張 昊,元玲玲,孟慶婷,揣 君,諶 磊,王宏愷
地下糧倉鋼-混組合倉壁豎向節(jié)點(diǎn)受彎性能分析
張 昊1,元玲玲1,孟慶婷2※,揣 君2,諶 磊1,王宏愷1
(1. 河南工業(yè)大學(xué)土木工程學(xué)院,鄭州 450001;2. 河南工業(yè)大學(xué)設(shè)計(jì)研究院,鄭州 450001)
裝配式鋼-混組合地下糧倉具有節(jié)能、低損、保障糧食品質(zhì)的優(yōu)點(diǎn),但鋼-混組合倉壁豎向節(jié)點(diǎn)的結(jié)構(gòu)形式和力學(xué)性能仍是制約其廣泛推廣應(yīng)用的關(guān)鍵難題。為此,該研究提出一種適用于裝配式鋼-混組合倉壁的新型節(jié)點(diǎn),利用兩點(diǎn)對(duì)稱加載受彎試驗(yàn)研究其在彈塑性階段的受彎性能,并與無節(jié)點(diǎn)鋼-混組合倉壁試件進(jìn)行對(duì)比,分析了各試件在荷載作用下的破壞形態(tài)、內(nèi)力和變形規(guī)律。結(jié)果表明:各試件的位移與應(yīng)變均隨著彎矩的增加而增加,整體呈現(xiàn)上部受壓,下部受拉的受力形態(tài);相較于無節(jié)點(diǎn)試件和無梯形傳力鋼板試件,新型節(jié)點(diǎn)試件剛度顯著增加,抗彎承載力分別提高了15%和17%;相較于無梯形傳力鋼板試件,新型節(jié)點(diǎn)試件屈服荷載提高了29%;傳力鋼板和內(nèi)防水鋼板拉應(yīng)變均隨跨中彎矩增大而線性增大,在新型組合節(jié)點(diǎn)中兩者可共同發(fā)揮抗拉作用。研究結(jié)果可為裝配式地下糧倉和類似地下結(jié)構(gòu)受彎性能分析提供參考。
力學(xué)性能;受彎試驗(yàn);豎向節(jié)點(diǎn);地下糧倉;鋼-混組合倉壁;裝配式
地下糧倉是建于地表以下的用于貯存糧食的容器,其不僅充分利用了地下空間,而且可以提供天然的低溫環(huán)境。相較于地上糧倉,它在節(jié)能、節(jié)地、綠色環(huán)保、抑制蟲害、提升糧食品質(zhì)等方面具有顯著優(yōu)勢(shì),符合國家低碳環(huán)??沙掷m(xù)發(fā)展的要求。目前不少學(xué)者已對(duì)大直徑現(xiàn)澆鋼筋混凝土地下糧倉進(jìn)行了研究,在結(jié)構(gòu)受力[1-4]、結(jié)構(gòu)抗浮[5-6]、基坑支護(hù)[7]等方面取得了較多成果。然而其推廣應(yīng)用還面臨著高標(biāo)準(zhǔn)的防水防潮、深基坑的濕作業(yè)環(huán)境施工周期長、基坑支護(hù)費(fèi)用高等難題,為此少數(shù)學(xué)者進(jìn)行了裝配式鋼板-混凝土組合地下糧倉的研究。王振清等[8]首次提出了一種裝配式鋼板混凝土組合地下糧倉,該倉型將裝配式技術(shù)與鋼板-混凝土組合技術(shù)相結(jié)合,實(shí)現(xiàn)了結(jié)構(gòu)與防水、基坑支護(hù)和抗浮一體化,解決了防水防潮、基坑支護(hù)和抗浮難題,縮短了工期,降低了投資成本。由于裝配式地下糧倉是一種新型結(jié)構(gòu)體系,目前其節(jié)點(diǎn)連接研究還較少;目前國內(nèi)外學(xué)者對(duì)地下管廊[9-10]、地鐵車站[11-13]等類似裝配式地下結(jié)構(gòu)的連接節(jié)點(diǎn)進(jìn)行了大量研究,但由于其結(jié)構(gòu)形式、受力狀態(tài)、節(jié)點(diǎn)連接方式,特別是防水防潮要求等均與現(xiàn)有裝配式地下糧倉不同。為此,王振清等[14-17]針對(duì)內(nèi)包鋼板的裝配式鋼板-混凝土組合地下糧倉,提出一種梯形干式連接節(jié)點(diǎn),研究了應(yīng)用該節(jié)點(diǎn)形式地下糧倉的建筑結(jié)構(gòu)方案與整體力學(xué)性能,并對(duì)裝配式組合構(gòu)件進(jìn)行了軸壓試驗(yàn),同時(shí)與非線性有限元結(jié)果對(duì)比分析,證明了裝配式鋼板-混凝土組合結(jié)構(gòu)有良好的力學(xué)性能;揣君等[18-19]對(duì)該節(jié)點(diǎn)形式的裝配式組合倉壁進(jìn)行了彈性范圍內(nèi)的應(yīng)力計(jì)算公式推導(dǎo)和有限元模擬計(jì)算,并對(duì)足尺試件開展了受彎和抗壓試驗(yàn),證明有節(jié)點(diǎn)的裝配式組合倉壁可等效于無節(jié)點(diǎn)倉壁設(shè)計(jì)計(jì)算。
針對(duì)裝配式鋼板-混凝土組合倉壁提出的梯形干式連接節(jié)點(diǎn)[14],構(gòu)造簡單,受力性能好,鋼板可實(shí)現(xiàn)承力、防水、保護(hù)混凝土一材多用,同時(shí),此節(jié)點(diǎn)連接的工字鋼可作為基坑開挖的鋼樁,實(shí)現(xiàn)裝配與基坑開挖一體化施工。但此節(jié)點(diǎn)處鋼板焊縫過多,施工難度大,用鋼量大,成本較高。為此,在總結(jié)研究成果的基礎(chǔ)上,提出一種基于梯形傳力鋼板連接的新型節(jié)點(diǎn)形式,該節(jié)點(diǎn)不僅受力和防水性能好,而且能大大減少焊縫數(shù)量,節(jié)約施工成本。本研究對(duì)鋼板-混凝土組合倉壁足尺試件進(jìn)行了兩點(diǎn)對(duì)稱加載受彎試驗(yàn),分析節(jié)點(diǎn)及足尺試件在加載過程中的破壞形態(tài)、內(nèi)力和變形規(guī)律。
為研究新型節(jié)點(diǎn)的受彎性能,以傳力鋼板為主要參數(shù)設(shè)計(jì)不同節(jié)點(diǎn)連接形式的鋼板-混凝土組合試件SCCW1和SCCW2,并與無節(jié)點(diǎn)試件SCCW3進(jìn)行對(duì)比,詳見表1。試件設(shè)計(jì)總尺寸為2 200 mm×1 000 mm×310 mm,其中混凝土的厚度為300 mm,內(nèi)側(cè)鋼板的厚度為10 mm。SCCW3試件的總尺寸、混凝土和內(nèi)側(cè)鋼板的厚度與材料均與有節(jié)點(diǎn)試件設(shè)計(jì)相同。SCCW2和SCCW3試件詳圖,如圖1所示。
表1 試件設(shè)計(jì)
鋼板-混凝土組合構(gòu)件由混凝土、內(nèi)側(cè)鋼板、U型鋼板、鋼筋網(wǎng)和栓釘組成,如圖1b所示。按照《組合結(jié)構(gòu)設(shè)計(jì)規(guī)范》[20],并考慮到施工的經(jīng)濟(jì)性與構(gòu)件的受力性能,采用的混凝土等級(jí)為C40;鋼板均為Q345B,其中U型鋼板厚度為16 mm;鋼筋網(wǎng)采用8@150進(jìn)行布置;栓釘采用ML15圓柱頭栓釘,其中焊接在內(nèi)側(cè)鋼板上的栓釘直徑為19 mm,焊接在U型鋼板上的栓釘直徑為13 mm。節(jié)點(diǎn)由U型鋼板、外防水鋼板、內(nèi)防水鋼板和梯形傳力鋼板組成的“喇叭口”形式。其中外防水鋼板厚度為21 mm,內(nèi)防水鋼板和傳力鋼板厚度均為10 mm,節(jié)點(diǎn)詳圖如圖1c所示。參考文獻(xiàn)[14]中結(jié)構(gòu)設(shè)計(jì)方案,節(jié)點(diǎn)中的外防水鋼板可視為工字鋼的翼緣板,在實(shí)際施工中,工字鋼可作為基坑支護(hù)結(jié)構(gòu)的鋼樁,鋼樁與倉壁預(yù)制塊拼裝連接形成倉壁,從而實(shí)現(xiàn)基坑與倉壁一體化施工。
為防止構(gòu)件發(fā)生受剪破壞,對(duì)試件兩邊采用鋼板抗剪加固措施,如圖2所示。在滿足試件受力情況下,抗剪加固部件采用Q345B鋼板,其厚度為20 mm;上下鋼板由側(cè)向帶肋構(gòu)件采用直徑為30 mm的六角頭短螺栓連接,螺栓強(qiáng)度等級(jí)為8.8。上鋼板與試件之間鋪設(shè)一層薄沙來平整接觸面,以達(dá)到較好的傳力效果??辜艏庸滩考鐖D2所示。
為了監(jiān)控與收集加載過程中試件的應(yīng)變、位移數(shù)據(jù),在進(jìn)行兩點(diǎn)對(duì)稱加載試驗(yàn)之前,需對(duì)混凝土和鋼板易變形位置布置應(yīng)變片和位移計(jì)。
有節(jié)點(diǎn)試件以SCCW2試件為例,根據(jù)試件受力特點(diǎn)和材料變形特征,在側(cè)面混凝土上共布置24個(gè)10 cm的應(yīng)變片,編號(hào)為C1~C24,如圖3a所示,另一側(cè)混凝土上應(yīng)變片編號(hào)為C13~C24。鋼板上共布置30個(gè)1 cm的應(yīng)變片,其中,傳力鋼板上應(yīng)變片編號(hào)為L1~L6,如圖3a所示,另一側(cè)傳力鋼板上應(yīng)變片編號(hào)為L4~L6;U型鋼板上應(yīng)變片編號(hào)為U1~U6、Y7~Y9和Y13~Y15,外防水鋼板上應(yīng)變片編號(hào)為Y1~Y3,內(nèi)防水鋼板上應(yīng)變片編號(hào)為Y10~Y12,內(nèi)側(cè)鋼板上應(yīng)變片編號(hào)為Y4~Y6和Y16~Y18,如圖3b、3c所示。此外,在試件下方共布置7個(gè)位移計(jì)測(cè)點(diǎn),編號(hào)為W1~W7,其中W3、W4和W5為跨中測(cè)點(diǎn),如圖 3c所示。SCCW1試件除了沒有布置L1~L6應(yīng)變片外,其他相應(yīng)的測(cè)點(diǎn)布置與編號(hào)均和SCCW2試件相同。
SCCW3試件在加載面混凝土上布置5個(gè)應(yīng)變片,編號(hào)為C1~C5,如圖4a所示;側(cè)面混凝土上布置18個(gè)應(yīng)變片,編號(hào)為C6~C23,如圖4b所示;內(nèi)側(cè)鋼板布置15個(gè)應(yīng)變片,編號(hào)為Y1~Y15,7個(gè)位移計(jì)測(cè)點(diǎn),編號(hào)為W1~W7,如圖4c所示。
2.1.1 鋼板拉伸性能
試驗(yàn)參照GB/T 1040—2006《金屬材料拉伸試驗(yàn)》[21]對(duì)10 mm、16 mm厚度的Q345B鋼板各制作3個(gè)啞鈴型試樣,并通過拉伸試驗(yàn)測(cè)定了其屈服強(qiáng)度。厚度為10 mm的鋼板屈服強(qiáng)度為330 MPa,厚度為16 mm的鋼板屈服強(qiáng)度為343 MPa,彈性模量均為2.06×105MPa。
2.1.2 混凝土抗壓強(qiáng)度
根據(jù)GB 50010—2010《混凝土結(jié)構(gòu)設(shè)計(jì)規(guī)范》[22],在試件澆筑混凝土過程中,同時(shí)制作6個(gè)150 mm×150 mm× 150 mm混凝土標(biāo)準(zhǔn)試塊。在標(biāo)準(zhǔn)條件下養(yǎng)護(hù)28 d后進(jìn)行混凝土抗壓試驗(yàn),混凝土抗壓強(qiáng)度平均值為41.7 MPa。
試驗(yàn)采用河南工業(yè)大學(xué)500 t自平衡反力加載系統(tǒng)和DH3816N靜態(tài)應(yīng)變測(cè)試系統(tǒng)協(xié)同完成。其中,反力加載精度為0.1 t,應(yīng)變采集儀量程為-0.02~0.02,精度為1×10-6。依照規(guī)范GB/T 50152—2012《混凝土結(jié)構(gòu)試驗(yàn)方法標(biāo)準(zhǔn)》[23]進(jìn)行試驗(yàn)加載布置,如圖5所示。試驗(yàn)采用手動(dòng)逐級(jí)加壓方式。首先,在彈性范圍內(nèi)進(jìn)行預(yù)加載,檢查加載系統(tǒng)是否穩(wěn)定,加載設(shè)備、數(shù)據(jù)采集儀是否正常工作。預(yù)加載完成后,進(jìn)行正式加載,開始時(shí)單點(diǎn)荷載增幅值為100 kN,待混凝土出現(xiàn)裂縫后,單點(diǎn)荷載增幅值變?yōu)?0 kN,每級(jí)均保壓5 min。加載過程中進(jìn)行應(yīng)變、位移的采集與分析,觀察混凝土裂縫的發(fā)展規(guī)律,并對(duì)松開的螺栓進(jìn)行擰緊處理,以確??辜艏庸滩考恼9ぷ鳎敝猎嚰茐?。以SCCW2試件為例,加載試驗(yàn)示意圖如圖5所示。
試驗(yàn)采用兩點(diǎn)對(duì)稱加載試驗(yàn),在兩個(gè)加載區(qū)域之間為純彎段,單點(diǎn)荷載在各試件純彎段區(qū)產(chǎn)生的彎矩由公式(1)進(jìn)行計(jì)算[24]。
式中表示單點(diǎn)加載的荷載值,kN;表示加載點(diǎn)與支座之間的距離,m。
SCCW1試件在加載過程中,當(dāng)彎矩為693 kN·m時(shí),內(nèi)防水鋼板進(jìn)入屈服狀態(tài),節(jié)點(diǎn)附近出現(xiàn)細(xì)小裂縫,試件兩端出現(xiàn)較長裂縫;加至957 kN·m時(shí),加載區(qū)域正下方內(nèi)側(cè)鋼板發(fā)生明顯變形,節(jié)點(diǎn)附近裂縫向左右兩側(cè)延伸,寬度加大,加載區(qū)域混凝土局部受壓破壞,如圖6a所示。SCCW2試件在加載過程中,當(dāng)彎矩為891 kN·m時(shí),傳力鋼板進(jìn)入屈服狀態(tài),節(jié)點(diǎn)附近與左、右兩端均產(chǎn)生裂縫;加至1 089 kN·m時(shí),加載區(qū)域混凝土局部被壓壞,同時(shí)伴有荷載下降現(xiàn)象;加至1 122 kN·m時(shí),傳力鋼板彎曲,如圖6b所示。SCCW3試件在加載過程中,當(dāng)彎矩加至975 kN·m時(shí),跨中內(nèi)側(cè)鋼板進(jìn)入屈服狀態(tài),受拉區(qū)出現(xiàn)多條垂直裂縫,如圖6c所示。
分析破壞過程可知,與SCCW3相比,SCCW2試件的承載力提高15%,這說明節(jié)點(diǎn)可有效提高試件的抗彎承載力;與SCCW1試件相比,SCCW2試件的承載力提高17%,屈服荷載提高了29%,這說明傳力鋼板可有效提高試件的抗彎承載力;SCCW1試件破壞形態(tài)為內(nèi)側(cè)鋼板明顯變形,而SCCW2試件破壞形態(tài)為傳力鋼板失穩(wěn)彎曲,這說明傳力鋼板改變了試件的破壞形態(tài)。
如圖7所示,SCCW1試件在加載過程中跨中位移隨彎矩的增大而增大,當(dāng)彎矩達(dá)到693 kN·m后,位移增長速度逐漸加快直至加載區(qū)混凝土發(fā)生局部破壞,在W5處產(chǎn)生最大位移48.06 mm。這主要是因?yàn)閮?nèi)側(cè)鋼板屈服和節(jié)點(diǎn)出現(xiàn)的裂縫減小了試件的剛度。SCCW2試件位移整體上隨彎矩的增大而增大,當(dāng)彎矩達(dá)891 kN·m后,傳力鋼板屈服,位移增速稍微加快;當(dāng)彎矩達(dá)到1 089 kN·m后出現(xiàn)卸載現(xiàn)象,但位移仍在增加,在W3處產(chǎn)生最大位移21.69 mm;分析破壞過程可知,位移增長加快是由于傳力鋼板屈服導(dǎo)致構(gòu)件剛度減小,而卸載現(xiàn)象是由于傳力鋼板彎曲所導(dǎo)致。SCCW3試件在加載過程中跨中位移隨彎矩的增大而增大,當(dāng)彎矩達(dá)到625 kN·m后,位移增加明顯加快,在W4處產(chǎn)生最大位移138.72 mm;分析其原因可知,當(dāng)彎矩為625 kN·m時(shí),受拉區(qū)出現(xiàn)裂縫導(dǎo)致構(gòu)件剛度減小,隨后裂縫穩(wěn)定發(fā)展直至加載結(jié)束。
3.3.1 SCCW1試件應(yīng)變-彎矩關(guān)系
側(cè)面混凝土上部測(cè)點(diǎn)應(yīng)變?yōu)樨?fù)值,說明其承受壓力作用,發(fā)生破壞時(shí),在C4測(cè)點(diǎn)處產(chǎn)生最大壓應(yīng)變值 0.000 5;下部測(cè)點(diǎn)應(yīng)變?yōu)檎?,說明其承受拉力作用,在C6測(cè)點(diǎn)處產(chǎn)生最大拉應(yīng)變值0.000 3;中部測(cè)點(diǎn)由于在試件截面的中性軸附近,受力不太明顯,如圖8a所示。U型鋼板上側(cè)受壓,在U1測(cè)點(diǎn)處產(chǎn)生最大壓應(yīng)變值0.0021;U型鋼板下側(cè)受拉,在Y9測(cè)點(diǎn)處產(chǎn)生最大拉應(yīng)變值0.006 5,且U型鋼板下側(cè)拉應(yīng)變值較大,如圖8b所示。內(nèi)側(cè)鋼板與內(nèi)防水鋼板均受拉,分別在Y6、Y11處產(chǎn)生最大拉應(yīng)變值0.005 9和0.002 5,如圖8c所示。
圖7 各試件上不同測(cè)點(diǎn)的位移-彎矩曲線
內(nèi)側(cè)鋼板與內(nèi)防水鋼板厚度相同,但內(nèi)防水鋼板拉應(yīng)變?cè)鲩L趨勢(shì)較為平緩,分析原因?yàn)?,?nèi)側(cè)鋼板處是鋼板-混凝土組合結(jié)構(gòu),內(nèi)防水鋼板處只是鋼板結(jié)構(gòu),兩者傳力機(jī)理不同,且鋼板之間由焊縫連接,傳力有所削弱。內(nèi)側(cè)鋼板與U型鋼板同為組合結(jié)構(gòu),但U型鋼板應(yīng)變?cè)鲩L趨勢(shì)較為緩慢,這主要是由于U型鋼板較厚,受力性能好。
3.3.2 SCCW2試件應(yīng)變-彎矩關(guān)系
SCCW2試件的混凝土、鋼板應(yīng)變分布與SCCW1試件幾乎相同,整體呈現(xiàn)上部受壓,下部受拉的受力形態(tài)。側(cè)面混凝土在C4測(cè)點(diǎn)處產(chǎn)生最大壓應(yīng)變值0.000 5,在C6測(cè)點(diǎn)處產(chǎn)生最大拉應(yīng)變值0.000 6,如圖 9a所示;U型鋼板在U2測(cè)點(diǎn)處產(chǎn)生最大壓應(yīng)變值0.000 5,在Y13測(cè)點(diǎn)處產(chǎn)生最大拉應(yīng)變值0.003 3,如圖9b所示;內(nèi)側(cè)鋼板與內(nèi)防水鋼板分別在Y18、Y10處產(chǎn)生最大拉應(yīng)變值0.002 3和0.000 9,如圖9c所示;傳力鋼板呈上壓下拉的受力形態(tài),在L4測(cè)點(diǎn)處產(chǎn)生最大壓應(yīng)變值0.002 8,在L3測(cè)點(diǎn)處產(chǎn)生最大拉應(yīng)變值0.001 0,如圖9d所示。
傳力鋼板測(cè)點(diǎn)L2與L5分別在兩塊傳力鋼板的相同位置,但當(dāng)單點(diǎn)荷載達(dá)到726 kN·m后,測(cè)點(diǎn)L5應(yīng)變值逐漸增加,而L2仍保持平穩(wěn)狀態(tài),這說明L5所在傳力鋼板要先于L2所在傳力鋼板進(jìn)入屈服階段。傳力鋼板和內(nèi)防水鋼板應(yīng)變均隨著彎矩增加而呈線性增加,當(dāng)傳力鋼板屈服時(shí),內(nèi)防水鋼板Y10應(yīng)變和傳力鋼板L6應(yīng)變均為0.000 8,這說明傳力鋼板有效發(fā)揮了其抗拉作用。
3.3.3 SCCW3試件應(yīng)變-彎矩關(guān)系
SCCW3試件同樣呈上壓下拉受力形態(tài),且各處應(yīng)變?yōu)榫€性趨勢(shì)增長,增長曲線對(duì)比有節(jié)點(diǎn)試件較為平滑規(guī)整,這是由于SCCW3試件結(jié)構(gòu)簡單,試件各處受力均勻。側(cè)面混凝土在C9測(cè)點(diǎn)處產(chǎn)生最大壓應(yīng)變值0.001 4,在C20測(cè)點(diǎn)處產(chǎn)生最大拉應(yīng)變值0.001 8,如圖10a所示;加載面混凝土整體受壓,在C5測(cè)點(diǎn)處產(chǎn)生最大壓應(yīng)變值0.001 9,如圖10b所示;內(nèi)側(cè)鋼板在Y9測(cè)點(diǎn)產(chǎn)生最大拉應(yīng)變值0.001 8,如圖 10c所示。
各試件跨中位移相應(yīng)測(cè)點(diǎn)的平均值與相應(yīng)彎矩的關(guān)系如圖11a所示。在試件加載過程中,當(dāng)跨中彎矩相同時(shí),SCCW1試件和SCCW2試件對(duì)比SCCW3試件位移較小,當(dāng)彎矩達(dá)到625 kN·m時(shí),SCCW3試件位移值已經(jīng)是SCCW1試件的1.7倍,是SCCW2試件的6.3倍,此后SCCW3試件位移增長更快,說明節(jié)點(diǎn)有利于提高試件剛度;SCCW2試件對(duì)比SCCW1試件位移變化較小,且SCCW2試件屈服荷載值是SCCW1試件的1.29倍,這說明傳力鋼板有效提高了試件剛度和承載力。
各試件鋼板側(cè)跨中應(yīng)變測(cè)點(diǎn)的平均值與相應(yīng)彎矩的關(guān)系如圖11b所示。由圖11a和圖11b可知,在相同彎矩情況下,相比SCCW3試件,SCCW1試件位移較小,而應(yīng)變較大,這是由于SCCW3試件跨中截面下邊緣受拉是由鋼板與混凝土組合結(jié)構(gòu)承擔(dān),而SCCW1試件僅有內(nèi)防水鋼板承擔(dān);相比SCCW2試件,SCCW1試件的內(nèi)防水鋼板應(yīng)變明顯大于前者,這是由于傳力鋼板有效分擔(dān)了內(nèi)防水鋼板的拉力。
本文針對(duì)裝配式鋼板-混凝土組合試件提出了基于梯形傳力鋼板連接的新型節(jié)點(diǎn),并利用兩點(diǎn)加載試驗(yàn)研究了各試件在彈塑性階段的受彎性能。研究結(jié)論如下:
1)相較于SCCW1試件和SCCW3試件,新型節(jié)點(diǎn)試件剛度顯著增加,抗彎承載力分別提高了17%和15%,說明節(jié)點(diǎn)有效提高試件抗彎承載力;相較于SCCW1試件,新型節(jié)點(diǎn)試件屈服荷載提高了29%,說明傳力鋼板有效改善了節(jié)點(diǎn)的受力性能。
2)傳力鋼板和內(nèi)防水鋼板應(yīng)變均為線性增加,當(dāng)傳力鋼板屈服時(shí),傳力鋼板所承擔(dān)的拉應(yīng)力與內(nèi)防水鋼板相同,這說明在新型組合節(jié)點(diǎn)中傳力鋼板可有效與內(nèi)防水鋼板共同發(fā)揮抗拉作用。
[1] 張昊,孟慶婷,陶元慶,等. 地下糧倉塑料-混凝土防水體系抗水壓試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(21):292-299.
Zhang Hao, Meng Qingting, Tao Yuanqing, et al. Experiment on water pressure resistance of plastic-concrete waterproof system of underground granary[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 292-299. (in Chinese with English abstract)
[2] 熊曉莉,金立兵,王振清. 鋼筋混凝土地下糧倉倉壁土壓力取值方法及倉壁結(jié)構(gòu)受力分析[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào),2016,24(1):103-114.
Xiong Xiaoli, Jin Libing, Wang Zhenqing. Earth pressure and bearing capacity analysis on the wall of reinforced concrete underground granary[J]. Journal of Basic Science and Engineering, 2016, 24(1): 103-114. (in Chinese with English abstract)
[3] 陳桂香,崔晨星,付志永,等. 地下鋼筋混凝土糧食筒倉倉壁變形及內(nèi)力研究[J]. 地下空間與工程學(xué)報(bào),2019,15(2):458-464.
Chen Guixiang, Cui Chenxing, Fu Zhiyong, et al. Research on deformation and internal force of reinforced concrete underground grain silo wall[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(2): 458-464. (in Chinese with English abstract)
[4] 金立兵,梁新亞,霍承鼎,等. 地下混凝土筒倉倉壁力學(xué)性能工程試驗(yàn)與數(shù)值分析[J]. 土木與環(huán)境工程學(xué)報(bào)(中英文),2020,42(3):40-45.
Jin Libing, Liang Xinya, Huo Chengding, et al. Engineering test and numerical analysis of mechanical properties of underground concrete silo walls[J]. Journal of Civil and Environmental Engineering (Chinese & English), 2020, 42(3): 40-45. (in Chinese with English abstract)
[5] 劉海燕,孟偉新,王振清,等. “二八灰土”回填地下糧倉浮力預(yù)警試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(11):299-305.
Liu Haiyan, Meng Weixin, Wang Zhenqing, et al. Buoyancy early warning of underground granary with “2: 8 lime soil” backfilling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 299-305. (in Chinese with English abstract)
[6] 金立兵,劉斐驍,田棟杰. 地下鋼筋砼筒倉施工與閉水試驗(yàn)過程的抗浮試驗(yàn)研究[J]. 河南工業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2017,38(2):105-108,128.
Jin Libing, Liu Feixiao, Tian Dongjie. Preparation and application of sweet potato resistant starches[J]. Journal of Henan University of Technology:Natural Science Edition , 2017, 38(2): 105-108,128. (in Chinese with English abstract)
[7] Pan Y, Fang H, Li B, et al. Stability analysis and full-scale test of a new recyclable supporting structure for underground ecological granaries[J]. Engineering Structures, 2019, 192: 205-219.
[8] 王振清,揣君,劉永超,等. 地下糧倉的結(jié)構(gòu)設(shè)計(jì)研究現(xiàn)狀與新進(jìn)展[J]. 河南工業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2019,40(5):132-138.
Wang Zhenqing, Chuai Jun, Liu Yongchao, et al. Current situation and new progresses of structure design of underground silos [J]. Journal of Henan University of Technology: Natural Science Edition, 2019, 40(5): 132-138. (in Chinese with English abstract)
[9] Hu Y, Li Z, He J, et al. Experimental study on seismic performance of prefabricated joints of underground utility tunnel[J]. IOP Conference Series: Earth and Environmental Science, 2019, 267(4):1-7.
[10] 王鵬宇,王述紅,阿力普江·杰如拉,等. 預(yù)制管廊橫向接頭剛度理論計(jì)算模型及方法[J]. 東北大學(xué)學(xué)報(bào):自然科學(xué)版,2019,40(2):284-289.
Wang Pengyu, Wang Shuhong, Jierula Alipujiang, et al. Theoretical calculation model and method of transverse joint of precast municipal tunnel[J]. Journal of Northeastern University:Natural Science Edition, 2019, 40(2): 284-289. (in Chinese with English abstract)
[11] 陶連金,李卓遙,楊秀仁,等. 基于ABAQUS的預(yù)制裝配式地鐵車站結(jié)構(gòu)拼裝成環(huán)后力學(xué)行為研究[J]. 現(xiàn)代隧道技術(shù),2018,55(5):115-123.
Tao Lianjin, Li Zhuoyao, Yang Xiuren, et al. Research of the mechanical behaviors of subway station structure assembled with prefabricated elements based on ABAQUS[J]. Modern Tunnelling Technology, 2018, 55(5): 115-123. (in Chinese with English abstract)
[12] 楊秀仁,林放,黃美群. 地鐵車站預(yù)制裝配式結(jié)構(gòu)注漿式單榫長接頭抗彎承載性能試驗(yàn)研究[J]. 土木工程學(xué)報(bào),2020,53(4):111-118,128.
Yang Xiuren, Lin Fang, Huang Meiqun. Research on flexural bearing capability of long grouted single mortise-tenon Joints for prefabricated metro station structures[J]. Advances in Civil Engineering, 2020, 53(4): 111-118, 128. (in Chinese with English abstract)
[13] 丁鵬,陶連金,楊秀仁,等. 預(yù)制裝配式地鐵車站單環(huán)結(jié)構(gòu)傳力與變形機(jī)理[J]. 西南交通大學(xué)學(xué)報(bào),2020,55(5):1076-1084, 1110.
Ding Peng, Tao Lianjin, Yang Xiuren, et al. Force transmission and deformation mechanism of prefabricated single-ring structure of subway station [J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1076-1084, 1110. (in Chinese with English abstract)
[14] 王振清,侯支龍,揣君,等. 裝配式鋼板混凝土地下糧倉結(jié)構(gòu)方案研究[J]. 安陽工學(xué)院學(xué)報(bào),2020,19(6):80-83.
Wang Zhenqing, Hou Zhilong, Chuai jun, et al. Structural design scheme analysis of precast steel-concrete composite underground silos[J]. Journal of Anyang Institute of Technology, 2020, 19(6): 80-83. (in Chinese with English abstract)
[15] 王振清,侯支龍,揣君,等. 裝配式地下糧倉鋼板-混凝土組合倉壁整體結(jié)構(gòu)力學(xué)性能分析[J]. 河南工業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2021(3):100-107. Wang Zhenqing, Hou Zhilong, Chuai jun, et al. Analysis on the mechanical properties of the whole structure of steel plate-concrete composite wall of prefabricated underground silo [J]. Journal of Henan University of Technology:Natural Science Edition, 2021(3): 100-107. (in Chinese with English abstract)
[16] 王振清,侯支龍,張慶章,等. 裝配式地下糧倉鋼板-混凝土組合倉壁軸壓受力性能分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(1):59-67.
Wang Zhenqing, Hou Zhilong, Zhang Qingzhang, et al. Performance analysis of axial compressive behavior for precast steel plate-concrete composite silo wall of underground silo [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 59-67. (in Chinese with English abstract)
[17] 王振清,揣君,王錄民,等. 裝配式地下糧倉鋼-混組合倉壁節(jié)點(diǎn)力學(xué)性能有限元分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(24):298-306.
Wang Zhenqing, Chuai Jun, Wang Lumin, et al. Finite element analysis on mechanical properties of joint in precast steel plate-concrete composite wall of underground granary[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 298-306. (in Chinese with English abstract)
[18] 揣君,王錄民,何毅,等. 地下圓形糧倉鋼板-混凝土組合倉壁彈性應(yīng)力計(jì)算公式推導(dǎo)與驗(yàn)證[J]. 河南工業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2021,42(1):108-113, 123.
Chuai Jun, Wang Lumin, He Yi, et al. Derivation and verification of the formula for calculating the elastic stress of steel plate- concrete composite wall of underground silo [J]. Journal of Henan University of Technology: Natural Science Edition, 2021, 42(1): 108-113, 123. (in Chinese with English abstract)
[19] Chuai J, Hou Z, Wang Z, et al. Mechanical properties of the vertical joints of prefabricated underground silo steel plate concrete wall[J]. Advances in Civil Engineering, 2020, 2020(6): 1-18.
[20] 中華人民共和國住房和城鄉(xiāng)建設(shè)部. JGJ 138—2016組合結(jié)構(gòu)設(shè)計(jì)規(guī)范[M]. 北京:中國建筑工業(yè)出版社,2016.
[21] 中華人民共和國國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局. GBT 228—2010金屬材料拉伸試驗(yàn)[M]. 北京:中國標(biāo)準(zhǔn)出版社,2010.
[22] 國內(nèi)-國家標(biāo)準(zhǔn)-國家市場(chǎng)監(jiān)督管理總局. GB 50010—2010混凝土結(jié)構(gòu)設(shè)計(jì)規(guī)范[S]. 北京:中國建筑工業(yè)出版社,2010.
[23] 中華人民共和國住房和城鄉(xiāng)建設(shè)部. 混凝土結(jié)構(gòu)試驗(yàn)方法標(biāo)準(zhǔn):GB/T 50152-2012[S]. 北京:中國建筑工業(yè)出版社,2012.
[24] 龍馭球,包世華. 結(jié)構(gòu)力學(xué)教程[M]. 北京:高等教育出版社,2001.
Flexural performance of the vertical joints of steel plate-concrete composite wall for underground granary
Zhang Hao1, Yuan Lingling1, Meng Qingting2※, Chuai Jun2, Chen Lei1, Wang Hongkai1
(1.,,450001,;2.,450001,)
The underground granary with the prefabricated steel plate-concrete composite has presented the many advantages of energy conservation, loss reduction, and high grain quality, particularly for the requirements of low-carbon environmental protection and sustainable development. However, there are only limited reports on the vertical joints in the prefabricated steel plate-concrete composite wall. In this research, a new type of joint was proposed suitable for the precast steel plate-concrete composite wall in an underground granary. Four groups of steel plates were composed of the U-shaped, external/internal waterproof, and trapezoidal load-transfer steel plate. When the external waterproof steel plate of the new joint was used as the flange plate of the I-steel pile in the foundation pit supporting structure, the steel pile was assembled and connected with the precast block of the underground granary wall, further to realize the integrated construction of foundation pit and granary wall. Three types of precast steel plate-concrete composite specimens were designed to fabricate, including a new joint, non-trapezoidal load-transfer steel plate, and no joint. A two-point symmetrical loading flexural test was conducted to investigate the flexural performance of the precast steel plate-concrete composites in the elastic-plastic stage. An analysis was made on the failure modes, internal forces, and deformation behavior in each specimen under loads. The results indicated that there was a different development of crack and deformation in each specimen under the loading. Most cracks in the two specimens with joints appeared in the compression zone near the joints and the loading zone. By contrast, most cracks with non-joint appeared in the tension zone at the connection between the internal steel plate and concrete. There was the smallest deformation of the specimen with the new joint, and the largest that with no joint. The displacement and strain of each specimen increased with the increasing bending moment. Overall, the upper part of the specimen was in a compression state, whereas, the lower part was in a tension state. Specifically, the inflexibility of the new joint specimen increased significantly, where the flexural capacity increased by 15%, compared with the non-joint specimen. The stiffness and bearing capacity of prefabricated specimens were improved via the increasing concrete strength and the appropriate material parameters of the steel plate. Furthermore, the inflexibility of the new joint specimen increased remarkably, where the flexural capacity increased by 17%, and the yield load increased by 29%, indicating that the trapezoidal load-transfer steel plate effectively improved the joint performance, compared with the non-load-transfer steel plate joint. The mid-span tensile strains of the trapezoidal load-transfer and internal waterproof steel plate increased linearly with the increment of bending moment, where the tensile deformation was consistent, indicating that both of them played a tensile role in the new joint. The findings can provide a strong reference to design the flexural performance of prefabricated underground granaries and similar underground structures.
mechanical property; flexural test; vertical joint; underground granary; steel plate-concrete composite wall; prefabricated
10.11975/j.issn.1002-6819.2021.24.005
TU57
A
1002-6819(2021)-24-0038-08
2021-11-03
2021-12-14
河南省科技攻關(guān)項(xiàng)目(202102110122);省屬高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2016QNJH23);河南工業(yè)大學(xué)高層次人才科研啟動(dòng)基金項(xiàng)目(2018BS077)
張昊,副教授,研究方向?yàn)閮?chǔ)倉結(jié)構(gòu)和綠色儲(chǔ)糧體系。Email:zzbright@163.com
孟慶婷,助理工程師,研究方向?yàn)閮?chǔ)倉結(jié)構(gòu)和綠色儲(chǔ)糧體系。Email:mengqingting111686@163.com
張昊,元玲玲,孟慶婷,等. 地下糧倉鋼-混組合倉壁豎向節(jié)點(diǎn)受彎性能分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(24):38-45. doi:10.11975/j.issn.1002-6819.2021.24.005 http://www.tcsae.org
Zhang Hao, Yuan Lingling, Meng Qingting, et al. Flexural performance of the vertical joints of steel plate-concrete composite wall for underground granary[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(24): 38-45. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.24.005 http://www.tcsae.org