陳微 李威亞 惠林沖 楊海峰 何林玉 潘美紅
摘要:先期抽薹嚴重影響洋蔥產(chǎn)量及商品性,降低經(jīng)濟效益,因此選育耐抽薹品種是洋蔥育種的關鍵目標之一。本研究首先對植物抽薹性狀的遺傳機理進行分析,圍繞洋蔥抽薹生理生化變化、影響抽薹的主要因素、抽薹分子機理以及先期抽薹的預防措施等進行論述,最后對未來研究方向進行展望。
關鍵詞:洋蔥;抽薹開花;生理生化;影響因素;分子機制
中圖分類號:S633.2文獻標識號:A文章編號:1001-4942(2020)03-0151-06
AbstractPremature bolting affects onion yield and commerciality and leads to economic losses. Therefore, selecting the anti-bolting lines is a key goal of onion breeding. In the paper, the genetic mechanism of bolting traits in plant was summerized, and then the physiological and biochemical characteristics, main factors, molecular mechanism and preventing measures of onion premature bolting were discussed. The direction of future research was prospected in the end.
KeywordsOnion (Allium cepa L.); Bolting and flowering; Physiology and biochemistry; Influence factors;Molecular mechanism
洋蔥是二年生草本植物,營養(yǎng)豐富,具有殺菌、降血脂、降血壓、抗哮喘和抑制腫瘤形成、擴散等作用,深受國內(nèi)外消費者喜愛。抽薹開花標志著植物從營養(yǎng)生長到生殖生長轉變,是植物發(fā)育的重要特征之一。選擇合適時機抽薹開花是植物成功繁殖和高效農(nóng)業(yè)生產(chǎn)力的體現(xiàn)。先期抽薹影響洋蔥產(chǎn)量和品質,使其商品性變差,一旦發(fā)生抽薹,枝條頂端就不會產(chǎn)生葉原基,鱗莖停止發(fā)育。抽薹后的鱗莖中通常存在一個空心花莖,不利于生產(chǎn)和銷售[1]。因此,研究洋蔥抽薹開花的遺傳調控機制十分必要。目前,人們對模式植物擬南芥抽薹開花分子調控機制的研究已經(jīng)比較詳細和透徹,對其開花轉變過程的遺傳調控機制已有全面而深刻的解析,但在洋蔥上的相關研究較少。本研究在分析植物抽薹開花分子機制的基礎上,對洋蔥抽薹開花的生理生化變化、關鍵影響因素及相關分子機理等進行論述,并對未來研究方向進行展望,旨在為提高洋蔥的耐抽薹性、促進洋蔥的遺傳改良提供參考。
1植物抽薹開花分子機制研究
植物抽薹開花涉及一個復雜的基因調控網(wǎng)絡,研究發(fā)現(xiàn),擬南芥體內(nèi)存在5條主要控制開花的遺傳途徑,包括:光周期途徑、赤霉素途徑、自主途徑、春化途徑和年齡途徑[2,3]。正常條件下,環(huán)境或外部條件如低溫、光照強度和光照時間是決定植物開花的關鍵因素[4]。而植物年齡、碳水化合物(主要是蔗糖)和激素(主要是赤霉素)等內(nèi)源因素與外部因素的相互協(xié)調才能夠確定開花時間。
1.1光周期途徑
光周期是影響植物抽薹開花最重要的環(huán)境因素[5],只有感受一段時間的特定光長后植物才能開花。根據(jù)成花對日照長度需求的不同,植物可分為長日照植物、中日照植物和短日照植物。光周期誘導途徑能夠將光和光周期的定時信號傳遞給花誘導過程。光信號在光周期響應的分子機制中具有三個主要功能:啟動與晝夜節(jié)律振蕩器相互作用并牽引晝夜節(jié)律的信號;促進FLAVIN-BINDING,KELCH REPEAT,F(xiàn)-BOX1(FKF1)和GIGANTEA(GI)之間的藍光依賴性相互作用;調節(jié)CONSTANS(CO)蛋白質的穩(wěn)定性[6,7]。
目前,利用分子遺傳學的方法已經(jīng)鑒定到光周期響應的關鍵基因CO和FT [6,8,9]。其中CO通過響應節(jié)律鐘基因和光感受器的信號來誘導下游關鍵基因FT的表達[10,11],并將其蛋白轉移至莖尖頂端分生組織,與FD相互作用,產(chǎn)生FT-FD復合體,進而誘導下游基因表達,將光信號轉換為開花信號,促進植物早花[5,12]。GI在晝夜節(jié)律振蕩器和CO之間可通過增加CO和FT mRNA豐度來促進植物開花[5]。
1.2春化途徑
溫度是控制植物從營養(yǎng)生長到生殖生長最重要的環(huán)境因素之一[13]。目前,擬南芥中調控春化途徑的重要基因有FLOWERING LOCUS C(FLC)和FRIGIDA(FRI)。FLC 是研究最為深入的涉及植物抽薹開花過程的基因之一,植物開花時間的差異主要依賴FLC 等位基因的變化[14-16],F(xiàn)LC編碼的MADS-box轉錄因子,是一個植物開花抑制因子,可以抑制FT、SOC1 和AP1 等基因的轉錄而使植物開花延遲[17]。而春化途徑的另一關鍵基因SHORT VEGETATIVE PHASE(SVP)則能夠通過與FLC互作加強FLC的功能而延遲開花[18]。
1.3赤霉素途徑
GA是一類非常重要的植物激素,可通過促進細胞分裂、伸長來調節(jié)植物生長和發(fā)育[19,20]。GA在調控低溫春化植物抽薹開花的過程中起到重要作用[21],GA生物合成基因和GA下游信號的表達均涉及開花時間的調控[22]。研究表明,GA通過抑制幾種DELLA阻遏物(GAI、RGA、RGL1、RGL2和RGL3)的功能來調節(jié)花發(fā)育,從而部分促進花同源異型基因APETALA3(AP3)、PISTILLATA(PI)和AGAMOUS(AG)的表達[23]。此外,LEAFY(LFY)和SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1(SOC1)是赤霉素、光周期和春化途徑之間的重要連接基因。GA能夠通過激活下游靶基因LEAFY和SOC1啟動子,整合光周期與春化途徑來促進擬南芥開花[19,23,24]。
1.4自主途徑
植物開花除受外界環(huán)境因素影響外,還受自身感知的調控,自主途徑突變體的特點是延遲開花。參與自主途徑的基因包括LUMINIDEPENDENS (LD)、FCA、FY、FPA、FLOWERING LOCUS D (FLD)、FVE、FLOWERING LOCUS K(FLK)和 REF6[25,26],這些基因主要通過抑制FLC的表達起作用。并且突變體中觀察到的延遲開花現(xiàn)象在很大程度上歸因于FLC表達水平升高[4]。
1.5年齡途徑
年齡途徑主要由植物中的miRNA決定,miR156和miR172是兩個關鍵的miRNA,在年齡途徑中扮演重要的協(xié)調作用。miR156在植物的幼年階段表達較高,隨著生長表達會逐漸降低,而miR172的表達卻相反[27-30]。擬南芥中有兩大類miR156靶基因:編碼小蛋白質的SPL3、SPL4和SPL5(主要由SBP DNA結合結構域組成),其它8個miR156靶基因編碼更大的蛋白質[31,32]。SPL3、SPL4和SPL5主要控制開花時間,而SPL9及其旁系同源物SPL15則包含另一類與控制開花相關的SPL基因。兩組SPL因子對開花非常重要,SPL3和SPL9的過表達可加速開花,而通過miR156過表達降低SPL活性則延遲開花[28, 33-37]。miR172受生物鐘以及SPLs調控,而SPLs又受miR156調控。miR172靶向AP2家族的轉錄因子,抑制花通路整合子(FT,SOC1和AGL24)以及花分生組織基因(FUL,LFY和AP1)[3]。
總之,外源因素和內(nèi)源因素共同作用的五個主要途徑相互聯(lián)系形成一個綜合的監(jiān)管網(wǎng)絡,并通過多個開花信號通道來調節(jié)開花時間[22,38-40]。
2洋蔥抽薹的生理生化表現(xiàn)
生產(chǎn)栽培需要耐抽薹洋蔥品種,育種上提早抽薹則可以縮短育種周期。因此研究抽薹植株生理生化物質變化對研究植物抽薹具有重要意義。劉磊等[41]以紅太陽洋蔥為試材對未抽薹與抽薹植株的生理生化變化進行研究,發(fā)現(xiàn)鱗莖形成期,未抽薹植株可溶性蛋白質和游離氨基酸含量較高,抽薹植株POD 活性、C/N 值及可溶性糖含量較高;抽薹期,抽薹植株可溶性蛋白質和游離氨基酸含量較高,未抽薹植株POD 活性、C/N 值及可溶性糖含量較高。
Kwon等[42]研究表明,抽薹和花莖去除對洋蔥鱗莖直徑?jīng)]有影響,但可導致鱗莖重量減小;花莖在3~5個鱗片形成之后產(chǎn)生,抽薹和花莖去除則減少了大約一個比例的鱗片數(shù)量;總可溶性固形物(TSS)、總糖、槲皮素和總酚含量以及辛辣味均不受抽薹和花莖去除的影響,因此,抽薹對植株鱗莖的營養(yǎng)品質沒有顯著影響。
3洋蔥抽薹開花的關鍵影響因素
洋蔥的抽薹開花由品種、植株大小、低溫持續(xù)時間等決定,植株長到一定大小,經(jīng)過一段時間春化就會開花[1,43]。Khokhar等[44]發(fā)現(xiàn)春化所需時間即是啟動洋蔥球莖開花所需的全部時間,但溫度和光周期影響最終花序外觀和小花開放所需時間。多數(shù)品種的最佳花誘導條件為5~13℃低溫處理20~120 d。耐抽薹品種與普通春播品種則需要更長的低溫刺激(154~185 d)[44-46]。然而,低溫不是影響抽薹的先決條件,洋蔥若在發(fā)育過程中沒有生長到足夠大小,就不會接受低溫信號來啟動抽薹。植株大小主要由播種時間決定,早種植更利于抽薹[1,43]。
除上述因素外,外源激素和肥力同樣對洋蔥抽薹開花產(chǎn)生影響。頂部噴施濃度為0.25%的馬來酰肼可以防止洋蔥過早和不必需的抽薹,有助于提高球莖的產(chǎn)量和質量[47]。春化前噴灑植物生長調節(jié)劑多效唑和乙烯利能減少抽薹,單獨使用矮壯素會增加抽薹,而矮壯素和乙烯利混合使用會降低抽薹率。晚冬季,使用5 mg/mL乙烯利處理秋播、短日齡的洋蔥能延緩葉片生長和抑制抽薹,其抑制作用與處理時球莖直徑顯著相關[48]。低氮(N)施用量也會增加抽薹比例,但當施用量增加至197 kg/hm2,抽薹率穩(wěn)步下降[49]。
4洋蔥抽薹分子機理研究
目前,人們對洋蔥的分子遺傳研究相對滯后,基因組組裝工作還未完成,但對模式植物擬南芥抽薹開花基因等的研究較早且較為深入。因此,以擬南芥的研究成果作為洋蔥抽薹開花的重要參照,是提升洋蔥分子研究的重要手段。Taylor等[50]研究結果表明,控制擬南芥光周期開花的關鍵基因在洋蔥中是保守的,這個理論得到表達和系統(tǒng)發(fā)育數(shù)據(jù)的支持。Lee等[51]通過對先前EST數(shù)據(jù)的生物信息學挖掘和來自RNAseq的數(shù)據(jù)分析揭示了許多開花發(fā)育相關的洋蔥同源物,其中包括FT基因家族的6個成員,F(xiàn)T基因在控制洋蔥鱗莖的形成和春化響應開花的光周期誘導等過程中發(fā)揮關鍵作用;一旦洋蔥成熟并且日照達到臨界長度,AcFT4下調,AcFT1上調,誘導鱗莖形成;越冬期,洋蔥通過上調AcFT2表達來響應長時間的低溫,從而開花。Shiraiwa等[52]報道,聚束洋蔥上編碼赤霉素3-氧化酶的基因(AfGA3ox1)催化GA9向GA4和GA20向GA1的轉化,AfGA3ox1在花器官發(fā)育的早、中期表達較高,并定位于與聚束洋蔥相關物種青蔥的7A染色體上。Baldwin等[53]使用‘Nasik Red 9 DH2150種群,在第1號染色體上鑒定出一個與抽薹相關的QTL,將其命名為AcBlt1,并討論了這些候選基因與開花的關系;將AcFT2定位到第5號染色體上,并使用另一個群體‘W202A 9 Texas Grano將AcFT1定位到1號染色體上。
劉彬昕[54]研究表明,AcFT基因在不同時期的洋蔥葉片、葉鞘、根、假莖、花序等器官中均有不同水平的表達,并在春化后抽薹前的葉片中表達水平最高。除FT基因外,AcLFY基因在抽薹初期的花序分生組織表達水平也較高,但在花柄、花托以及花器官中只有微量表達,而在花器官形成后的葉片中仍有表達;擬南芥中過表達AcLFY基因可引起早期抽薹和早花現(xiàn)象,而通過RNAi敲除內(nèi)源LEAFY基因則會晚抽薹;此外,轉基因植物在蓮座葉、分枝和株高方面也表現(xiàn)出顯著的形態(tài)變化[55]。盛潔等[56]對洋蔥光周期途徑的重要轉錄因子AcCOL7進行克隆,獲得了cDNA全長,并轉化擬南芥co突變體分析其基本功能,發(fā)現(xiàn)與突變體植株相比,轉化株表現(xiàn)為早花,且突變體的其它變異性狀也得到一定程度的恢復,表明AcCOL7在光周期誘導開花途徑中具有重要作用。目前洋蔥分子水平上的研究為解析洋蔥抽薹開花的調控機理提供了新的研究思路和重要依據(jù),是解決洋蔥先期抽薹的關鍵途徑。
[12]Song Y H, Smith R W, To B J, et al. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering[J]. Science, 2012, 336(6084): 1045-1049.
[13]Heath O V S, Holdsworth M. Morphogenic factors as exemplified by the onion plant[M]. Cambridge: Cambridge University Press, 1948:326-350.
[14]Sheldon C C, Burn J E, Perez P P, et al. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation[J]. The Plant Cell, 1999, 11(3):445-458.
[15]Michaels S D, Amasino R M. FLOWERING LOCUS C encodes anovel MADS domain protein that acts as a repressor of flowering[J]. The Plant Cell, 1999, 11(5): 949-956.
[16]Sheldon C C, Rouse D T, Finnegan E J, et al. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7): 3753-3758.
[17]Chiang G C K, Barua D, Kramer E M, et al. Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 11661-11666.
[18]Lee J H, Yoo S J, Park S H, et al. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis[J]. Genes & development, 2007, 21(4): 397-402.
[19]Blazquez M A, Green R, Nilsson O, et al. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter[J]. The Plant Cell, 1998, 10: 791-800.
[20]Richards D E, King K E, Ait-Ali T, et al. How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 67-88.
[21]Pharis R P, King R W. Gibberellins and reproductive developmen in seed plants[J]. Annual Review of Plant Physiology, 1985, 36:517-568.
[22]Mouradov A, Cremer F, Coupland G. Control of flowering time: interacting pathways as a basis for diversity[J]. The Plant Cell, 2002, suppl 14: 111-130.
[23]Yu H, Ito T, Zhao Y, et al. Floral homeotic genes are targets of gibberellin signaling in flower development[J].Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 7827-7832.
[24]Zanewich K P, Rood S B. Vernalization and gibberellin physiology of winter canola:endogenous gibberellin (GA) content and metabolism of [3H]GA1 and [3H]GA20[J]. Plant Physiology, 1995, 108: 615-621.
[25]Simpson G G. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time[J]. Current Opinion in Plant Biology, 2004, 7: 570-574.
[26]Noh B, Lee S H, Kim H J, et al. Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time[J]. The Plant Cell, 2004, 16(10):2601-2613.
[27]Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes[J]. The Plant Cell, 2003, 15:2730-2741.
[28]Wu G, Poethig R S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J]. Development, 2006, 133:3539-3547.
[29]Jung J H, Seo Y H, Seo P J, et al. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis[J]. The Plant Cell, 2007, 19:2736-2748.
[30]Wang J W, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell, 2009, 138(4):738-749.
[31]Cardon G, Hhmann S, Klein J, et al. Molecular characterisation of the Arabidopsis SBP-box genes[J]. Gene, 1999, 237(1): 91-104.
[32]Yang Z F, Wang X F, Gu S L, et al. Comparative study of SBP-box gene family in Arabidopsis and rice[J]. Gene, 2008, 407(1/2): 1-11.
[33]Cardon G H, Hhmann S, Nettesheim K, et al. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition[J]. The Plant Journal, 1997, 12(2): 367-377.
[34]Schwab R, Palatnik J F, Riester M, et al. Specific effects of microRNAs on the plant transcriptome[J]. Developmental Cell, 2005, 8(4): 517-527.
[35]Gandikota M, Birkenbihl R P, Hhmann S, et al. The miRNA156/157 recognition element in the 3′UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings[J]. The Plant Journal, 2007, 49(4): 683-693.
[36]Schwarz S, Grande A V, Bujdoso N, et al. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis[J]. Plant Molecular Biology, 2008, 67(1/2): 183-195.
[37]Wang J W, Schwab R, Czec B, et al. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana[J]. The Plant Cell, 2008, 20: 1231-1243.
[38]Jung C, Müller A E. Flowering time control and applications in plant breeding[J]. Trends Plant Sci., 2009, 14(10):563-573.
[39]Fornara F, De M A, Coupland G. SnapShot: control of flowering in Arabidopsis[J]. Cell, 2010, 141(3):550.
[40]Wellmer F, Riechmann J L. Gene networks controlling the initiation of flower development[J]. Trends in Genetics, 2010, 26(12): 519-527.
[41]劉磊, 劉世琦, 許莉, 等. 洋蔥抽薹與未抽薹植株生理生化特性對比研究[J]. 中國農(nóng)學通報, 2006, 22(1): 149-152.
[42]Kwon Y S, Kim C W, Kim J S, et al. Effects of bolting and flower stem removal on the growth and chemical qualities of onion bulbs[J]. Horticulture, Environment and Biotechnology, 2016, 57(2):132-138.
[43]Agic R, Popsimonova G, Jankulovski D, et al. Winter onion susceptibility to premature bolting depending on the variety and sowing date[J]. Acta Horticulturae, 2007, 729:271-276.
[44]Khokhar K M, Hadley P, Pearson S. Effect of cold temperature durations of onion sets in store on the incidence of bolting, bulbing and seed yield[J]. Scientia Horticulturae, 2007, 112: 16-22.
[45]DeBon H, Rhino B. Flowering in the various cultivars of onions (Allium cepa L.) brought to Martinique (French West Indies)[C]//The 4th Eucarpia Allium Symposium,Wellesbourne,1988: 262-266.
[46]Peters R. Seed production in onions and some other Allium species[M]//Rabinowitch H D, ?Brewster J L.Onions and allied crops. Boca Raton: CRC Press, 1990:161-176.
[47]Choudhri R S, Bhatnagar V B. Prevention of premature bolting in onions following maleic hydrazide treatment[J]. Proceedings of the Indian Academy of Sciences, 1953, 37(1):14-21.
[48]Arvin M J, Banakar M H. Effects of plant growth regulators on bolting and several traits of onion (Allium cepa) cv.Texas Early Grano [J]. Journal of Science and Technology of Agriculture and Natural Resources, 2002, 6(1):59-70.
[49]Diaz-Perez J C, Purvis A C, Paulk J T. Bolting, yield, and bulb decay of sweet onion as affected by nitrogen fertilization[J]. J Am. Soc. Hortic. Sci., 2003, 128:144-149.
[50]Taylor A, Juliet M A, Brian T. Conservation of Arabidopsis thaliana photoperiodic flowering ?time genes in onion (Allium cepa L.)[J]. Plant and Cell Physiology, 2010, 51: 1638-1647.
[51]Lee R,Baldwin S,Kenel F, et al. FLOWERING LOCUS T genes control onion bulb formation and flowering[J]. Nature Communications, 2013, 4:2884.
[52]Shiraiwa N, Kikuchi K, Honda I, et al. Characterization of endogenous gibberellins and molecular cloning of a putative gibberellin 3-oxidase gene in bunching onion[J]. Journal of the American Society for Horticultural Science, 2011, 136:382-388.
[53]Baldwin S, Revanna R, Pither-Joyce M, et al. Genetic analyses of bolting in bulb onion (Allium cepa L.)[J]. Theoretical and Applied Genetics, 2014, 127:535-547.
[54]劉彬昕.洋蔥FT同源基因的克隆與表達分析[D].哈爾濱:東北農(nóng)業(yè)大學, ?2014.
[55]Yang C C, Ye Y Y, Song C, et al. Cloning and functional identification of the AcLFY gene in Allium cepa[J]. Biochemical and Biophysical Research Communications, 2016, 473(4): 1100-1105.
[56]盛潔, 楊翠翠, 吳小旭, 等. 洋蔥光周期途徑轉錄因子基因AcCOL7的克隆及功能鑒定[J]. 園藝學報, 2018, 45 (3):493-502.