吳鳳燕,王 煌,朱 瑞,翟麗妮,胡鐵松
拔節(jié)-孕穗期淹澇脅迫對水稻生長的后效影響
吳鳳燕1,王 煌1,朱 瑞2,翟麗妮3,胡鐵松2
(1. 湖北省水利水電科學(xué)研究院,武漢 430070;2. 武漢大學(xué)水資源與水電工程科學(xué)國家重點實驗室,武漢 430072;3. 湖北省國際灌排研究培訓(xùn)中心,武漢 430070)
為探究每年7-8月(拔節(jié)-孕穗期)洪澇淹沒對水稻生長的后效影響,該研究以Ⅱ優(yōu)898為試驗對象,在安徽新馬橋農(nóng)水試驗站開展為期2 a的水稻淹澇脅迫試驗。試驗設(shè)置了具有不同淹水深度(半淹、3/4淹、全淹)和淹水持續(xù)時間(5、7、9 d)組合的9個試驗組,以及正??厮膶φ战M。在淹水脅迫結(jié)束后,對后脅迫時期水稻的葉片光合特性、根系生長情況、植株干物質(zhì)分配和相應(yīng)產(chǎn)量進(jìn)行了多次觀測。結(jié)果表明,淹澇脅迫在一定程度上抑制了葉片氣孔導(dǎo)度和光合速率,但在脅迫解除后會逐漸恢復(fù)甚至出現(xiàn)補(bǔ)償現(xiàn)象,其恢復(fù)進(jìn)程受前期淹澇程度影響。淹澇脅迫使水稻的干物質(zhì)分配更傾向于葉和莖,并隨著前期淹澇程度加重而愈發(fā)明顯;在復(fù)水后第20天,半淹組的平均莖葉干物質(zhì)分配系數(shù)相比于對照組增加了7.9%,而全淹組則增加了32.9%。水稻產(chǎn)量與其在后脅迫時期的莖葉干物質(zhì)分配系數(shù)存在顯著的相關(guān)關(guān)系,相關(guān)系數(shù)為0.875(=0.023);水稻產(chǎn)量隨著莖葉干物質(zhì)分配系數(shù)的增加、葉片氣孔導(dǎo)度和光合速率的減小而減少。該研究針對拔節(jié)-孕穗期發(fā)生的淹澇脅迫,重點對后脅迫時期水稻的光合特性及干物質(zhì)分配進(jìn)行了分析,初步探討了水稻澇害減產(chǎn)的潛在機(jī)理,為提出稻田澇后減災(zāi)管理措施提供了一定的理論依據(jù)。
光合;生物量;脅迫;水稻;拔節(jié)-孕穗期;產(chǎn)量
長江中下游地區(qū)是中國糧食的主產(chǎn)區(qū),也是中國洪澇災(zāi)害發(fā)生極為頻繁的地區(qū)[1-2]。近年來,日趨頻繁的洪澇災(zāi)害已嚴(yán)重威脅到該地區(qū)作物的安全生產(chǎn),特別是對湖北、江蘇、安徽等主要稻作區(qū)的水稻生產(chǎn)造成嚴(yán)重危害[3],輕則抑制水稻生長發(fā)育、造成減產(chǎn),重則顆粒無收[4-6]。為此,許多學(xué)者通過系統(tǒng)的田間試驗或盆栽試驗分析了淹水脅迫對水稻生長、發(fā)育、形態(tài)、生理及產(chǎn)量的諸多影響。有研究表明,不同生育階段、不同淹水深度和持續(xù)時間的洪澇對水稻生長及產(chǎn)量的影響有差異[6-9];水稻的株高、分蘗數(shù)、生育期、各器官干物質(zhì)分配系數(shù)等均會受到淹澇脅迫的影響[10-13];水稻葉片的光合特性如光合速率、光量子效率、最大光化學(xué)效率、葉綠素含量均會不同程度地受淹澇影響[14-16]。這些研究對了解水稻澇害生理、減少水稻澇害損失有著非常重要的意義。但是,上述研究僅僅關(guān)注了水稻的最終產(chǎn)量及在淹水脅迫后短時期內(nèi)的生理變化,而忽略了淹澇脅迫給水稻后期生長發(fā)育帶來的長期影響。尤其是對于長江中下游地區(qū)而言,其水稻洪澇災(zāi)害多發(fā)生于7-8月,與一季稻的拔節(jié)-孕穗期重合[2],而作物籽粒產(chǎn)量中70%以上來自于抽穗后的光合作用[17],這意味著水稻在后脅迫時期的生理功能對產(chǎn)量形成至關(guān)重要。因此,探明拔節(jié)-孕穗期淹澇脅迫對水稻生長發(fā)育的后效影響,有助于加深對水稻澇害脅迫機(jī)理的認(rèn)識。
一些研究已表明,前期發(fā)生的淹澇脅迫對水稻生長存在后效影響。姜麗霞等[18]在淹澇脅迫解除后對水稻的株高和分蘗數(shù)進(jìn)行了多次觀測,發(fā)現(xiàn)淹水后株高增長率呈增大趨勢,而分蘗數(shù)呈減小趨勢。甄博等[19]對淹水脅迫后水稻葉片葉綠素含量進(jìn)行了多次觀測,發(fā)現(xiàn)淹澇導(dǎo)致葉綠素含量明顯降低,但至脅迫解除后10 d和20 d時,葉綠素含量逐漸恢復(fù),甚至高于正常水平。王斌等[20]發(fā)現(xiàn)在淹水脅迫結(jié)束20 d后,水稻的綠葉數(shù)、綠葉面積、根長、根系活力等指標(biāo)數(shù)值與對照組的差距縮小。宣守麗等[21]在淹水脅迫結(jié)束后5、10、15 d對水稻地上部干物質(zhì)量進(jìn)行觀測,發(fā)現(xiàn)綠葉和莖鞘占地上部總生物量的比例始終低于對照組。這些研究表明,前期的淹澇脅迫對后期水稻生長存在著持續(xù)影響。但不足的是,上述研究缺少對后脅迫時期水稻葉片光合特性及植株各器官干物質(zhì)量的連續(xù)觀測,而水稻在后脅迫時期的光合碳同化能力和對碳同化物的分配策略對最終產(chǎn)量的形成尤為重要[22-23]。鑒于此,本研究以Ⅱ優(yōu)898為受試對象,通過在拔節(jié)-孕穗期設(shè)置不同程度的淹澇試驗,對淹澇脅迫解除后的葉片光合特性、根系生長情況、各器官干物質(zhì)量進(jìn)行多次觀測,并結(jié)合產(chǎn)量及產(chǎn)量構(gòu)成指標(biāo),分析拔節(jié)-孕穗期發(fā)生的淹澇脅迫對水稻生長的后效影響,探討淹澇脅迫造成水稻減產(chǎn)的潛在機(jī)理,為制定水稻受淹后的減災(zāi)避災(zāi)措施提供理論依據(jù)。
試驗地點位于淮委水利科學(xué)研究院新馬橋農(nóng)水綜合試驗站(117°22′E,33°09′N),屬亞熱帶和溫帶過渡帶,氣候兼南北之長,四季分明,光照充足,年平均日照2 170 h、氣溫14.9 ℃,降雨量840 mm,年際雨量變幅大,且年內(nèi)降雨分布不均,洪澇災(zāi)害頻發(fā)。
長江中下游地區(qū)影響范圍最廣、強(qiáng)度最大的水稻洪澇災(zāi)害多集中發(fā)生于7—8月,這與一季稻的拔節(jié)-孕穗期重合[3],因此本試驗將淹澇脅迫設(shè)置在水稻的拔節(jié)-孕穗期。參照前人的水稻淹澇脅迫試驗方案[8-9],本研究將淹澇脅迫控制因素設(shè)置為:1)受淹深度:0.5PH、0.75PH、1PH (PH代表水稻株高),即半淹、3/4淹、全淹(又稱沒頂淹沒);2)受淹歷時:5、7、9 d。試驗于2017年和2018年進(jìn)行,共設(shè)置了9組由不同受淹深度和受淹歷時構(gòu)成的淹澇試驗組(CF1~CF9)和1個正??厮膶φ战M,具體試驗方案見表1。
表1 2017年和2018年試驗設(shè)置及葉片光合特性測量日期
注:PH代表植株高度;0.5PH,0.75PH和1PH分別代表半淹,3/4淹和全淹。下同。
Note: PH represents plant height; 0.5PH, 0.75PH and 1PH represent half-, 3/4, and full-submerged, respectively. Same as below.
本試驗以當(dāng)?shù)爻R姷蘑騼?yōu)898為受試對象,播種日期為5月11日,2017年和2018年移栽日期分別為6月15日和6月11日,分別于8月4日和8月2日開始經(jīng)歷淹澇脅迫。所有試驗均在內(nèi)徑35 cm、高45 cm的大型有底鐵桶內(nèi)進(jìn)行,種植密度為每桶3穴,每穴2株。試驗土取自臨近稻田耕作層,土壤類型為砂姜黑土,土壤質(zhì)地為中壤土,剖面構(gòu)型自上而下依次為黑土層、脫潛層、砂姜層,土壤容重為1.24 g/cm3,土壤的田間持水量為0.275 g/g,飽和含水量為0.429 g/g。
在水稻全生育期內(nèi)進(jìn)行正常的農(nóng)事管理。在無淹澇脅迫的生長時段,對水稻進(jìn)行正常淹灌,即維持2~3 cm的土表水層。根據(jù)試驗設(shè)計深度,將測桶擺放在非對稱圓臺形淹水池(如圖1)的不同臺階上(必要時通過添加磚塊調(diào)整墊高),以滿足試驗設(shè)置的3種不同淹沒深度。試驗期間,2017年7—8月的日平均降雨量分別為4.9 mm和6.2 mm,最大日降雨量為39.9 mm,出現(xiàn)在8月19日。2018年7—8月的日平均降雨量分別為4.8 mm和9.6 mm,最大日降雨量為126.6 mm,出現(xiàn)在8月18日。每天09:00觀察淹水池的水層深度,如水位降低則適量補(bǔ)水。若遇陰雨天氣,則一天內(nèi)多次觀察淹水池水層深度,適時排水,以控制淹水池的水位始終滿足受淹試驗要求。各處理組水稻在達(dá)到淹澇時長后,被提至淹水池最上層平臺,恢復(fù)至正常淹灌,即維持2~3 cm的土表水層,直至收獲。
1)破壞組選擇
為觀測根系生長情況和干物質(zhì)分配特性,1個處理組需要設(shè)置包括用于破壞和測產(chǎn)的6個重復(fù)組。受限于試驗條件,每年試驗只能選擇3個處理組進(jìn)行破壞試驗。為使觀測數(shù)據(jù)盡可能覆蓋更多的處理組,本研究在2 a中分別選擇了不同的處理組進(jìn)行破壞:2017年的CF2、CF6和CF7為破壞組,2018年的CF1、CF5和CF9為破壞組。年內(nèi)的3個破壞組主要以淹水深度區(qū)分,包括了1/2淹、3/4淹和全淹3個水平。每個破壞組設(shè)有6個重復(fù)組,其中3個用于觀測后脅迫時期水稻各器官生長情況,分別于脅迫結(jié)束后的首日,第10天和第20天破壞;另外3個用于水稻成熟后測產(chǎn)。其他處理組則僅設(shè)置3個重復(fù)組用于測產(chǎn)。
2)觀測項目
葉片光合特性:于淹澇脅迫結(jié)束后的5個晴天(10:00)使用便攜式光合儀(CI-340,CID,USA)測量水稻植株倒數(shù)第一片完全展開葉的光合速率、氣孔導(dǎo)度和蒸騰速率。每個處理組重復(fù)測量3次。各試驗組的5次光合特性測量日如表1所示。
根系生長情況:于淹澇脅迫結(jié)束后的首日、第10天、第20天(17:00-18:00)分別對破壞組進(jìn)行破壞取樣,將植株地上部分先帶回實驗室(用于測量各器官干物質(zhì)量)。然后,根據(jù)Morita等[24]的根系傷流強(qiáng)度測定方法測量根系傷流強(qiáng)度(g/(h·株))。
各器官干物質(zhì)分配特性:在實驗室將水稻的根、莖、葉、穗等不同器官分開裝入樣品袋,放入電熱恒溫烘箱用105 ℃殺青1 h、85 ℃烘干后,用天平稱量各器官的干物質(zhì)量。水稻各器官的干物質(zhì)分配系數(shù)等于該器官的干物質(zhì)量除以植株總干物質(zhì)量。
產(chǎn)量及產(chǎn)量構(gòu)成要素:成熟后曬田1周,對每組處理的3個重復(fù)測桶進(jìn)行收割,選取天氣晴朗的2 d晾曬后烘干,然后依次考查每個測桶的穗數(shù)、穗長、每穗粒數(shù)(指每穗實粒數(shù),下同)、總粒數(shù)、千粒質(zhì)量以及產(chǎn)量。處理組的各項指標(biāo)值用3個重復(fù)測桶的平均值表示。
3)數(shù)據(jù)處理和分析
為避免因觀測日期不同造成的影響,本文多采用同一時期的相對特性來比較不同處理組水稻的生長差異。這里以氣孔導(dǎo)度相對值的計算為例進(jìn)行說明,見式(1)。
式(1)同樣用于計算相對光合速率、相對葉片水分利用效率、相對根系數(shù)量、相對根系深度、相對根系傷流強(qiáng)度、以及各產(chǎn)量構(gòu)成要素的相對值。
拔節(jié)-孕穗期發(fā)生的淹澇脅迫結(jié)束后,大部分處理組的氣孔導(dǎo)度低于對照組,但隨著淹澇脅迫解除,水稻的氣孔導(dǎo)度會逐漸恢復(fù)。如圖2a和圖2b所示,除2017年CF4、CF8組和2018年CF6組之外的其他處理組在脅迫剛結(jié)束時的相對氣孔導(dǎo)度均小于1,即低于對照組;但在脅迫后30天,大部分處理組的氣孔導(dǎo)度已恢復(fù)至正常值左右,部分處理組的相對氣孔導(dǎo)度甚至大于1,即超出正常水平。這些結(jié)果表明,雖然拔節(jié)-孕穗期淹澇脅迫對水稻氣孔導(dǎo)度有不同程度的抑制作用,但這些影響是可逆的,會隨著脅迫解除而逐漸恢復(fù)。
拔節(jié)-孕穗期發(fā)生的淹澇脅迫沒有對葉片光合能力造成不可逆的損傷。2017年試驗中,CF1、CF2、CF7和CF8組在脅迫解除后早期的相對光合速率明顯小于1;但隨著時間延長,其光合速率在脅迫后15天左右恢復(fù)至正常水平(圖2c)。2018年試驗中,大部分處理組(除淹澇程度最嚴(yán)重的CF9組以外)在脅迫剛解除時的相對光合速率均不同程度地大于1(圖2d)。這些結(jié)果表明,淹澇解除后,水稻能迅速恢復(fù)其光合潛力。即便是受澇程度最嚴(yán)重的CF9組,其葉片光合速率在脅迫后25天也已經(jīng)恢復(fù),甚至超過對照組的光合速率。
從根系數(shù)量來看,2017年各淹澇處理組在脅迫解除后首日的根系數(shù)量均低于對照組,即相對根系數(shù)量小于1,說明淹澇脅迫一定程度上抑制了根系生長。隨著恢復(fù)時間增長,在淹澇脅迫解除后第10天和第20天,各水稻的根系數(shù)量均得以恢復(fù)(圖3a),甚至超過正常水平。類似現(xiàn)象也出現(xiàn)在2018年(圖3b),各處理組在脅迫后第10天的根系數(shù)量略低于對照組,但是在脅迫后第20天的根系數(shù)量均高于對照組,這說明淹澇脅迫對根系生長的抑制作用逐漸減弱,部分水稻的根系生長甚至得到了補(bǔ)償。
從根據(jù)活力來看,2018年的試驗結(jié)果表明(圖3d),拔節(jié)-孕穗期發(fā)生的淹澇脅迫抑制了水稻在脅迫解除初期的根系活力,且這種抑制作用隨前期淹澇程度的加重而愈發(fā)明顯,各處理組在脅迫解除首日的相對根系傷流強(qiáng)度均小于1,且隨著淹澇程度加深,傷流強(qiáng)度逐漸減小。但是,這種抑制作用會隨著脅迫解除而逐漸恢復(fù),至脅迫解除后第20天,各處理組的根系傷流強(qiáng)度甚至超過同期對照組。2017年試驗結(jié)果并未呈現(xiàn)類似的現(xiàn)象(圖3c),除CF6組在脅迫解除后第10天和CF7組在脅迫解除首日的相對根系傷流強(qiáng)度大于1外,其他各時期處理組的根系傷流強(qiáng)度均低于對照組。這可能是由測定傷流時外界環(huán)境的變化導(dǎo)致的,如溫度和濕度的變化都可能引起傷流量的改變。
在淹澇脅迫解除后首日,各處理組的葉片干物質(zhì)分配系數(shù)明顯高于對照組(圖4a和圖4b),說明拔節(jié)-孕穗期的淹澇脅迫促使水稻在受淹期間把更多的碳同化物分配給葉片。這種由淹澇脅迫引起的傾向于葉片的干物質(zhì)分配特性,也延續(xù)到了后脅迫時期:2 a各淹澇處理組在后脅迫時期的葉片干物質(zhì)分配系數(shù)均不同程度地高于對照組;其中,全淹處理組(CF7和CF9)在脅迫解除后第20天的葉片干物質(zhì)分配系數(shù)最大。
沒頂淹沒期間,水稻的莖部生長可能被抑制,因為CF7和CF9組在脅迫解除首日的莖干物質(zhì)分配系數(shù)明顯低于對照組(圖4c和圖4d);但其莖干物質(zhì)分配系數(shù)在脅迫后第10天逐漸恢復(fù)至正常水平(2017年),甚至高于對照組(2018年)。2 a試驗呈現(xiàn)出一致的規(guī)律:在脅迫解除后的第20天,各淹澇處理組的莖干物質(zhì)分配系數(shù)均不同程度地高于對照組,說明水稻在后脅迫時期可能將更多碳同化物用于莖的伸長生長。這種傾向于葉莖的干物質(zhì)分配策略會隨著前期淹澇程度的加重而越發(fā)明顯。從莖葉干物質(zhì)分配系數(shù)(平均水平)來看,在脅迫解除后第20天,半淹組的平均莖葉干物質(zhì)分配系數(shù)相比于同一時期的對照組增加了7.9%,而全淹組則增加了32.9%。
全淹組在脅迫解除初期的根干物質(zhì)分配系數(shù)明顯高于對照組,各處理組在脅迫解除后第20天的根干物質(zhì)分配系數(shù)略高于對照組,且全淹組的根干物質(zhì)分配系數(shù)最大(圖4e和圖4f)。前期淹澇脅迫明顯降低了水稻在后脅迫時期的穗干物質(zhì)分配系數(shù),且隨著淹澇程度的加重,穗干物質(zhì)分配系數(shù)越來越低。例如,脅迫后第20天,對照組的穗干物質(zhì)分配系數(shù)最大,其次是半淹、3/4淹和全淹組(圖4g和圖4h)。
綜上可知,拔節(jié)-孕穗期發(fā)生的淹澇脅迫對水稻的干物質(zhì)分配有著明顯的后效影響:不同程度地提高了后脅迫時期葉、莖、根的干物質(zhì)分配系數(shù),而降低了穗的干物質(zhì)分配系數(shù)。其中,葉和莖干物質(zhì)分配系數(shù)的提升最為明顯。
拔節(jié)-孕穗期發(fā)生的淹澇脅迫普遍造成水稻的減產(chǎn),且隨著淹水深度的加深和脅迫持續(xù)時間的延長,減產(chǎn)程度逐漸加重(圖5)。各組的產(chǎn)量及產(chǎn)量構(gòu)成如表2所示。其中全淹組(CF7-9)的產(chǎn)量、總粒數(shù)、每穗粒數(shù)和結(jié)實率顯著低于半淹組(CF1-3)(<0.05),3/4淹澇組(CF4-6)的值介于兩者之間。此外,長期沒頂淹沒組(CF9)也顯著降低了水稻的千粒質(zhì)量和穗長,但是對穗數(shù)沒有顯著影響。綜合來看,全淹組的減產(chǎn)幅度最大,2 a試驗中平均減產(chǎn)達(dá)83.3%;而3/4淹和半淹組的平均減產(chǎn)幅度分別為53.3%和13.6%。
淹澇脅迫導(dǎo)致的減產(chǎn)效應(yīng)與總粒數(shù)、每穗粒數(shù)、結(jié)實率的變化呈現(xiàn)高度一致性:隨著淹澇程度加深,水稻的每穗粒數(shù)、總粒數(shù)逐漸減小,相應(yīng)地,水稻產(chǎn)量也逐漸降低(圖5)。與之形成對比的是,不同處理組的千粒質(zhì)量、穗數(shù)和穗長的變化與產(chǎn)量變化并不一致。這說明拔節(jié)-孕穗期淹澇脅迫的減產(chǎn)效應(yīng)主要體現(xiàn)在總粒數(shù)、每穗粒數(shù)和結(jié)實率的減少。值得注意的是,半淹和3/4淹澇處理下水稻的結(jié)實率降低幅度并不大,而在沒頂淹澇下,水稻的結(jié)實率出現(xiàn)了大幅下降,這可能是導(dǎo)致全淹組的產(chǎn)量相較于3/4淹澇組進(jìn)一步降低的主要因素。
表2 2017年和2018年各試驗組水稻的產(chǎn)量特性
注:同一年同一產(chǎn)量特性的不同小寫字母代表處理間差異顯著(<0.05,LSD)。
Note: Values with different lowercase letters for the same yield characteristic of the same year are significantly different (<0.05, LSD).
水稻產(chǎn)量與水稻在后脅迫時期的葉莖干物質(zhì)分配系數(shù)呈顯著相關(guān)(=0.023,圖 6),與氣孔導(dǎo)度和光合速率無顯著相關(guān)(>0.05)。但從趨勢上看,水稻產(chǎn)量隨著氣孔導(dǎo)度和光合速率的減小,以及莖葉干物質(zhì)分配系數(shù)的提高而減少。拔節(jié)-孕穗期發(fā)生的淹澇脅迫可能促使水稻把有限的碳同化物更多地用于葉、莖的生長發(fā)育,導(dǎo)致同時期可用于灌漿、形成產(chǎn)量的碳同化物減少,最終導(dǎo)致水稻結(jié)實率、每穗粒數(shù)、總粒數(shù)的減少,進(jìn)而導(dǎo)致減產(chǎn)。
水稻在遭受淹澇脅迫后,其各器官的干物質(zhì)分配系數(shù)會發(fā)生改變,一般表現(xiàn)為葉片和莖的干物質(zhì)分配系數(shù)增多,而穗的干物質(zhì)分配系數(shù)降低[12],這可能是水稻適應(yīng)淹水逆境的結(jié)果。在淹水環(huán)境下,水稻植株內(nèi)的乙烯和赤霉素濃度增加,刺激細(xì)胞的分裂和伸長[28-29],繼而促進(jìn)葉鞘、葉片、莖節(jié)的伸長生長,使植株頂端浮出水面[28,30],與空氣接觸以維持呼吸[31-32]。顯然,水稻采取的這種“避淹”策略不僅僅被應(yīng)用于植株受淹期間,也延續(xù)到了后脅迫時期;而這種伸長莖節(jié)或葉片的“避淹”策略則需要消耗相當(dāng)多的碳同化物[33]。正如本研究發(fā)現(xiàn),拔節(jié)-孕穗期發(fā)生的淹澇脅迫使水稻在后續(xù)一段時期內(nèi)的葉、莖的干物質(zhì)分配系數(shù)都不同程度地高于正常值,而穗的干物質(zhì)分配系數(shù)則明顯降低。值得注意的是,這段時期恰是作物產(chǎn)量形成的關(guān)鍵時期[16],這意味著水稻會把本就有限的碳同化物多用于莖、葉的生長,而并非產(chǎn)量的形成。相比于淹水本身,這可能才是造成拔節(jié)-孕穗期淹澇脅迫減產(chǎn)的根本原因。
1)拔節(jié)-孕穗期發(fā)生的淹澇脅迫同時影響水稻葉片光合特性和根系生長,表現(xiàn)為脅迫解除初期的氣孔導(dǎo)度和光合速率的降低以及根系生長的減緩;這些抑制作用會隨著脅迫解除而逐漸消失,經(jīng)歷過沒頂淹沒的水稻,其光合特性的恢復(fù)進(jìn)程最為緩慢。
2)拔節(jié)-孕穗期發(fā)生的淹澇脅迫使水稻在后脅迫時期的葉、莖干物質(zhì)分配系數(shù)增大,而穗的干物質(zhì)分配系數(shù)減少,這種分配傾向會隨著前期淹澇程度加重而愈發(fā)明顯。
3)后脅迫時期較低的光合速率和傾向于葉莖的干物質(zhì)分配策略,可能是導(dǎo)致水稻減產(chǎn)的重要原因。水稻減產(chǎn)幅度隨淹水深度的增加和持續(xù)時間的延長而逐漸加重。3/4淹和全淹處理組的產(chǎn)量出現(xiàn)了顯著降低,平均減產(chǎn)幅度分別為53.3%和83.3%。實際中可以適當(dāng)發(fā)揮水稻田的洪澇滯蓄能力,但應(yīng)控制滯蓄水深和歷時,且淹澇結(jié)束后,應(yīng)開展適當(dāng)人工干預(yù),避免嚴(yán)重減產(chǎn)。
[1] 劉珍環(huán),李正國,唐鵬欽,等. 近30年中國水稻種植區(qū)域與產(chǎn)量時空變化分析[J]. 地理學(xué)報,2013,68(5):680-693.
Liu Zhenhuan, Li Zhengguo, Tang Pengqin, et al. Spatial-temporal changes of rice area and production in China during 1980-2010[J]. Acta Geographica Sinica, 2013, 68(5): 680-693. (in Chinese with English abstract)
[2] 張桂香,霍治國,吳立,等. 1961-2010年長江中下游地區(qū)農(nóng)業(yè)洪澇災(zāi)害時空變化[J]. 地理研究,2015,34(6):1097-1108.
Zhang Guixiang, Huo Zhiguo, Wu Li, et al. The temporal and spatial variations of agricultural flood disaster over the middle and lower reaches of the Yangtze River from 1961 to 2010[J]. Geographical Research, 2015, 34(6): 1097-1108. (in Chinese with English abstract)
[3] 王慧芳,吳立,欒慶祖,等. 1971-2012年長江中下游地區(qū)水稻洪澇時空分布特征[J]. 灌溉排水學(xué)報,2019,38(4):100-107.
Wang Huifang, Wu Li, Luan Qingzu, et al. Spatiotemporal distribution of flooding events at paddy fields in the middle- low reaches of the Yangtze River[J]. Journal of Irrigation and Drainage, 2019, 38(4): 100- 107. (in Chinese with English abstract)
[4] 姜曉劍,湯亮,劉小軍,等. 中國主要稻作區(qū)水稻生產(chǎn)氣候資源的時空特征[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(7):238-245.
Jiang Xiaojian, Tang Liang, Liu Xiaojun, et al. Spatial and temporal characteristics of rice production climatic resources in main growing regions of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 238-245. (in Chinese with English abstract)
[5] 陳永華,嚴(yán)欽泉,肖國櫻. 水稻耐淹澇的研究進(jìn)展[J]. 中國農(nóng)學(xué)通報,2005,21(12):151-153.
Chen Yonghua, Yan Qinquan, Xiao Guoying. Progresses in research of submergence tolerance in rice[J]. Chinese Agricultural Science Bulletin, 2005, 21(12): 151-153. (in Chinese with English abstract)
[6] 邵長秀,潘學(xué)標(biāo),李家文,等. 不同生育階段洪澇淹沒時長對水稻生長發(fā)育及產(chǎn)量構(gòu)成的影響[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(3):125-133.
Shao Changxiu, Pan Xuebiao, Li Jiawen, et al. Effects of flooding duration in different growth stages on growth and yield component of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 125-133. (in Chinese with English abstract)
[7] 高蕓,胡鐵松,袁宏偉,等. 淮北平原旱澇急轉(zhuǎn)條件下水稻減產(chǎn)規(guī)律分析[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(21):128-136.
Gao Yun, Hu Tiesong, Yuan Hongwei, et al. Analysis on yield reduced law of rice in Huaibei plain under drought-flood abrupt alternation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 128-136. (in Chinese with English abstract)
[8] 王礦,王友貞,湯廣民. 分蘗期水稻對淹水脅迫的響應(yīng)規(guī)律研究[J]. 灌溉排水學(xué)報,2014,33(6):58-60,91.
Wang Kuang, Wang Youzhen, Tang Guangmin. Response of rice to waterlogging stress in tillering stage[J]. Journal of Irrigation and Drainage, 2014, 33(6): 58-60, 91. (in Chinese with English abstract)
[9] 王礦,王友貞,湯廣民. 水稻拔節(jié)孕穗期淹水對產(chǎn)量要素的影響[J]. 灌溉排水學(xué)報,2015,34(9):40-43.
Wang Kuang, Wang Youzhen, Tang Guangmin. Effects of submergence stress on rice yield factors in jointing-booting stage[J]. Journal of Irrigation and Drainage, 2015, 34(9): 40-43. (in Chinese with English abstract)
[10] 周興兵,張林,熊洪,等. 淹澇脅迫對雜交中稻生長特性及產(chǎn)量形成的影響[J]. 中國稻米,2014,20(3):23-29.
Zhou Xingbing, Zhang Lin, Xiong Hong, et al. Effects of submergence stress on growth characteristics and yield formation of mid-season hybrid rice combinations[J]. China Rice, 2014, 20(3): 23-29. (in Chinese with English abstract)
[11] 徐濤,才碩,時紅,等. 拔節(jié)期淹水脅迫對水稻葉片酶活性及產(chǎn)量的影響[J]. 中國農(nóng)村水利水電,2020(11):89-93.
Xu Tao, Cai Shuo, Shi Hong, et al. The effects of different flooding stresses on enzymatic activity of the blade and the yield of rice at elongation stage[J]. China Rural Water and; Hydropower, 2020(11): 89-93 (in Chinese with English abstract)
[12] 成添,胡繼超,林子靜. 淹澇脅迫對水稻干物質(zhì)分配及產(chǎn)量的影響[J]. 河南農(nóng)業(yè)大學(xué)學(xué)報,2019,53(5):689-693.
Cheng Tian, Hu Jichao, Lin Zijing. Effects of submergence stress on partition of dry matter and yield of rice plant[J]. Journal of Henan Agricultural University, 2019, 53(5): 689-693. (in Chinese with English abstract)
[13] 甄博,周新國,陸紅飛,等. 拔節(jié)期高溫與澇交互脅迫對水稻生長發(fā)育的影響[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(21):105-111.
Zhen Bo, Zhou Xinguo, Lu Hongfei, et al. Effect of interaction of high temperature at jointing stage and waterlogging on growth and development of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 105-111. (in Chinese with English abstract)
[14] 李玉昌,李陽生,李紹清. 淹澇脅迫對水稻生長發(fā)育危害與耐淹性機(jī)理研究的進(jìn)展[J]. 中國水稻科學(xué),1998,13(增刊1):70-76.
Li Yuchang, Li Yangsheng, Li Shaoqing. Progress in research on injury to rice growth and development under submergence stress and mechanism of submergence tolerance[J]. Chinese Journal of Rice Science, 1998, 13(Supp 1): 70-76. (in Chinese with English abstract)
[15] 李陽生,李紹清. 淹澇脅迫對水稻生育后期的生理特性和產(chǎn)量性狀的影響[J]. 武漢植物學(xué)研究,2000,18(2):117-122.
Li Yangsheng, Li Shaoqing. Effect of submergence on physiological indexes and yield component at reproductive stage in rice[J]. Journal of Wuhan Botanical Research, 2000, 18(2): 117-122. (in Chinese with English abstract)
[16] 成添,胡繼超,李映雪,等. 淹澇脅迫對水稻植株葉片光合性能的影響[J]. 氣象與環(huán)境科學(xué),2019,42(1):26-33.
Cheng Tian, Hu Jichao, Li Yingxue, et al. Effects of flooding stress on leave’s photosynthetic capability of paddy rice[J]. Meteorological and Environmental Sciences, 2019, 42(1): 26-33. (in Chinese with English abstract)
[17] 房全孝,陳雨海,李全起,等. 土壤水分對冬小麥生長后期光能利用及水分利用效率的影響[J]. 作物學(xué)報,2006,32(6):861-866.
Fang Quanxiao, Chen Yuhai, Li Quanqi, et al. Effects of soil moisture on radiation utilization during late growth stages and water use efficiency of winter wheat[J]. Acta Agronomica Sinica. 2006, 32(6): 861-866. (in Chinese with English abstract)
[18] 姜麗霞,閆敏慧,翟墨,等. 關(guān)鍵生育期淹澇脅迫對黑龍江省水稻的影響[J]. 災(zāi)害學(xué),2020,35(4):128-134.
Jiang Lixia, Yan Minhui, Zhai Mo, et al. Effects of waterlogging stress on japonica rice during critical growth period in heilongjiang province[J]. Journal of Catastrophology, 2020, 35(4): 128-134. (in Chinese with English abstract)
[19] 甄博,周新國,陸紅飛,等. 高溫與澇交互脅迫對水稻孕穗期生理指標(biāo)的影響[J]. 灌溉排水學(xué)報,2019,38(3):1-7.
Zhen Bo, Zhou Xinguo, Lu Hongfei, et al. The effects of alternate hot wave and waterlogging on physiological traits of rice at booting stage[J]. Journal of Irrigation and Drainage, 2019, 38(3): 1-7. (in Chinese with English abstract)
[20] 王斌,周永進(jìn),許有尊,等. 不同淹水時間對分蘗期中稻生育動態(tài)及產(chǎn)量的影響[J]. 中國稻米,2014,20(1):68-72,75.
Wang Bin, Zhou Yongjin, Xu Youzun, et al. Effects of waterlogging stress on growth and yield of middle season rice at the tillering stage[J]. China Rice, 2014, 20(1): 68-72, 75. (in Chinese with English abstract)
[21] 宣守麗,石春林,張建華,等. 分蘗期淹水脅迫對水稻地上部物質(zhì)分配及產(chǎn)量構(gòu)成的影響[J]. 江蘇農(nóng)業(yè)學(xué)報,2013,29(6):1199-1204.
Xuan Shouli, Shi Chunlin, Zhang Jianhua, et al. Effects of submergence stress on aboveground matter distribution and yield components of rice at tillering stage[J]. Jiangsu Journal of Agricultural Sciences, 2013, 29(6): 1199-1204. (in Chinese with English abstract)
[22] 夏石頭,彭克勤,曾可. 水稻澇害生理及其與水稻生產(chǎn)的關(guān)系[J]. 植物生理學(xué)通訊,2000 (6):581-588.
Xia Shitou, Peng Keqin, Zeng Ke. Relationship between physiological damage of flood to rice and rice production[J]. Plant Physiology Journal, 2000(6): 581-588. (in Chinese with English abstract)
[23] Hirano T, Koshimura H, Uchida N et al.Growth and distribution of photo assimilates in floating rice under submergence[J]. Jap Jour Trop Agricul, 1995, 39(3): 177-183.
[24] Morita S, Abe J. Diurnal and phenological changes of bleeding rate in lowland rice plants[J]. Jpn J Crop Sci, 2002, 71(3): 383-388.
[25] Lawson T, Blatt M R. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency[J]. Plant Physiology, 2014, 164(4): 1556-1570.
[26] Roche D. Stomatal Conductance Is Essential for higher yield potential of C3 crops[J]. Critical Reviews in Plant Sciences, 2015, 34(4): 429-453.
[27] 李靖濤,居輝,王宏富,等. 不同水分條件下CO2濃度升高對冬小麥碳氮轉(zhuǎn)運(yùn)的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2015,23(8):954-963.
Li Jingtao, Ju Hui, Wang Hongfu, et al. Effects of elevated CO2concentration on accumulation and translocation of carbon and nitrogen of winter wheat under different water conditions[J]. Chinese Journal of Eco-Agriculture, 2015, 23(8): 954-963. (in Chinese with English abstract)
[28] 王礦,王友貞,湯廣民. 水稻在拔節(jié)孕穗期對淹水脅迫的響應(yīng)規(guī)律[J]. 中國農(nóng)村水利水電,2016,58(9):81-87.
Wang Kuang, Wang Youzhen, Tang Guangmin. Experimental study of response rice jointing-booting stage to inundation condition[J]. China Rural Water and Hydropower, 2016, 58(9): 81-87. (in Chinese with English abstract)
[29] Van Der Straeten D, Zhou Z, Prinsen E, et al. A comparative molecular-physiological study of submergence response in lowland and deepwater rice[J]. Plant Physiol, 2001, 125(2): 955-968.
[30] Kende H, Van Der Knaap E, Cho H T. Deepwater rice: A model plant to study stem elongation[J]. Plant Physiol, 1998, 118(4): 1105-1110.
[31] 寧金花,陸魁東,霍治國,等. 拔節(jié)期淹澇脅迫對水稻形態(tài)和產(chǎn)量構(gòu)成因素的影響[J]. 生態(tài)學(xué)雜志,2014,33(7):1818-1825.
Ning Jinhua, Lu Kuidong, Huo Zhiguo, et al. Effects of waterlogging stress on rice morphology and yield component at the jointing stage[J]. Chinese Journal of Ecology, 2014, 33(7): 1818-1825. (in Chinese with English abstract)
[32] Vergara B S, Jackson B, De Datta S K. Deepwater rice and its response to deepwater stress[C] Proceedings of the Symposium on Climate and Rice. LosBanos, Philippines: International Rice Research Institute, 1976: 301-319.
[33] Sauter M. Rice in deep water: “how to take heed against a sea of troubles”[J]. Naturwissenschaften, 2000, 87(7): 289-303.
[34] 梁康逕,王雪仁,林文雄,等. 水稻產(chǎn)量形成的生理生態(tài)研究進(jìn)展[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2002,10(3):63-65.
Liang Kangjing, Wang Xueren, Lin Wenxiong, et al. Advancement in physiological studies on yield formation in rice[J]. Chin J Eco-Agric, 2002, 10(3): 63-65 (in Chinese with English abstract)
[35] 李少昆. 關(guān)于光合速率與作物產(chǎn)量關(guān)系的討論(綜述)[J]. 石河子大學(xué)學(xué)報:自然科學(xué)版,1998(S1):117-126.
Li Shaokun. A discussion on the relationship between leaf photosynthetic rate and crop yield[J]. Journal of Shihezhi University: Natural Science Edition, 1998(S1): 117-126. (in Chinese with English abstract)
Post-effects of waterlogging on the rice growth at the jointing-booting stage
Wu Fengyan1, Wang Huang1, Zhu Rui2, Zhai Lini3, Hu Tiesong2
(1.,430070,; 2.,,430072,; 3.,430070,)
The middle and lower reaches of the Yangtze River are the main grain producing areas in China and also the areas where flood disasters occur frequently. Some studies have shown that early flooding stress has a post effect on rice growth. However, these studies lacked the continuous observation of photosynthetic characteristics of rice leaves and dry matter quality of plant organs in post-stress period, and the ability of photosynthetic carbon assimilation and the allocation strategy of carbon assimilates in post-stress period are particularly important for the formation of final yield. The post-effect of waterlogging usually happens on the rice growth in July and August. This study aims to explore the photosynthetic characteristics and dry matter distribution of rice in the post-stress period in response to the waterlogging that occurred during the jointing-booting stage. Taking the used rice (Ⅱ-You 898) as the object, a two-year field test was carried out at the Xinmaqiao irrigation experimental station at the Anhui and Huaihe River Institute of Hydraulic Research in China (117°22′E, 33°09′N). Nine treatments were set with different combinations of flooding depth (1/2, 3/4, and full-submerged) and flooding duration (5, 7, and 9 days), as well as a control treatment. Several observations were then made on the leaf photosynthetic characteristics, root growth, dry matter of plant organs, and rice yield after waterlogging stress. The results show that the waterlogging stress relatively inhibited the leaf stomatal conductance and photosynthetic rate, but these traits were gradually recovered and even compensated after the stress was relieved. After the end of waterlogging stress at jointing-booting stage, the stomatal conductance of most treatment groups was lower than that of the control group, but with the relief of waterlogging stress, the stomatal conductance of rice gradually recovered. The recovery process was depended mainly on the degree of previous waterlogging. Waterlogging stress at jointing-booting stage had a significant post-effect effect on dry matter distribution of rice: The dry matter distribution coefficients of leaves, stems and roots were increased, but the dry matter distribution coefficients of panicle were decreased. Among them, the increase of dry matter distribution coefficient of leaf and stem was the most obvious. The dry matter distribution of rice under the stress was more inclined to the leaf and stem, particularly more evident with the increase of the previous stress. The two-year average distribution coefficient of stem and leaf dry matter increased by 7.9% in the 1/2 submerged treatment after 20-day rewatering, compared with the control, while the full-submerged increased by 32.9%. There was a significant correlation between the rice yield and the distribution coefficient of leaf and stem dry matter in the post-stress period, where the correlation coefficient was 0.875 (=0.023). The rice yield decreased with the increase of dry matter distribution coefficient of leaf and stem, while with the decrease of leaf stomatal conductance and photosynthetic rate. Anyway, a preliminary comment can be the potential mechanism of stress-induced reduction in rice yield. The findings can provide a theoretical basis for the decision-making on disaster mitigation management after waterlogging in rice fields.
photosynthesis; biomass; stresses; rice; jointing-booting stage; yield
2021-06-08
2021-10-01
國家自然科學(xué)基金項目(51709098、51339004);湖北省水利重點科技項目(HBSLKY201604)
吳鳳燕,博士,高級工程師,研究方向為流域規(guī)劃、水文科學(xué)等。Email:12801787@qq.com
10.11975/j.issn.1002-6819.2021.24.010
S275.6
A
1002-6819(2021)-24-0085-09
吳鳳燕,王煌,朱瑞,等. 拔節(jié)-孕穗期淹澇脅迫對水稻生長的后效影響[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(24):85-93. doi:10.11975/j.issn.1002-6819.2021.24.010 http://www.tcsae.org
Wu Fengyan, Wang Huang, Zhu Rui, et al. Post-effects of waterlogging on the rice growth at the jointing-booting stage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(24): 85-93. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.24.010 http://www.tcsae.org