劉慧霞,辛家祥,魏達(dá)秀,姚葉鋒
核自旋單重態(tài)的制備及其轉(zhuǎn)化效率和壽命的影響因素分析
劉慧霞,辛家祥,魏達(dá)秀*,姚葉鋒#
上海市磁共振重點(diǎn)實(shí)驗(yàn)室,華東師范大學(xué) 物理與材料科學(xué)學(xué)院,上海 200062
長(zhǎng)壽命核自旋單重態(tài)(LLS)因具有壽命較長(zhǎng)這一特性而具有廣泛的應(yīng)用前景.本文在一個(gè)三肽樣品(alanylglycylgcine,AGG)的水溶液中,對(duì)結(jié)構(gòu)中離手性碳較遠(yuǎn)的二自旋體系進(jìn)行核自旋單重態(tài)的制備,并探究了樣品濃度、溫度、射頻發(fā)射中心位置、自旋體系之間的耦合常數(shù),以及磁場(chǎng)不均勻性五個(gè)因素對(duì)LLS的轉(zhuǎn)化效率及其壽命的影響.實(shí)驗(yàn)結(jié)果表明,核自旋單重態(tài)的轉(zhuǎn)化效率和壽命均不受樣品濃度以及磁場(chǎng)不均勻性的影響.壽命會(huì)隨實(shí)驗(yàn)溫度的升高不斷增加,轉(zhuǎn)化效率隨溫度的下降而減?。漕l中心位置在小范圍內(nèi)變化時(shí),核自旋單重態(tài)制備所受影響不明顯;但當(dāng)變化較大時(shí),其轉(zhuǎn)化效率與壽命明顯減小.同時(shí),核自旋單重態(tài)對(duì)耦合的變化則比較敏感,當(dāng)值選擇不精準(zhǔn)時(shí),轉(zhuǎn)化效率及壽命都出現(xiàn)明顯降低.
核自旋單重態(tài);強(qiáng)耦合體系;轉(zhuǎn)化效率;核磁共振(NMR)
核磁共振(nuclear magnetic resonance,NMR)技術(shù)是一種用途廣泛、獲得信息豐富的分析技術(shù),應(yīng)用范圍包括人體及小動(dòng)物成像、分子結(jié)構(gòu)和動(dòng)力學(xué)研究、食品檢測(cè)等.但目前的研究對(duì)分析技術(shù)精度的要求越來(lái)越高,靈敏度較低這一不足在一定程度上限制了NMR技術(shù)的發(fā)展和應(yīng)用.NMR檢測(cè)靈敏度較低的主要原因是在熱平衡狀態(tài)下,核自旋能級(jí)之間粒子數(shù)的差異太?。疄榱颂岣逳MR檢測(cè)靈敏度,研究者們提出了一系列的方法,例如針對(duì)液態(tài)自旋體系,溶解動(dòng)態(tài)核極化(dissolution-dynamic nuclear polarization,d-DNP)和仲氫誘導(dǎo)極化(parahydrogen-induced polarization,PHIP)[1-4]等手段都使NMR信號(hào)得到了較大增強(qiáng).但被極化的核自旋仍然面臨極化度衰減的問(wèn)題,即無(wú)論核自旋的極化度被提高了多少倍,其存在的時(shí)間難以超過(guò)本身的縱向弛豫時(shí)間(1),這種衰減是不可逆轉(zhuǎn)的,該特點(diǎn)限制了被極化的核自旋的潛在應(yīng)用價(jià)值.
長(zhǎng)壽命核自旋單重態(tài)(long-life nuclear spin singlet state,LLS)具有比1長(zhǎng)得多的弛豫時(shí)間,這為克服弛豫導(dǎo)致的一些限制提供了機(jī)會(huì)[5-7].LLS存在于二自旋體系或更多自旋的體系.由于自旋對(duì)稱性,核自旋單重態(tài)受偶極-偶極弛豫的影響較?。?dāng)偶極-偶極弛豫主導(dǎo)核自旋的弛豫過(guò)程時(shí),核自旋單重態(tài)常常具有較長(zhǎng)的弛豫時(shí)間.自Levitt課題組[5,6,8]發(fā)現(xiàn)單重態(tài)NMR以來(lái),已有許多研究小組對(duì)單重態(tài)NMR領(lǐng)域進(jìn)行了研究,目的是定義和表征單重態(tài)弛豫特性[9-13]及其存在的條件[14-17];同時(shí)證明多自旋體系[18-24],包括同核、異核體系[25]中LLS存在的可能性.除此之外,可制備LLS的化學(xué)物質(zhì)種類也被不斷擴(kuò)展,目前1H核體系[26]的核自旋單重態(tài)壽命(S)可達(dá)到 10 min以上,13C核[27]的S可達(dá)到約70 min,15N核[28]的S可達(dá)到約26 min.這些核自旋單重態(tài)的S比其對(duì)應(yīng)的1提高了幾倍到幾十倍.而LLS由于具有壽命較長(zhǎng)這一特性,已被廣泛應(yīng)用于研究分子性質(zhì)或慢分子運(yùn)動(dòng)、化學(xué)交換、磁共振成像(magnetic resonance imaging,MRI)和量子計(jì)算等領(lǐng)域[29-35].近年來(lái),這種核自旋單態(tài)還被應(yīng)用于模擬鳥(niǎo)類導(dǎo)航[36-38].
核自旋單重態(tài)的S與其使用的制備脈沖密切相關(guān).本文以一個(gè)三肽分子(alanylglycylgcine,AGG)的水溶液為例,利用自旋鎖定誘導(dǎo)交叉(spin-lock induced crossing,SLIC)脈沖序列[39]制備AGG分子末端-CH2基團(tuán)中的二個(gè)氫原子核自旋體系的LLS,并探究了樣品濃度、溫度、射頻發(fā)射中心、自旋體系之間的耦合值,以及磁場(chǎng)不均勻性五個(gè)因素對(duì)其轉(zhuǎn)化效率和S的影響.
圖1 SLIC脈沖序列(依據(jù)文獻(xiàn)[39]重制)
上述脈沖序列的算符演化如下:
當(dāng)待測(cè)樣品置于磁場(chǎng)中時(shí),體系(以強(qiáng)耦合二自旋為例)處于熱平衡狀態(tài):
經(jīng)過(guò)90?方向的硬脈沖后,體系的狀態(tài)變?yōu)椋?/p>
在施加長(zhǎng)時(shí)間選擇性脈沖的期間,體系的哈密頓量為:
圖2 脈沖施加過(guò)程中基算符中各項(xiàng)所占比例隨演化時(shí)間改變的曲線圖. 因未歸一化,單重態(tài)所占比例不代表實(shí)驗(yàn)中實(shí)際轉(zhuǎn)化效率
NMR樣品管和D2O購(gòu)自青島騰龍微波科技有限公司,AGG購(gòu)自杰北歐生物試劑有限公司.
分別配制濃度為2 mg/mL、4 mg/ mL、8 mg/ mL、16 mg/ mL的AGG-D2O溶液
LLS的NMR實(shí)驗(yàn)制備在AVANCE III 500型液體NMR譜儀(Bruker)上完成.溫度為23 ℃時(shí),對(duì)AGG樣品結(jié)構(gòu)中的¢自旋對(duì)施加圖1所示的SLIC脈沖序列制備LLS.實(shí)驗(yàn)參數(shù)設(shè)置為:射頻中心1對(duì)準(zhǔn)目標(biāo)峰3.97 ppm;采樣譜寬()為6 000 Hz;循環(huán)等待時(shí)間(1)為5 s;90?和選擇性脈沖寬度分別為9.4ms和12 500ms,選擇性脈沖的功率為50 dB.梯度脈沖1和2分別為(800ms, 20%)和(800ms, 10%),采用CW去耦,累加次數(shù)()為1.
與此同時(shí),分別探究了樣品濃度(2 mg/mL、4 mg/ mL、8 mg/ mL、16 mg/ mL)、溫度(考慮到樣品溶質(zhì)與溶劑的化學(xué)性質(zhì),將實(shí)驗(yàn)溫度分別設(shè)置為3 ℃、13 ℃、23 ℃、33 ℃)、磁場(chǎng)的不均性(以NMR信號(hào)的半高寬來(lái)衡量)、射頻發(fā)射中心1(向左分別偏置0 Hz、5 Hz、10 Hz和15 Hz)以及耦合值對(duì)單重態(tài)轉(zhuǎn)化效率和S的影響.
采用反轉(zhuǎn)恢復(fù)法測(cè)得1,1為10 s,采樣時(shí)間()為2.5 s,為8,直接維采樣點(diǎn)數(shù)(1)為5 000,間接維采樣點(diǎn)數(shù)(2)為16.
圖3(a)和3(b)所示分別為AGG氘水溶液的分子結(jié)構(gòu)和1H NMR譜圖(實(shí)驗(yàn)參數(shù)、1、90?脈寬、與2.2節(jié)所述相同).兩對(duì)自旋質(zhì)子對(duì)的譜峰分別位于:H和H¢(q,H4.04),H和H¢(s,H3.97).其余質(zhì)子分別位于:H(q,H4.15),甲基(d,H1.55).強(qiáng)耦合體系的兩個(gè)質(zhì)子分別標(biāo)記為H和H¢.通過(guò)反轉(zhuǎn)恢復(fù)法測(cè)得該質(zhì)子對(duì)的1為(1.1±0.1)s.
圖3 (a) AGG氘水溶液的分子結(jié)構(gòu);(b) AGG氘水溶液的1H NMR譜圖(500 MHz);(c)對(duì)dH 3.97處cc¢質(zhì)子對(duì)制備核自旋單重態(tài)得到的NMR譜圖
LLS最重要的特性是其壽命較長(zhǎng),即NMR譜峰信號(hào)衰減常數(shù)S遠(yuǎn)大于其1.實(shí)驗(yàn)中對(duì)制得的單重態(tài)自旋核的S進(jìn)行測(cè)量,通過(guò)改變CW去耦的時(shí)間m,采集一系列譜圖,通過(guò)單指數(shù)擬合測(cè)得S為(18.7±0.3)s,約是1的16.5倍.1和S具體擬合曲線見(jiàn)圖4.
圖4 AGG氘水溶液位于dH 3.97處的質(zhì)子譜峰面積隨演化時(shí)間的衰減曲線.(a) 正方形為利用反轉(zhuǎn)恢復(fù)法測(cè)量T1時(shí)采集到的數(shù)據(jù)點(diǎn),實(shí)線是相應(yīng)的指數(shù)衰減擬合曲線,測(cè)得T1=(1.1±0.1) s.A1為擬合后歸一化面積最大值,A2=2A1;(b) 正方形為測(cè)量TS時(shí)采集到的數(shù)據(jù)點(diǎn),實(shí)線是相應(yīng)的指數(shù)衰減擬合曲線,測(cè)得TS=(18.7±0.3) s.A為擬合后歸一化面積最大值.所有信號(hào)的積分面積以第一個(gè)數(shù)據(jù)點(diǎn)對(duì)應(yīng)的積分面積進(jìn)行歸一化
3.2.1 樣品濃度的影響
在23 ℃下,分別對(duì)2 mg/mL、4 mg/ mL、8 mg/ mL和16 mg/ mL四個(gè)濃度的AGG溶液中強(qiáng)耦合體系¢質(zhì)子對(duì)的LLS進(jìn)行制備,并分別測(cè)量其S,各濃度樣品的S擬合曲線如圖5(a)所示.如圖5(b)和5(c)所示,以2 mg/mL濃度的樣品為例,對(duì)其1H NMR譜中¢質(zhì)子對(duì)的信號(hào)和制備的核自旋單重態(tài)的信號(hào)分別進(jìn)行積分,將后者與前者的比值定義為L(zhǎng)LS的轉(zhuǎn)化效率.
圖5 (a)不同濃度的樣品的LLS的TS擬合曲線,所有信號(hào)的積分面積以第一個(gè)數(shù)據(jù)點(diǎn)對(duì)應(yīng)的積分面積進(jìn)行歸一化;濃度為 2 mg/mL的AGG氘水溶液cc¢質(zhì)子對(duì)在(b)1H NMR譜和(c)核自旋單重態(tài)的NMR譜中的譜峰積分
各個(gè)樣品濃度下,核自旋單重態(tài)轉(zhuǎn)化效率和S如表1所示.從表1數(shù)據(jù)可得,在本實(shí)驗(yàn)討論的濃度范圍內(nèi),LLS的轉(zhuǎn)化效率和S均基本一致,在誤差范圍內(nèi).說(shuō)明在本文實(shí)驗(yàn)條件下,LLS的轉(zhuǎn)化效率及S均不受樣品濃度的影響.
表1 不同濃度的AGG分子中cc¢質(zhì)子對(duì)的LLS的轉(zhuǎn)化效率和TS(500 MHz,23 ℃)
在此基礎(chǔ)上,可將研究對(duì)象擴(kuò)展到更高濃度的樣品.此時(shí)樣品溶液中可能存在二聚體、三聚體甚至多聚體.然而因LLS不受分子內(nèi)部偶極-偶極弛豫影響的獨(dú)特性質(zhì),故而我們推測(cè)該核自旋單重態(tài)可以在高濃度的樣品中成功制備,進(jìn)而可以將該方法應(yīng)用于自組裝體系,例如蛋白結(jié)構(gòu)中,對(duì)局部高濃度的信號(hào)進(jìn)行檢測(cè).
3.2.2 溫度的影響
對(duì)濃度為8 mg/mL的AGG樣品,在不同的溫度下制備LLS,并測(cè)量轉(zhuǎn)化效率和T(圖6和表2).LLS的轉(zhuǎn)化效率隨著溫度的降低而不斷減小,原因在于實(shí)驗(yàn)所用的脈沖序列是依據(jù)23 ℃溫度下分子的耦合和化學(xué)位移差值進(jìn)行理論計(jì)算得到的,此時(shí)兩個(gè)核自旋之間的化學(xué)位移之差為5 Hz.而隨著溫度的降低,化學(xué)位移差值變大,耦合也發(fā)生了一定的變化,因而對(duì)應(yīng)的最佳制備參數(shù)應(yīng)該發(fā)生改變.如果脈沖序列不進(jìn)行調(diào)整,仍然使用23 ℃溫度下脈沖參數(shù),則會(huì)導(dǎo)致獲得的LLS轉(zhuǎn)化效率明顯降低.但是,當(dāng)溫度高于23 ℃時(shí),化學(xué)位移差值進(jìn)一步變小,此時(shí)的脈沖序列對(duì)更小的化學(xué)位移差并不敏感,因而LLS的轉(zhuǎn)化效率不會(huì)發(fā)生較大的降低.隨著溫度的增加,LLS的S不斷增加,表明LLS的S受溫度影響較大.
圖6 (a)不同溫度下LLS的TS擬合曲線;(b)不同溫度下cc¢質(zhì)子對(duì)的T1擬合曲線.所有信號(hào)的積分面積以第一個(gè)數(shù)據(jù)點(diǎn)對(duì)應(yīng)的積分面積進(jìn)行歸一化
表2 不同溫度下,AGG分子中cc¢質(zhì)子對(duì)的LLS的轉(zhuǎn)化效率、TS和T1(500 MHz,8 mg/mL)
3.2.3 射頻發(fā)射中心的影響
制備過(guò)程中發(fā)射中心1位置能夠影響LLS的制備效率.本實(shí)驗(yàn)中使用濃度為8 mg/mL的樣品,溫度為23 ℃.一般情況下,在制備LLS過(guò)程中,射頻中心對(duì)準(zhǔn)的是H3.97(H和H¢)信號(hào)的中心位置,即圖7(a)中1的位置.將1的位置向左分別偏置5 Hz、10 Hz和15 Hz,即圖7(a)中2、3、4的位置,再進(jìn)行相同的實(shí)驗(yàn),獲得的LLS的1H NMR譜圖如圖7(b)所示.圖7(c)為4組偏置情況下LLS的S擬合曲線.對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行處理得到如表3所示的結(jié)果.由表3可知,當(dāng)1左偏置5 Hz以內(nèi)時(shí),LLS的轉(zhuǎn)化效率基本不受影響;而當(dāng)偏置繼續(xù)增大的時(shí)候,轉(zhuǎn)化效率出現(xiàn)明顯下降;可推測(cè)當(dāng)1偏置大于20 Hz后,基本不能檢測(cè)到LLS.同時(shí),當(dāng)1偏置增大時(shí),LLS的S不斷下降,主要因?yàn)樯漕l中心的改變導(dǎo)致非單重態(tài)信號(hào)夾雜在其中,受其1弛豫的影響,單指數(shù)擬合得到的S不斷下降,而且S擬合時(shí)存在一定誤差.
圖7 (a) 制備LLS時(shí)射頻發(fā)射中心o1的位置;(b) 不同的o1偏置下,LLS的1H NMR譜;(c) 不同o1偏置下,LLS的TS擬合曲線,所有信號(hào)的積分面積以第一個(gè)數(shù)據(jù)點(diǎn)對(duì)應(yīng)的積分面積進(jìn)行歸一化
表3 不同o1偏置時(shí),AGG分子中cc¢質(zhì)子對(duì)的LLS的轉(zhuǎn)化效率和TS(500 MHz)
3.2.4耦合值的影響
LLS制備的過(guò)程中,耦合值與選擇性脈沖功率的設(shè)置息息相關(guān),也是決定LLS制備成功與否、效率高低的重要參數(shù).而自旋體系之間的耦合值一般都是從1H NMR譜中直接讀取,這就涉及讀取過(guò)程中如何選取起始位置.本實(shí)驗(yàn)中使用濃度為8 mg/mL的樣品,溫度為23 ℃.如圖8(a)所示的三個(gè)箭頭所指的位置,一般情況下,是選取耦合裂分的兩個(gè)峰的最高位置之間的距離作為值.故此,在=18.65 Hz的情況下制備了LLS后,我們分別以目標(biāo)位置左右兩邊信號(hào)強(qiáng)度的是其一半高度處為基準(zhǔn)來(lái)讀取耦合值,即在原有讀取的耦合值的基礎(chǔ)上加減2 Hz,分別得到=20.65 Hz和16.65 Hz,并根據(jù)此耦合值分別進(jìn)行實(shí)驗(yàn),來(lái)探究不同的耦合值對(duì)LLS的影響.三組值條件下測(cè)得LLS的S擬合曲線如圖8(b)所示,轉(zhuǎn)化效率及S的具體數(shù)值見(jiàn)表4.由表4可知,當(dāng)耦合值發(fā)生改變時(shí),不管是增大還是減小,LLS轉(zhuǎn)化效率和S都明顯下降.這表明在LLS制備過(guò)程中,耦合值的精確讀取至關(guān)重要.S隨耦合值的變化而降低的原因是單重態(tài)信號(hào)中包含了其它成分,受其弛豫的影響,測(cè)得的S減小.本研究中,當(dāng)=16.65 Hz時(shí),S擬合誤差較大,故而產(chǎn)生更大的偏差.
3.2.5 磁場(chǎng)不均勻性的影響
我們進(jìn)一步使用濃度為8 mg/mL的樣品,在23 ℃下,探討了磁場(chǎng)不均勻性對(duì)LLS的影響,磁場(chǎng)不均勻性以譜圖中水峰半高寬的大小為衡量標(biāo)準(zhǔn).本研究涉及的磁場(chǎng)不均勻條件下得到的水的NMR信號(hào)如圖9(a)所示.由于在場(chǎng)不均勻的情況下,NMR譜圖分辨率不高,無(wú)法精確對(duì)1H NMR譜中目標(biāo)信號(hào)進(jìn)行積分,故而以半高寬為1 Hz時(shí)制備得到的LLS信號(hào)的積分面積為基準(zhǔn),對(duì)其它磁場(chǎng)情況下的LLS信號(hào)進(jìn)行相對(duì)積分,以此來(lái)衡量不同磁場(chǎng)均勻性下的LLS的相對(duì)轉(zhuǎn)化效率.圖9(b)為不同半高寬下,LLS的S擬合曲線.LLS的相對(duì)轉(zhuǎn)化效率及S的具體見(jiàn)表5.由表5可知,磁場(chǎng)不均勻性在在實(shí)驗(yàn)設(shè)定的范圍內(nèi),即半高寬在1~10 Hz時(shí),LLS的相對(duì)轉(zhuǎn)化效率和S基本保持一致,在合理的誤差范圍內(nèi)波動(dòng),表明一定程度的磁場(chǎng)均勻性的改變對(duì)LLS轉(zhuǎn)化效率和S的影響不大.
圖8 (a) 1H NMR譜中讀取時(shí)J值起始點(diǎn)位置的選擇;(b)不同J值下,LLS的TS擬合曲線,所有信號(hào)的積分面積以第一個(gè)數(shù)據(jù)點(diǎn)對(duì)應(yīng)的積分面積進(jìn)行歸一化
表4 不同J值時(shí),AGG分子中cc¢質(zhì)子對(duì)的LLS的轉(zhuǎn)化效率和TS(500 MHz)
圖9 (a)不同的磁場(chǎng)均勻性下,水峰信號(hào)的半高寬;(b)不同半高寬下,LLS的TS的擬合曲線.所有信號(hào)的積分面積以第一個(gè)數(shù)據(jù)點(diǎn)對(duì)應(yīng)的積分面積進(jìn)行歸一化
表5 不同磁場(chǎng)均勻性下,AGG分子中cc¢質(zhì)子對(duì)的LLS的相對(duì)轉(zhuǎn)化效率和TS(500 MHz)
本文以孤立的二自旋強(qiáng)耦合體系為研究對(duì)象、以AGG分子為例,進(jìn)行了LLS制備及其S測(cè)量,并探討了樣品濃度、溫度、射頻發(fā)射中心、值和磁場(chǎng)均勻性對(duì)LLS轉(zhuǎn)化效率及其S的影響.研究發(fā)現(xiàn)在本實(shí)驗(yàn)條件下,LLS的S隨實(shí)驗(yàn)溫度的升高不斷增加.與LLS制備息息相關(guān)的實(shí)驗(yàn)參數(shù)(包括射頻發(fā)射中心的位置以及值的選擇)則對(duì)LLS轉(zhuǎn)化效率和S有顯著影響:1偏置在小范圍內(nèi)變化時(shí),LLS所受影響不甚明顯,但當(dāng)偏置較大時(shí),其轉(zhuǎn)化效率與S出現(xiàn)明顯減??;LLS的轉(zhuǎn)化效率和S對(duì)值變化則比較敏感,當(dāng)耦合值讀取不夠精確時(shí),LLS的轉(zhuǎn)化效率和S都明顯降低.磁場(chǎng)的不均勻性對(duì)LLS的影響則與樣品濃度類似,兩者在一定范圍變化時(shí),LLS轉(zhuǎn)化效率和S未出現(xiàn)明顯變化.這些結(jié)果為L(zhǎng)LS制備時(shí)實(shí)驗(yàn)條件的選擇提供了參考,并對(duì)長(zhǎng)相干態(tài)的應(yīng)用提供理論依據(jù),例如,當(dāng)用長(zhǎng)相干單重態(tài)模擬鳥(niǎo)類導(dǎo)航[38]時(shí),通過(guò)模擬外界的控制條件,可以進(jìn)一步探討外界環(huán)境(如磁場(chǎng)變換,溫度變化)對(duì)導(dǎo)航定位的影響等過(guò)程.
[1] ARDENKJ?R-LARSEN J H, GOLMAN K, GRAM A, et al. Increase of signal-to-noise of more than 10,000 times in liquid state NMR[J]. Discov Med, 2003, 3(19): 37-39.
[2] ADAMS R W, AGUILAR J A, ATKINSON K D, et al. Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer[J]. Science, 2009, 323(5922): 1708-1711.
[3] BOWERS C R, WEITEKAMP D P. Parahydrogen and synthesis allow dramatically enhanced nuclear alignment[J]. J Am Chem Soc, 1987, 109(18): 5541-5542.
[4] WANG W Y, HU H, XU J, et al. Hydrogenation reaction on pd-cu bimetallic catalysts: a parahydrogen-induced polarization study[J]. Chinese J Magn Reson, 2018, 35(3): 269-279. 王偉宇, 胡涵, 徐君, 等. Pd-Cu雙金屬催化劑上加氫反應(yīng)的仲氫誘導(dǎo)超極化研究[J]. 波譜學(xué)雜志, 2018, 35(3): 269-279.
[5] CARRAVETTA M, JOHANNESSEN O G, LEVITT M H. Beyond the T1limit: singlet nuclear spin states in low magnetic fields[J]. Phys Rev Lett, 2004, 92(15): 153003.
[6] CARRAVETTA M, LEVITT M H. Long-lived nuclear spin states in high-field solution NMR[J]. J Am Chem Soc, 2004, 126(20): 6228-6229.
[7] FENG Y, DAVIS R M, WARREN W S. Accessing long-lived nuclear singlet states between chemically equivalent spins without breaking symmetry[J]. Nat Phys, 2012, 8(11): 831-837.
[8] CARRAVETTA M, LEVITT M H. Theory of long-lived nuclear spin states in solution nuclear magnetic resonance. I. Singlet states in low magnetic field[J]. J Chem Phys, 2005, 122(21): 214505.
[9] PILEIO G. Relaxation theory of nuclear singlet states in two spin-1/2 systems[J]. Prog Nucl Mag Res Sp, 2010, 56(3): 217-231.
[10] PILEIO G, LEVITT M H. Theory of long-lived nuclear spin states in solution nuclear magnetic resonance. II. Singlet spin locking[J]. J Chem Phys, 2009, 130(21): 214501.
[11] PILEIO G. Singlet state relaxation via intermolecular dipolar coupling[J]. J Chem Phys, 2011, 134(21): 214505.
[12] PILEIO, G. Singlet state relaxation via scalar coupling of the second kind[J]. J Chem Phys, 2011, 135(17): 174502.
[13] TAYLER M C D, LEVITT M H. Paramagnetic relaxation of nuclear singlet states[J]. Phys Chem Chem Phys, 2011, 13(20): 9128-9130.
[14] VINOGRADOV E, GRANT A K. Long-lived states in solution NMR: Selection rules for intramolecular dipolar relaxation in low magnetic fields[J]. J Magn Reson, 2007, 188(1): 176-182.
[15] PILEIO G, LEVITT M H. J-stabilization of singlet states in the solution NMR of multiple-spin systems[J]. J Magn Reson, 2007, 187(1): 141-145.
[16] GRANT A K, VINOGRADOV E. Long-lived states in solution NMR: Theoretical examples in three- and four-spin systems[J]. J Magn Reson, 2008, 193(2): 177-190.
[17] KARABANOV A A, BRETSCHNEIDER C, K?CKENBERGER W. Symmetries of the master equation and long-lived states of nuclear spins[J]. J Chem Phys, 2009, 131(20): 204105-204110.
[18] PILEIO G, CONCISTRè M, CARRAVETTA M, et al. Long-lived nuclear spin states in the solution NMR of four-spin systems[J]. J Magn Reson, 2006, 182(2): 353-357.
[19] AHUJA P, SARKAR R, VASOS P R, et al. Long-lived states in multiple-spin systems[J]. Chem Phys Chem, 2010, 10(13): 2217-2220.
[20] MEIER B, DUMEZ J N, STEVANATO G, et al. Long-lived nuclear spin states in methyl groups and quantum-rotor-induced polarization[J]. J Amer Chem Soc, 2013, 135(50): 18746-18749.
[21] PRAVDIVTSEV A N, YURKOVSKAYA A V, ZIMMERMANN H, et al. Magnetic field dependent long-lived spin states in amino acids and dipeptides[J]. Phys Chem Chem Phys, 2014, 16(16): 7584-7594.
[22] STEVANATO G, SINGHA ROY S, HILL-COUSINS J, et al. Long-lived nuclear spin states far from magnetic equivalence[J]. Phys Chem Chem Phys, 2015, 17(8): 5913-5922.
[23] DUMEZ J N, H?KANSSON P, MAMONE S, et al. Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation[J]. J Chem Phys, 2015, 142(4): 044506.
[24] GUO H Q, XIN J X, LIU H X, et al. Preparation of long-lived nuclear singlet states in three-spin systems[J]. Chinese J Magn Reson, 2018, 35(3): 345-352. 郭海清, 辛家祥, 劉慧霞, 等. 三自旋體系長(zhǎng)壽命核自旋單重態(tài)的制備[J]. 波譜學(xué)雜志, 2018, 35(3): 345-352.
[25] EMONDTS M, LEDBETTER M P, PUSTELNY S, et al. Long-lived heteronuclear spin-singlet states in liquids at a zero magnetic field[J]. Phys Rev Lett, 2014, 112(7): 077601.
[26] PILEIO G, DUMEZ J N, POP I A, et al. Real-space imaging of macroscopic diffusion and slow flow by singlet tagging MRI[J]. J Magn Reson, 2015, 252: 130-134.
[27] STEVANATO G, HILL-COUSINS J T, H?KANSSON P, et al. A nuclear singlet lifetime of more than one hour in room-temperature solution[J]. Angew Chem Int Ed Eng, 2015, 54(12): 3740-3743.
[28] PILEIO G, CARRAVETTA M, HUGHES E, et al. The Long-lived nuclear singlet state of15N-nitrous oxide in solution[J]. J Amer Chem Soc, 2008, 130(38): 12582-12583.
[29] AHUJA P, SARKAR R, VASOS P R, et al. Diffusion coefficients of biomolecules using long-lived spin states[J]. J Amer Chem Soc, 2009, 131(22): 7498-7499.
[30] SARKAR R, VASOS P R, BODENHAUSEN G. Singlet-state exchange NMR spectroscopy for the study of very slow dynamic processes[J]. J Am Chem Soc, 2007, 129(2): 328-334.
[31] VASOS P R, COMMENT A, SARKAR R, et al. Long-lived states to sustain hyperpolarized magnetization[J]. Pro Natl Acad Sci USA, 2009, 106(44): 18469-14632.
[32] KOVTUNOV K V, TRUONG M L, BARSKIY D A, et al. Long-lived spin states for low-field hyperpolarized gas MRI[J]. Chemistry, 2014, 20(45): 14629-14632.
[33] ROY S S, MAHESH T S. Initialization of NMR quantum registers using long-lived singlet states[J]. Phys Rev A, 2010, 82(5): 3249-3253.
[34] DEVIENCE S J, WALSWORTH R L, ROSEN M S. Probing scalar coupling differences via long-lived singlet states.[J]. J Magn Reson, 2016, 262: 42.
[35] SALVI N, BURATTO R, BORNET A, et al. Boosting the sensitivity of ligand-protein screening by NMR of long-lived states[J]. J Amer Chem Soc, 2012, 134(27): 11076-11079.
[36] JONES J A, HORE P J. Spin-selective reactions of radical pairs act as quantum measurements[J]. Chem Phys Lett, 2010, 488(1-3): 90-93.
[37] CAI J, CARUSO F, PLENIO M B. Quantum limits for the magnetic sensitivity of a chemical compass[J]. Phys Rev A, 2012, 85(4): 124-130.
[38] PEARSON J, FENG G R, ZHENG C, et al. Experimental quantum simulation of avian compass in a nuclear magnetic resonance system[J]. Sci China Phys Mech, 2016, 59(12): 120312.
[39] DEVIENCE S J, WALSWORTH R L, ROSEN M S. Preparation of nuclear spin singlet states using spin-lock induced crossing[J]. Phys Rev Lett, 2013, 111(17): 173002.
[40] FENG Y. Accessing Long-lived nuclear spin states in chemically equivalent spin systems: theory, simulation, experiment and implication for hyperpolarization[D]. Durham: Duke University, 2014.
[41] MCROBBIE D W, MOORE E A, GRAVESM J, et al. MRI: from picture to proton[M]. New York: Cambridge university Press, 2003.
Preparation of Nuclear Spin Singlet States and Analysis of Influencing Factors on Their Conversion Efficiency and Lifetime
,,WEI Da-xiu,#
Shanghai Key Laboratory of Magnetic Resonance, College of Physics and Materials Science, East China Normal University, Shanghai 200062, China
The long-life nuclear spin singlet states (LLSs) have broad application prospects due to the unique nature of their long lifetime. Herein, in a solution of alanylglycylgcine (AGG), the nuclear spin singlet state of a two-spin system far from the chiral carbon in the structure is prepared. Then, the effects of sample concentration, temperature, radiofrequency (RF) center,-coupling value and magnetic field inhomogeneity on conversion efficiency and lifetime of the LLSs were investigated. The experimental results showed that the conversion efficiency and lifetime of the singlet state were not affected by the sample concentration and magnetic field inhomogeneity, but increased with increasing experimental temperature. The influence of the position of RF center on the singlet state was not obvious when it changed within a small range, but the conversion efficiency and lifetime reduced significantly when the changes were large. Moreover, the singlet state was found to be sensitive to the changes of-coupling value. The conversion efficiency and lifetime reduced significantly with choose of non-accurate-coupling constant.
nuclear spin singlet state, strong-coupling system, conversion efficiency, nuclear magnetic resonance (NMR)
O482.53
A
10.11938/cjmr20192725
2019-03-22;
2019-05-09
上海市自然科學(xué)基金資助項(xiàng)目(16ZR1448300).
* Tel: 021-62233281, E-mail: dxwei@phy.ecnu.edu.cn;
# Tel: 021-62234328, E-mail: yfyao@phy.ecnu.edu.cn.