亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        綠洲鹽化潮土區(qū)典型缺鋅玉米根際和非根際土壤鋅形態(tài)差異

        2020-07-16 03:48:52王成寶霍琳楊思存溫美娟姜萬禮黃濤
        甘肅農(nóng)業(yè)科技 2020年6期
        關鍵詞:缺鋅根際玉米

        王成寶 霍琳 楊思存 溫美娟 姜萬禮 黃濤

        摘要:以綠洲鹽化潮土為研究對象,通過采集6葉期典型缺鋅玉米及其相鄰正常玉米根際、非根際土壤和植株樣品,研究了不同類別土壤鋅形態(tài)特征和不同類型植株含鋅量、吸鋅量及土壤鋅素從根系向地上部轉運的差異及植株含鋅量、吸鋅量及土壤鋅素轉運率與各形態(tài)鋅的相關性。結果表明,綠洲鹽化潮土全鋅含量平均為97.12 mg/kg,缺鋅植株與正常植株、根際土壤與非根際之間都沒有顯著差異;土壤有效鋅含量平均為0.60 mg/kg,高于北方石灰性土壤缺鋅臨界值(0.50 mg/kg),缺鋅植株根際土壤有效鋅含量比正常植株根際土壤低42.70%,達到極顯著差異水平。殘留礦物態(tài)是綠洲鹽化潮土最主要的鋅形態(tài),占全鋅含量的79.43%;其次是晶形鐵結合態(tài)、無定形鐵結合態(tài)和松結有機態(tài)。交換態(tài)、碳酸鹽結合態(tài)、松結有機態(tài)、氧化錳結合態(tài)鋅含量均為根際土壤顯著高于非根際土壤,正常植株顯著高于缺鋅植株。缺鋅玉米莖葉含鋅量只有14.64 mg/kg,低于玉米缺鋅臨界值(20 mg/kg),比正常植株低52.30%,吸鋅量比正常植株低66.52%,鋅素轉運率比正常植株低將近10百分點,這是綠洲鹽化潮土上玉米缺鋅的一個重要機制。玉米莖葉含鋅量與Ex-Zn、CAB-Zn含量呈極顯著正相關;莖葉吸鋅量與WBO-Zn、OxMn-Zn、DTPA-Zn含量呈極顯著正相關,與AOFe-Zn含量呈顯著負相關;土壤鋅素轉運率與DTPA-Zn、CAB-Zn、WBO-Zn、OxMn-Zn含量呈顯著正相關,與AOFe-Zn含量呈顯著負相關。

        關鍵詞:綠洲鹽化潮土;缺鋅;玉米;根際;鋅形態(tài);鋅含量

        中圖分類號:S156.4 ? ? ?文獻標志碼:A ? ? ?文章編號:1001-1463(2020)06-0022-07

        doi:10.3969/j.issn.1001-1463.2020.06.007

        Differences of Zn Fraction Between Rhizosphere and Bulk Soil of Zn-deficient Corn ?in Saline Fluvo-aquic Soil Areas

        WANG Chengbao, HUO Lin, YANG Sicun, WEN Meijuan, JIANG Wanli, HUANG Tao

        (Institute of Soil, Fertilizer and Water-saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou Gansu 730070, China)

        Abstract:Taking the saline fluvo-aquic soil area of Hexi Oasis as research object, rhizosphere and bulk soil and plant samples of typical Zn-deficient corn and its adjacent normal corn with 6 leaves were collected, studied the differences of Zn fraction characteristics in different types of soil and Zn concentrations, uptakes and transported ratio in different types of corn, the difference of zinc uptake and soil zinc transport from root to overground, and the amount of zinc in plants, as well as the correlations between plant Zn concentrations,uptakes, Zn transported ratio and Zn fractions were discussed in this paper. The results showed that total Zn content with an average of 97.12 mg/kg in saline fluvo-aquic soil,and had no significant difference between Zn-deficient and normal plants, also between rhizosphere and bulk soil. Available Zn content with an average of 0.60 mg/kg, which was below the deficiency level (DTPA-Zn < 0.50 mg/kg) in calcareous soil in northern China. Meanwhile, the available Zn contents in rhizosphere of Zn-deficient plant were 42.70% lower than normal plant extremely significant. Residual minerals were the main Zn form in saline fluvo-aquic soil, it accounted for 79.43% of total Zn, and followed by crystalline Fe oxides, amorphous Fe oxides and loose bound to organic matter. The Zn contents in rhizosphere soil of exchangeable form, bound to carbonates, loose bound to organic matter and bound to Mn oxides were all significantly higher than bulk soil, normal plant significantly higher than Zn-deficient plant. The shoot Zn concentration of Zn-deficient plant was only 14.64 mg/kg, which was below the critical value of Zn deficiency(20 mg/kg), and 52.30% lower than that of normal corn. Meanwhile, the uptake of Zn-deficient plant was 66.52% lower and Zn transported ratio was nearly 10 percentage points lower than that of normal corn. This may be an important mechanism of Zn deficiency in corn in saline fluvo-aquic soil. The shoot Zn concentrations were positively correlated with Ex-Zn and CAB-Zn. The shoot Zn uptakes were positively correlated with WBO-Zn, OxMn-Zn and DTPA-Zn, and negatively correlated with AOFe-Zn contents. The Zn transported ratios were positively correlated with DTPA-Zn, CAB-Zn,WBO-Zn and OxMn-Zn, and negatively correlated with AOFe-Zn contents.

        2.2 ? 土壤鋅形態(tài)

        從圖2可以看出,RES-Zn是綠洲鹽化潮土區(qū)最主要的鋅形態(tài),平均含量77.111 mg/kg,占全鋅含量的79.43%;其次為COFe-Zn,平均含量為11.701 mg/kg,占全鋅含量的12.05%;AOFe-Zn居第3,平均含量5.054 mg/kg,占全鋅含量的5.21%;WBO-Zn居第4,平均含量1.192 mg/kg,占全鋅含量的1.23%;CAB-Zn、OxMn-Zn、SBO-Zn含量相差不多,為0.653~0.700 mg/kg,約占全鋅含量的0.70%;Ex-Zn含量為痕跡。

        2.3 ? 植株含鋅量、 吸鋅量及土壤鋅素從根系向地上部轉運的差異

        2.3.1 ? ?植株含鋅量和吸收量 ? ?從表1可以看出,不管是莖葉還是根系,缺鋅植株的含鋅量都顯著低于正常植株。缺鋅植株莖葉含鋅量只有14.64 mg/kg,比正常植株降低52.30%;缺鋅植株根系含鋅量為69.00 mg/kg,比正常植株低17.36%。從降低的幅度也可以看出,根系明顯低于莖葉,這一方面與莖葉和根系對鋅吸收能力的不同有關,另一方面也可能與鋅的轉運受阻有關。從玉米吸鋅量來看,表現(xiàn)出了與含鋅量相同的趨勢,缺鋅植株莖葉吸鋅量比正常植株低66.52%,根系吸鋅量比正常植株低了49.27%。

        2.3.2 ? ?土壤鋅素從根系向地上部的轉運 ? ? Rengel等[15 ]將養(yǎng)分轉運率定義為植株地上部養(yǎng)分吸收量與整株吸收量的比值。在本研究中,我們對不同植株的Zn轉運情況進行了分析。從表1可以看出,缺鋅植株的鋅素轉運率只有34.08%,而正常植株達到了43.92%,高出了近10百分點,對含鋅量和吸鋅量的分析也有相同的結論,這可能也是缺鋅植株表現(xiàn)出缺鋅癥狀的主要原因。

        2.4 ? 植株含鋅量、吸鋅量及土壤鋅素轉運率與各形態(tài)鋅的相關性

        相關分析結果(表2)表明,土壤中Total-Zn與Ex-Zn、CAB-Zn、WBO-Zn、OxMn-

        Zn、COFe-Zn和RES-Zn含量呈正相關關系,與SBO-Zn、AOFe-Zn含量呈負相關關系,但差異均達不到顯著水平;DTPA-Zn與CAB-Zn和OxMn-Zn含量呈顯著正相關,與Ex-Zn、WBO-Zn、SBO-Zn、COFe-Zn、Total-Zn含量呈正相關關系,與AOFe-Zn、RES-Zn含量呈負相關關系;CAB-Zn與OxMn-Zn含量呈極顯著正相關關系;WBO-Zn與OxMn-Zn含量呈極顯著正相關關系,與AOFe-Zn含量呈極顯著負相關關系;Ex-Zn與CAB-Zn含量呈顯著正相關關系;OxMn-Zn與AOFe-Zn含量呈顯著負相關關系。莖葉含鋅量與Ex-Zn、CAB-Zn含量呈極顯著正相關關系,與OxMn-Zn含量呈顯著正相關關系;根系含鋅量與Ex-Zn、CAB-Zn 含量呈極顯著正相關關系,與OxMn-Zn、DTPA-Zn含量呈顯著正相關關系;莖葉吸鋅量與WBO-Zn、OxMn-Zn、DTPA-Zn含量呈極顯著正相關關系,與CAB-Zn含量呈顯著正相關關系,與AOFe- Zn含量呈顯著負相關關系;根系吸鋅量與DTPA-Zn含量呈極顯著正相關關系,與CAB-Zn、WBO-Zn、OxMn-Zn含量呈顯著正相關關系,與AOFe-Zn含量呈顯著負相關關系;土壤鋅素轉運率與DTPA-Zn、CAB-Zn、WBO-Zn、OxMn-Zn含量呈顯著正相關關系,與AOFe-Zn含量呈顯著負相關關系。

        3 ? 小結與討論

        試驗結果表明,綠洲鹽化潮土全鋅含量平均為97.12 mg/kg,缺鋅植株與正常植株、根際土壤與非根際之間均沒有顯著差異;土壤有效鋅含量平均為0.60 mg/kg,高于北方石灰性土壤缺鋅臨界值,缺鋅植株根際土壤有效鋅含量比正常植株根際土壤低42.70%,達到極顯著差異水平。殘留礦物態(tài)是綠洲鹽化潮土最主要的鋅形態(tài),占到了全鋅含量的79.43%,其次是晶形鐵結合態(tài)、無定形鐵結合態(tài)和松結有機態(tài),交換態(tài)、碳酸鹽結合態(tài)、松結有機態(tài)、氧化錳結合態(tài)鋅含量都表現(xiàn)為根際土壤顯著高于非根際土壤,正常植株顯著高于缺鋅植株。綠洲鹽化潮土區(qū)缺鋅玉米莖葉含鋅量只有14.64 mg/kg,低于玉米缺鋅臨界值(20 mg/kg),比正常植株低52.30%,吸鋅量比正常植株低66.52%,鋅素轉運率比正常植株低將近10百分點,我們判斷是土壤鹽分濃度或鹽分離子抑制了鋅的吸收和轉運,這也有可能是綠洲鹽化潮土玉米缺鋅的另一個重要機制。玉米莖葉含鋅量與Ex-Zn、CAB-Zn含量呈極顯著正相關;莖葉吸鋅量與WBO-Zn、OxMn-Zn、DTPA-Zn含量呈極顯著正相關,與AOFe-Zn含量呈顯著負相關;土壤鋅素轉運率與DTPA-Zn、CAB-Zn、WBO-Zn、OxMn-Zn含量呈顯著正相關,與AOFe-Zn含量呈顯著負相關。

        玉米是缺鋅敏感作物,葉片含鋅量低于20 mg/kg時,就會表現(xiàn)出葉片脈間失綠或白化癥狀[20 ]。大部分學者將作物缺鋅的原因歸結為土壤缺鋅,這也與世界范圍內(nèi)的缺鋅區(qū)域分布相一致。但鋅從土壤進入玉米籽粒是一個復雜的過程,受很多因素影響,尤其是在鹽漬化環(huán)境中,土壤pH、含鹽量、鹽分離子都可能對土壤中鋅的有效性造成影響。蘆滿濟等[12 - 13 ]的結果表明,土壤有效鋅與全鹽含量呈負相關,與Cl-/SO42-比值呈正相關,與水溶性鈣、鎂離子呈負相關趨勢;作物含鋅濃度與土壤鹽分含量呈負相關;土壤鹽分對作物吸鋅量和生物量的影響大于土壤有效鋅。徐曉燕等[23 ]認為,HCO3-對根部鋅向地上部轉運的影響要大于對根吸收鋅的影響。田霄鴻等[24 ]認為,高量HCO3-在抑制鋅從小麥根系向地上部轉運的同時,也降低了土壤有效鋅含量,而且HCO3-對土壤有效鋅的鈍化作用比對鋅轉運的影響更為重要。

        土壤中的鋅有多種形態(tài),雖然在不同地區(qū)、不同土壤、不同耕作栽培條件下,土壤鋅形態(tài)分布差異較大,但交換態(tài)、松結有機態(tài)、碳酸鹽結合態(tài)仍然是有效鋅的主要來源,只是在不同條件下各形態(tài)鋅發(fā)生了轉化,從而導致了土壤有效鋅含量的增加或減少。Ahumada 等[25 ]研究表明,土壤中種植生菜可以增加鐵氧化態(tài)鋅和有機質(zhì)結合態(tài)鋅,而種植芹菜后則提高了土壤中鐵氧化態(tài)鋅;還有研究發(fā)現(xiàn),在石灰性土壤中種植玉米或菜豆后,土壤中晶型鐵氧化態(tài)鋅含量有顯著增加[26 - 27 ]。魏孝榮等[28 ]在黃土高原17 a的定位試驗表明,連續(xù)施入土壤中的鋅有很大一部分轉化為礦物態(tài)鋅,只有一小部分進入土壤溶液,或與有機質(zhì)、碳酸鹽及氧化錳相結合。本研究結果與大部分石灰性土壤上鋅形態(tài)分級的研究結果是一致的,但從交換態(tài)、碳酸鹽結合態(tài)、松結有機態(tài)、氧化錳結合態(tài)等有效鋅的主要組成形態(tài)來看,都是根際土壤顯著高于非根際土壤,正常植株顯著高于缺鋅植株,由此可見鹽漬化環(huán)境和根際環(huán)境都使得土壤鋅形態(tài)、分布和有效性發(fā)生了改變,兩者在土壤中的博弈是綠洲鹽化潮土上玉米表現(xiàn)出缺鋅和不缺鋅的關鍵,但根際環(huán)境具體發(fā)生了怎樣的變化,還有待于進一步研究。

        參考文獻:

        [1] SOMMER A L,LIPMAN C B. ?Evidence on the indispensible nature of zinc and boron for higher green plant[J]. ?Plant Physiol,1926(1):231-249.

        [2] TAKKAR P N,WALKER C D. ?The distribution and correction of zinc deficiency[M]. ?Springer Netherlands:Zinc in Soils and Plants,1993:151-165.

        [3] SHIVAY Y S,KUMAR D,PRASAD R,et al. Relative yield and zinc uptake by rice from zinc sulphate and zinc oxide coatings onto urea [J]. ?Nutrient Cycling in Agroecosystems, 2008,80(2):181-188.

        [4] MUHANNED A,F(xiàn)ARAH A N,TAYEL E H,et al. Zinc adsorption-desorption isotherms: possible effects on the calcareous vertisol soils from Jordan[J]. Environmental Earth Sciences,2012,65(7):2079-2085.

        [5] HAJIBOLAND R,YANG X E,ROMHELD V. Effects of bicarbonate and high pH on growth of Zn-efficient and Zn-inefficient genotypes of rice,wheat and rye[J]. ?Plant and Soil, 2003,

        250:349-357.

        [6] ZOU C Q,ZHANG Y Q,RASHID A,et al. Biofortification of wheat with zinc through zinc fertilization in seven countries[J]. ?Plant and Soil,2012,361:119-130.

        [7] CAKMAK I. Enrichment of cereal grains with zinc:Agronomic or genetic biofortification[J]. ?Plant and Soil,2008,302(1):1-17.

        [8] 余存祖,彭 ? 琳,劉耀宏,等. ?黃土區(qū)土壤微量元素含量分布與微肥效應[J]. ?土壤學報,1991,28(3):317-326.

        [9] 劉合滿,張興昌,蘇少華. ?黃土高原主要土壤鋅有效性及其影響因素[J]. ?農(nóng)業(yè)環(huán)境科學學報,2008,27(3):898-902.

        [10] 劉 ? 錚. ?我國土壤中鋅含量的分布規(guī)律[J]. ?中國農(nóng)業(yè)科學,1994,27(1):30-37.

        [11] LU X C,CUI J,TIAN X H,et al. Effects of zinc fertilization on zinc dynamics in potentially zinc-deficient calcareous soil[J]. ?Agronomy Journal,2012,104:963-969.

        [12] 蘆滿濟,祁國元,楊思存,等. ?綠洲鹽化潮土的鋅肥效應及適宜用量[J]. ?西北農(nóng)業(yè)學報,1999,8(1):69-73.

        [13] 蘆滿濟,吳惠蘭,胡 ? 梅. ?河西綠洲潮土有效鋅含量特征及施鋅條件[J]. ?甘肅農(nóng)業(yè)科技,1999(2):39-40.

        [14] BARBER S A. ?Soil Nutrient Bioavailability[M]. ?New York:Jones Wiley and Sons,Inc,1984.

        [15] MARSCHNER H. Zinc uptake from soil[A]. ? ?In:Robson,A D(Ed.). ?Zinc in Soils and Plants[C]. Dordrecht:Kluwer Academic Publishers,1993:59-77.

        [16] LYNCH J P. Root architecture and productivity[J]. ?Plant Physiology,1995,109:7-13.

        [17] 孫 ? 琴,王曉蓉,丁士明. ?超積累植物吸收重金屬的根際效應研究進展[J]. ?生態(tài)學雜志,2005,24(1):30-36.

        [18] 陳有鑑,陶 ? 澍,鄧寶山,等. ?不同作物根際環(huán)境對土壤重金屬形態(tài)的影響[J]. ?土壤學報,2001,38(1):54-59.

        [19] 孟令軍,耿增超,殷金巖,等. ?秦嶺太白山區(qū)6種中草藥根際與非根際土壤化學性質(zhì)及酶活性[J]. ?應用生態(tài)學報,2012,23(10):2685-2692.

        [20] 張 ? 超,劉國斌,薛 ?萐,等. ?黃土丘陵區(qū)不同植被根際土壤微量元素含量特征[J]. ?應用生態(tài)學報,2012,23(3):645-650.

        [21] 孫文泰,馬 ? 明,劉興祿,等. ?地表覆蓋方式對隴東旱塬蘋果園根際土壤微生物及酶活性的影響[J]. ?甘肅農(nóng)業(yè)科技,2017(12):64-68.

        [22] 胡明芳,文啟凱,田長彥. ?作物鋅素營養(yǎng)研究進展與展望[J]. ?新疆農(nóng)業(yè)科學,1997(5):214-216.

        [23] 徐曉燕,楊肖娥,楊玉愛. ?HCO3-對不同水稻品種Zn吸收運輸?shù)挠绊慬J]. ?應用與環(huán)境生物學報,2001,7(6):532-535.

        [24] 田霄鴻,買文選,陸欣春,等. ?重碳酸根對不同小麥基因型生長及鋅營養(yǎng)的影響[J]. ?植物營養(yǎng)與肥料學報,2008,14(1):9-16. [25] ALMENDROS P,GONZALEZ D,ALVAREZ J M. ?Long-term bioavailability effects of synthesized zinc chelates fertilizers on the yield and quality of a flax (Linum usitatissimum L.) crop[J]. ?Plant and Soil,2013,368(1-2):251-265.

        [26] 胡學玉,李學垣,謝振翅. ?不同青菜品種吸鋅能力差異以及與根系分泌物的關系[J]. ?植物營養(yǎng)與肥料學報,2002,8(2):234-238.

        [27] AHUMADA I,MENDOZA J,NAVARRETE E,et al. Sequential extraction of heavy metals in soils irrigated with wastewater[J]. ?Communications in Soil Science and Plant Analysis,1999,30(9-10):1507-1519.

        [28] 魏孝榮,郝明德,張春霞. ?黃土高原地區(qū)連續(xù)施鋅條件下土壤鋅的形態(tài)及有效性[J]. ?中國農(nóng)業(yè)科學,2005,38(7):1386-1393.

        (本文責編:陳 ? ?偉)

        猜你喜歡
        缺鋅根際玉米
        收玉米啦!
        根際微生物對植物與土壤交互調(diào)控的研究進展
        我的玉米送給你
        玉米
        大灰狼(2018年6期)2018-07-23 16:52:44
        黃花蒿葉水提物對三七根際尖孢鐮刀菌生長的抑制作用
        促植物生長根際細菌HG28-5對黃瓜苗期生長及根際土壤微生態(tài)的影響
        中國蔬菜(2016年8期)2017-01-15 14:23:38
        糖醇鋅葉面肥
        親子(2016年5期)2016-05-14 15:15:52
        最飽滿的玉米
        缺鋅脅迫對水稻葉綠體抗氧化系統(tǒng)的影響*
        亚洲天堂av一区二区三区不卡| 精品国偷自产在线视频九色| 特黄特色的大片观看免费视频| 国产成人精品午夜福利| 欧美成人a视频免费专区| 色婷婷av一区二区三区丝袜美腿 | 成人综合网站| 91福利视频免费| 日本成人在线不卡一区二区三区| 国产三a级三级日产三级野外 | 蜜臀av免费一区二区三区| 人妻无码AⅤ中文系列久久免费| 亚洲中文字幕乱码一二三| 大地资源网高清在线播放| 天天av天天爽无码中文| 日韩av在线不卡观看| 日韩亚洲精品国产第二页| 香蕉人人超人人超碰超国产| 亚洲AV无码资源在线观看| 精品中文字幕久久久人妻| 亚洲αv在线精品糸列| 亚洲av无码乱观看明星换脸va| 色优网久久国产精品| 青青草视频在线观看网| 久久视频在线| 综合色久七七综合尤物| 天堂精品人妻一卡二卡| 精品久久久久久无码专区| 人人妻人人澡人人爽人人精品| 国产亚洲AV片a区二区| 亚洲乱码中文字幕综合久久| 日韩欧美人妻一区二区三区| 中文字幕无码专区一VA亚洲V专 | 欧美日韩综合在线视频免费看| 亚洲三级中文字幕乱码| 国产又色又爽又高潮免费视频麻豆| 国产在视频线精品视频www666| 一区二区三区日本在线| 丰满熟妇乱又伦精品| 老太脱裤让老头玩ⅹxxxx| 国产一区二区三区资源在线观看|