method [J]. Siam/asa Journal on Uncertainty Quantification, 2019, 7(1): 174-202.
[20] KAPTEYN M G, WILLCOX K E, PHILPOTT A B. Distributionally robust optimization for engineering design under uncertainty [J]. International Journal for Numerical Methods in Engineering, 2019, 120(3): 835-859.
[21] LIU Z, HUANG Y. Sustainable distributed biodiesel manufacturing under uncertainty: An interval-parameter-programming-based approach [J]. Chemical Engineering Science, 2013, 93(8): 429-444.
[22] SINGH A. Managing the uncertainty problems of municipal solid waste disposal [J]. Journal of Environmental Management, 2019, 240(15): 259-265.
[23] 廖祖維, 宣吉, 榮岡, 等. 基于模糊規(guī)劃的石化企業(yè)蒸汽動(dòng)力系統(tǒng)調(diào)度優(yōu)化 [J]. 浙江大學(xué)學(xué)報(bào)(工學(xué)版), 2011, 45(4): 621-626.
LIAO Z W, XUAN J, RONG G,. Fuzzy programming based scheduling of steam power system in petrochemical complex [J]. Journal of Zhejiang University (Engineering Science), 2011, 45(4): 621-626.
[24] SUN L, LIU C. Reliable and flexible steam and power system design [J]. Applied Thermal Engineering, 2015, 79: 184-191.
[25] WU H H, KüüKYAVUZ S. A two-stage stochastic programming approach for influence maximization in social networks [J]. Computational Optimization and Applications, 2017, 69(1): 1-33.
[26] HE Y, HE Z, LEE D H,. Robust fuzzy programming method for MRO problems considering location effect, dispersion effect and model uncertainty [J]. Computers & Industrial Engineering, 2017, 105: 76-83.
[27] 李進(jìn). 低碳環(huán)境下閉環(huán)供應(yīng)鏈網(wǎng)絡(luò)設(shè)計(jì)多目標(biāo)魯棒模糊優(yōu)化問題 [J]. 控制與決策, 2018, 33(2): 293-300.
LI J. Multi-objective robust fuzzy optimization problem for closed-loop supply chain network design under low-carbon environment [J]. Control and Decision, 2018, 33(2): 293-300.
[28] SIMIC V. Interval-parameter conditional value-at-risk two-stage stochastic programming model for management of end of life vehicles [J]. Environmental Modeling and Assessment, 2019, 24(5): 547-567.
[29] AKBARI-DIBAVAR A, ZARE K, NOJAVAN S. A hybrid stochastic-robust optimization approach for energy storage arbitrage in day-ahead and real-time markets [J]. Sustainable Cities and Society, 2019, 49:101600.
[30] 陳紅光, 王中君, 王瓊雅, 等. 基于區(qū)間兩階段-部分信息模型的城市水資源優(yōu)化配置 [J]. 資源科學(xué), 2019, 41(8): 1416-1426.
CHEN H G, WANG Z J, WANG Q Y,. An interval-parameter two-stage partial information programming model for optimal urban water resource planning [J]. Resources Science, 2019, 41(8): 1416-1426.
[31] 葉雁犁, 劉洋, 陳賢邦. 考慮源荷雙側(cè)不確定的孤島型微網(wǎng)能量管理優(yōu)化模型 [J]. 水電能源科學(xué), 2020, 38(1): 191-195.
YE Y L, LIU Y, CHEN X B. Energy management optimization model of island microgrid with uncertain generation and load [J]. Water Resources and Power, 2020, 38(1): 191-195.
[32] SHANG Z, KOKOSSIS A. A transhipment model for the optimisation of steam levels of total site utility system for multiperiod operation [J]. Computers & Chemical Engineering, 2004, 28(9): 1673-1688.
[33] CHARNES A, COOPER W W. Chance-constrained programming [J]. Management Science, 1959, 6(1): 73-79.
[34] LIU B D. Theory and practice of uncertain programming [M]. Berlin: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 2009.
Operational optimization of steam power systems considering multiple uncertainties
NIU Teng1, YIN Hong-chao1, LIU Hong1, FENG En-min2
(1. School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China;2. School of Mathematical Science, Dalian University of Technology, Dalian 116024, China)
There are multiple-type uncertainties in steam power systems, which can be classified as time-based, probability-based and set-based uncertainties. Multi-period operation was used to treat time-based uncertainties, while chance-constrained programming and robust optimization were coupled to deal with probability-based and set-based uncertainties in each period. A robust optimization model with chance constraints was established. A steam power system in a petrochemical enterprise was studied by comparing the optimal operation schemes with traditional models. Numerical results show that the model in this research could balance the economy and stability of the system and obtain robust decisions with acceptable risks under complex uncertainties.
steam power system; optimization; uncertainty; chance-constrained programming; robust optimization
TK2
A
10.3969/j.issn.1003-9015.2021.01.013
1003-9015(2021)01-0109-09
2020-04-10;
2020-08-12。
國家重點(diǎn)研發(fā)計(jì)劃 (2017YFA0700300)。
牛騰(1990-),女,山東臨沂人,大連理工大學(xué)博士生。
尹洪超,E-mail:hcyin@dlut.edu.cn