牛嚴(yán)君 喬玉成 范艷芝
摘? ? 要:系統(tǒng)評(píng)價(jià)加壓訓(xùn)練對(duì)受試者肌肉形態(tài)和功能的影響,為不同人群選擇加壓訓(xùn)練提供參考。方法:以“加壓訓(xùn)練”“血流限制訓(xùn)練”“阻血訓(xùn)練”“KAATSU”“KAATSU Training”“Blood Flow Restriction Training”“Occlusion Training”等為檢索詞在中國(guó)知網(wǎng)、萬(wàn)方醫(yī)學(xué)、讀秀、Web of Science、Pub Med、Elsevier等中英文數(shù)據(jù)庫(kù)中檢索相關(guān)文獻(xiàn),并輔以文獻(xiàn)追蹤的方式,獲取所有有關(guān)加壓訓(xùn)練的隨機(jī)對(duì)照實(shí)驗(yàn),評(píng)估文獻(xiàn)質(zhì)量并從文獻(xiàn)中提取反映加壓訓(xùn)練效果的有關(guān)數(shù)據(jù)。篩選后共納入研究文獻(xiàn)47篇(中文7篇,外文40篇),其中高質(zhì)量文獻(xiàn)40篇,低質(zhì)量文獻(xiàn)7篇,使用Revman5.3軟件對(duì)納入文獻(xiàn)進(jìn)行Meta分析。結(jié)果:1)加壓訓(xùn)練能夠顯著增加受試健康人群的上臂圍度及上臂橫截面積、大腿圍度、大腿橫截面積、股四頭肌橫截面積(P<0.05);加壓訓(xùn)練對(duì)受試運(yùn)動(dòng)員的上臂圍度、大腿圍度及康復(fù)患者的大腿圍度的增加作用明顯(P<0.05)。2)加壓訓(xùn)練對(duì)受試健康人群的屈肘1RM力量、臥推1RM力量、膝關(guān)節(jié)屈曲(伸展)等速力矩、膝伸1RM力量等指標(biāo)的增加效果顯著(P<0.05);對(duì)受試運(yùn)動(dòng)員屈肘1RM力量、臥推1RM力量、膝關(guān)節(jié)屈曲(伸展)等速力矩、深蹲力量有明顯的增加作用(P<0.05);對(duì)受試康復(fù)患者的膝關(guān)節(jié)屈曲(伸展)等速力矩及膝伸1RM力量增加作用明顯(P<0.05)。結(jié)論:加壓訓(xùn)練具有降低受試運(yùn)動(dòng)損傷發(fā)生概率,改善受試者肌肉形態(tài)及功能的作用,并可作為傳統(tǒng)抗阻訓(xùn)練的補(bǔ)充手段適用于康復(fù)患者恢復(fù)肌肉適能、健康人群增強(qiáng)肌力、運(yùn)動(dòng)員提高運(yùn)動(dòng)成績(jī)等多個(gè)方面。建議:加壓訓(xùn)練應(yīng)根據(jù)受試對(duì)象的個(gè)體特征,合理設(shè)置加壓強(qiáng)度、訓(xùn)練強(qiáng)度及訓(xùn)練周期,以保障其運(yùn)動(dòng)過(guò)程中的安全,并達(dá)到預(yù)期效果。
關(guān)鍵詞:Meta分析;加壓訓(xùn)練;Kaatsu訓(xùn)練;血流限制訓(xùn)練;肌肉體積;力量
中圖分類號(hào):G 808.1? ? ? ? ? 學(xué)科代碼:040303? ? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A
Abstract: Objective: To systematically evaluate the effects of KAATSU on the muscle morphology and function of the subjects, and to provide reference for the selection of compression training methods for different groups. Methods: use “KAATSU”, “KAATSU Training”, “Blood Flow Restriction Training”,“Occlusion Training”, etc. as search terms in CNKI, Wanfang Medicine, Reading Show, Web of Science, Pub Med, Elsevier, etc. Retrieve relevant literature, supplemented by literature tracking method, obtain all randomized controlled experiments on blood flow restriction training, evaluate the quality of the literature and extract relevant data from the literature reflecting the effect of KAATSU training. After screening, 47 research papers (7 Chinese and 40 foreign languages) were included, including 40 high-quality literatures and 7 low-quality literatures. Meta-analysis was performed on the included literature using Revman5.3 software. The results showed that 1) KAATSU training can significantly improve the upper arm circumference and upper arm cross-sectional area, thigh circumference, thigh cross-sectional area, and quadriceps cross-sectional area of ordinary healthy people (P<0.05); The upper arm circumference, thigh circumference and the thigh circumference of the rehabilitation patients were significantly improved (P<0.05). 2) The effect of KAATSU training on the elbow flexion 1RM strength, bench press 1RM strength, knee flexion (extension) constant velocity moment, knee extension 1RM strength and other indicators in the general healthy population was significant (P<0.05); Elbow 1RM strength, bench press 1RM strength, knee flexion (extension) constant velocity moment, deep squat strength have obvious lifting effect (P<0.05); knee joint flexion (extension) constant velocity moment and knee extension 1RM for rehabilitation patients The effect of strength improvement is obvious (P<0.05). Research conclusion: KAATSU training can reduce the probability of sports injury, improve the muscle shape and function of the subject, and can be used as a supplement to traditional resistance training. It is suitable for rehabilitation patients to restore muscle fitness, and general healthy people to enhance muscle strength, athletes improve their athletic performance and other aspects. During the KAATSU training, the compression strength, training intensity and training period should be reasonably set according to the group characteristics of the subjects to ensure the safety during the exercise and achieve the expected results.
Keywords:Meta-analysis; KAATSU; Kaatsu Training; blood flow restriction training; muscle volume; strength
肌肉作為人體運(yùn)動(dòng)的動(dòng)力器官,不僅是人體運(yùn)動(dòng)系統(tǒng)中重要的組成部分,也是完成各項(xiàng)動(dòng)作的基本人體結(jié)構(gòu)之一。而肌肉體積不僅是影響肌肉力量大小的重要因素,也是決定人體各項(xiàng)運(yùn)動(dòng)能力的關(guān)鍵要素。人在30歲以后,其肌肉形態(tài)和功能可能隨著增齡而逐漸衰退[1],如果不加以訓(xùn)練,可能出現(xiàn)增齡性肌肉萎縮、力量下降、跌倒風(fēng)險(xiǎn)增加等一系列問(wèn)題;因此,如何通過(guò)力量練習(xí)維持肌肉的形態(tài)和功能一直是運(yùn)動(dòng)醫(yī)學(xué)界關(guān)注的熱點(diǎn)話題[2]。美國(guó)運(yùn)動(dòng)醫(yī)學(xué)學(xué)會(huì)(ACSM)曾經(jīng)提出:“建議使用大負(fù)荷(≥70%1RM)的抗阻訓(xùn)練來(lái)有效促進(jìn)肌肉體積增大,力量增加”[3];但該種訓(xùn)練方法存在一定的弊端,例如大強(qiáng)度負(fù)荷練習(xí)會(huì)使運(yùn)動(dòng)損傷的發(fā)生概率增加,而且對(duì)于康復(fù)治療患者來(lái)說(shuō),在恢復(fù)初期并不適合進(jìn)行大強(qiáng)度的抗阻練習(xí),否則可能增加其再次受傷的風(fēng)險(xiǎn)[4],而低強(qiáng)度力竭性運(yùn)動(dòng)雖然也能夠有效提升肌肉力量并增肌,但對(duì)于老年人及康復(fù)患者來(lái)說(shuō)易引起主觀不適,如果疲勞恢復(fù)時(shí)間較長(zhǎng),嚴(yán)重者可導(dǎo)致紅細(xì)胞流變異常及紅細(xì)胞變形能力下降,從而增加組織損傷或損傷加重的風(fēng)險(xiǎn)[5]。而新興的加壓訓(xùn)練方法恰好避免了這些問(wèn)題。
加壓訓(xùn)練(Kaatsu訓(xùn)練),又被稱為血流限制訓(xùn)練(blood glow restriction training,BFRT),是指在運(yùn)動(dòng)過(guò)程中通過(guò)佩戴加壓設(shè)施達(dá)到抗阻目的的一種新訓(xùn)練方法,其原理是通過(guò)加壓帶限制血液流向工作肌肉,刺激肌肉產(chǎn)生一系列反應(yīng),進(jìn)而達(dá)到增加肌肉體積、提升肌肉力量的目的。其優(yōu)點(diǎn)在于通過(guò)小強(qiáng)度抗阻練習(xí)配合加壓的方式即能達(dá)到大強(qiáng)度負(fù)荷訓(xùn)練的同等效果,進(jìn)而降低訓(xùn)練帶來(lái)的損傷風(fēng)險(xiǎn),因此倍受運(yùn)動(dòng)訓(xùn)練和醫(yī)療康復(fù)領(lǐng)域的追捧。然而,目前學(xué)界對(duì)其實(shí)際訓(xùn)練效果仍存在較大爭(zhēng)議,對(duì)其訓(xùn)練機(jī)制還存在一些質(zhì)疑。例如有研究者認(rèn)為,加壓訓(xùn)練由于其訓(xùn)練強(qiáng)度大多數(shù)在20%~50%1RM,該強(qiáng)度能否對(duì)肌肉產(chǎn)生足夠的有效刺激,能否促使肌纖維增粗,收縮力量增大,是一個(gè)必須明確的問(wèn)題。還有研究者指出,加壓訓(xùn)練應(yīng)用于臨床康復(fù)時(shí),由于局部血流受到限制,是否會(huì)對(duì)患者產(chǎn)生其他不利的影響,也是一個(gè)值得研究的問(wèn)題。此外,加壓訓(xùn)練對(duì)肌肉形態(tài)學(xué)指標(biāo)中的肌肉發(fā)達(dá)程度、肌纖維粗細(xì)、生理橫截面積、肢體圍度等,以及功能指標(biāo)中的絕對(duì)肌力、爆發(fā)力、耐力等指標(biāo)的影響程度如何,能否帶來(lái)同等的訓(xùn)練效果,對(duì)于不同的人群是否會(huì)產(chǎn)生相同的訓(xùn)練效果,各研究結(jié)果不一?;诖?,本研究將采用系統(tǒng)評(píng)價(jià)的方法,對(duì)國(guó)內(nèi)外有關(guān)加壓訓(xùn)練與肌肉形態(tài)和功能影響的實(shí)驗(yàn)研究報(bào)告進(jìn)行系統(tǒng)分析,明確加壓訓(xùn)練對(duì)于不同受試人群、不同效應(yīng)指標(biāo)影響的確切效果,其目的是為不同人群選擇加壓訓(xùn)練提供參考。
1? ?資料來(lái)源與方法
1.1? 文獻(xiàn)檢索策略
以“加壓訓(xùn)練”“血流限制訓(xùn)練”“阻血訓(xùn)練”“KAATSU”“KAATSU Training”“Blood Flow Restriction Training”“Occlusion Training”等為檢索詞,采用單獨(dú)和互相組合,并輔以文獻(xiàn)追蹤的方式,在中國(guó)知網(wǎng)、萬(wàn)方醫(yī)學(xué)、讀秀、維普期刊等中文文獻(xiàn)檢索平臺(tái)及Web of Science核心合集數(shù)據(jù)庫(kù)、Pub Med、Elsevier等外文數(shù)據(jù)庫(kù)中檢索相關(guān)中文及外文文獻(xiàn),檢索截止日期為2019年6月30日。
1.2? 納入標(biāo)準(zhǔn)
1)研究設(shè)計(jì)類型必須為隨機(jī)對(duì)照實(shí)驗(yàn)(RCT)。實(shí)驗(yàn)設(shè)計(jì)中對(duì)實(shí)驗(yàn)類型有明確的表述并且有明確的分組。實(shí)驗(yàn)組與對(duì)照組在實(shí)驗(yàn)前具有可比性,即樣本在人群類型、年齡、性別等方面未見(jiàn)顯著性差異。
2)受試者包括健康成年人、中老年人、大學(xué)生、康復(fù)患者、運(yùn)動(dòng)員等。
3)干預(yù)措施為加壓訓(xùn)練/血流限制訓(xùn)練。實(shí)驗(yàn)設(shè)計(jì)中明確描述加壓部位、加壓方式及加壓后訓(xùn)練的強(qiáng)度。
4)研究文獻(xiàn)中能夠直接提供實(shí)驗(yàn)組與對(duì)照組在干預(yù)前、干預(yù)后的效應(yīng)指標(biāo)及具體數(shù)據(jù)。
1.3? 排除標(biāo)準(zhǔn)
1)會(huì)議論文、綜述文獻(xiàn)、無(wú)數(shù)據(jù)文獻(xiàn)及重復(fù)文獻(xiàn);
2)非隨機(jī)實(shí)驗(yàn)、自身對(duì)照實(shí)驗(yàn)、隨機(jī)交叉實(shí)驗(yàn);
3)與納入研究的人群不相符的文獻(xiàn)(例如動(dòng)物實(shí)驗(yàn)等);
4)無(wú)詳細(xì)數(shù)據(jù)及實(shí)驗(yàn)結(jié)果未使用均值±標(biāo)準(zhǔn)差(M±SD)表示的文獻(xiàn)。
文獻(xiàn)篩選流程如圖1所示。
1.4? 文獻(xiàn)質(zhì)量評(píng)估
由2名研究人員分別單獨(dú)按照統(tǒng)一的標(biāo)準(zhǔn)對(duì)納入的文獻(xiàn)進(jìn)行文獻(xiàn)質(zhì)量評(píng)估,評(píng)估內(nèi)容包括隨機(jī)的方法、盲法及具體方案、實(shí)驗(yàn)過(guò)程中樣本的退出及細(xì)節(jié)等。根據(jù)Jadad[6]制定的評(píng)分細(xì)則進(jìn)行評(píng)價(jià)。該評(píng)分細(xì)則總分為5分(其中:文獻(xiàn)中是否將實(shí)驗(yàn)設(shè)計(jì)明確描述為隨機(jī)對(duì)照實(shí)驗(yàn),是否詳細(xì)介紹了隨機(jī)的方法,實(shí)驗(yàn)過(guò)程中是否明確說(shuō)明使用了盲法并進(jìn)行了詳細(xì)描述,文獻(xiàn)中是否明確描述了所有樣本均完成了研究,對(duì)于參與研究但未完成者是否對(duì)退出的原因進(jìn)行了詳細(xì)描述,各計(jì)1分)。1~2分為低質(zhì)量文獻(xiàn),3~5分為高質(zhì)量文獻(xiàn)。本研究納入的47篇文獻(xiàn)的研究設(shè)計(jì)均為隨機(jī)對(duì)照實(shí)驗(yàn)。根據(jù)評(píng)分標(biāo)準(zhǔn),高質(zhì)量文獻(xiàn)40篇,低質(zhì)量文獻(xiàn)7篇。
1.5? 觀察指標(biāo)
觀察指標(biāo)主要包括2大類:1)反映肌肉形態(tài)的指標(biāo),例如大腿圍度、上臂圍度等圍度指標(biāo),通過(guò)超聲影像或磁共振成像(MRI)測(cè)量獲取的大腿、上臂及肌肉的橫截面積(cross-sectional area,CSA)等。2)反映肌肉功能的指標(biāo),例如:膝伸1RM力量、屈肘1RM力量、膝關(guān)節(jié)屈(伸)等速力矩、深蹲成績(jī)等。
1.6? 數(shù)據(jù)處理
本研究使用Rev Man5.3軟件對(duì)獲取的數(shù)據(jù)進(jìn)行分析。選取數(shù)據(jù)的效應(yīng)指標(biāo)以均值±標(biāo)準(zhǔn)差(M±SD)表示。數(shù)據(jù)處理過(guò)程主要包括:異質(zhì)性檢驗(yàn)、森林圖的繪制、Meta分析、漏斗圖分析及敏感性分析。當(dāng)統(tǒng)計(jì)量I2<50%時(shí),表明研究間異質(zhì)性較低,采用固定效應(yīng)模型分析;當(dāng)I2≥50%時(shí),表明研究之間存在較大異質(zhì)性,采用隨機(jī)效應(yīng)模型進(jìn)行分析。對(duì)于計(jì)數(shù)型文獻(xiàn)資料使用比值比(OR)分析;對(duì)于計(jì)量文獻(xiàn)資料,使用標(biāo)準(zhǔn)化均數(shù)差(SMD)和95%置信區(qū)間分析。對(duì)于干預(yù)措施及效應(yīng)指標(biāo)存在2篇及以上相同的均進(jìn)行Meta分析,對(duì)于沒(méi)有重合的單篇文獻(xiàn),進(jìn)行描述性分析[7]。
根據(jù)受試對(duì)象的不同進(jìn)行亞組分析,結(jié)果顯示:加壓訓(xùn)練對(duì)上述受試者膝關(guān)節(jié)伸展等速力矩均有明顯的增加作用(見(jiàn)表7)。
2.2.4? 加壓訓(xùn)練對(duì)受試者膝關(guān)節(jié)屈曲等速力矩的影響
本組共有13篇文獻(xiàn)對(duì)膝關(guān)節(jié)屈曲等速力矩(反映股后肌群的力量)進(jìn)行了測(cè)量,共納入研究對(duì)象255人(實(shí)驗(yàn)組132人,對(duì)照組123人),該組受試對(duì)象包括健康人群、運(yùn)動(dòng)員及康復(fù)患者。異質(zhì)性檢驗(yàn)顯示:I2=51%,P=0.02,異質(zhì)性較高。因此,采用隨機(jī)效應(yīng)模型進(jìn)行分析。Meta分析結(jié)果顯示:SMD-RE為12.94,95%CI為[8.22,17.66](見(jiàn)表5),提示:加壓訓(xùn)練對(duì)上述受試者膝關(guān)節(jié)屈曲等速力矩有明顯的增加作用(P<0.000 01)。
對(duì)不同亞組進(jìn)行分析表明:加壓訓(xùn)練對(duì)上述受試者膝關(guān)節(jié)屈曲等速力矩均有明顯的增加作用(見(jiàn)表8)。
2.2.5? 加壓訓(xùn)練對(duì)受試者膝伸1RM力量的影響
膝伸1RM力量主要反映的是股四頭肌的最大絕對(duì)力量,一般采用具有高靈敏度的腿部測(cè)力裝置進(jìn)行測(cè)量。本組共有14篇文獻(xiàn)涉及膝伸1RM力量指標(biāo),共計(jì)納入受試對(duì)象363人(實(shí)驗(yàn)組182人,對(duì)照組181人),包括健康人群及康復(fù)患者。異質(zhì)性檢驗(yàn)顯示:I2=46%,P=0.03,異質(zhì)性較高,采用隨機(jī)效應(yīng)模型進(jìn)行分析。Meta分析結(jié)果(見(jiàn)表5)顯示:SMD-RE為8.08,95%CI為[3.14,13.03],提示:加壓訓(xùn)練具有顯著增加上述受試者膝伸1RM力量的作用(P=0.005)。
根據(jù)受試對(duì)象不同進(jìn)行亞組分析后顯示:加壓訓(xùn)練對(duì)上述受試者膝伸1RM力量均有顯著增加作用(見(jiàn)表9)。
2.2.6? 加壓訓(xùn)練對(duì)受試者深蹲1RM力量的影響
深蹲1RM力量選取的是受試對(duì)象單次深蹲的最好成績(jī),反映了受試者的整體肌肉力量及功能。本組共有6篇文獻(xiàn)涉及深蹲1RM力量指標(biāo),共納入受試對(duì)象130人(實(shí)驗(yàn)組67人,對(duì)照組63人),受試對(duì)象均為運(yùn)動(dòng)員。異質(zhì)性檢驗(yàn)顯示無(wú)異質(zhì)性:I2=0%,P=0.98,采用固定效應(yīng)模型進(jìn)行分析。Meta分析結(jié)果(見(jiàn)表5)顯示:SMD-RE為9.09,95%CI為[0.59,17.58],提示:加壓訓(xùn)練具有顯著增加上述受試者深蹲1RM力量的作用(P=0.04)。
3? ?研究文獻(xiàn)偏倚與敏感性評(píng)估
3.1? 文獻(xiàn)偏倚評(píng)估
以受試者大腿圍度、膝伸1RM力量為評(píng)價(jià)指標(biāo)繪制倒漏斗圖評(píng)估研究偏倚。結(jié)果顯示:2指標(biāo)所呈現(xiàn)的漏斗圖均基本對(duì)稱,表明本研究納入的文獻(xiàn)不存在明顯的發(fā)表偏倚(如圖2所示)。
3.2? 文獻(xiàn)敏感性評(píng)估
對(duì)納入的47篇文獻(xiàn)進(jìn)行敏感性評(píng)估,采用改變分析模型、效應(yīng)量等方法對(duì)文獻(xiàn)進(jìn)行重復(fù)Meta分析。結(jié)果顯示:其數(shù)值無(wú)明顯改變,表明上述Meta分析結(jié)果可信。
4? ?討論
4.1? 加壓訓(xùn)練的作用機(jī)制與效果
4.1.1? 加壓訓(xùn)練改善受試者肌肉形態(tài)的作用機(jī)制
關(guān)于加壓訓(xùn)練增大肌肉體積及增加肌肉量的作用機(jī)制,目前說(shuō)法不一。一些學(xué)者認(rèn)為,在加壓條件下對(duì)血流的限制引起目標(biāo)肌肉缺氧,可能是導(dǎo)致肌肉肥大的生理機(jī)制之一[54]。Loenneke等[56-57]及Yudai等[58]認(rèn)為,加壓訓(xùn)練產(chǎn)生的肌肉肥大效果與訓(xùn)練所導(dǎo)致的生長(zhǎng)激素(GH)分泌急劇升高密切相關(guān)。他們發(fā)現(xiàn)在急性加壓訓(xùn)練后,血漿GH濃度能夠提高至靜息狀態(tài)時(shí)的200多倍,為加壓訓(xùn)練影響肌肉肥大的機(jī)制提供了佐證。此外,還有部分研究者認(rèn)為,肌肉在缺血狀態(tài)下能夠募集更多的肌纖維,增強(qiáng)壓力物質(zhì)的代謝,也刺激了GH的釋放,是加壓訓(xùn)練能夠增大肌肉體積及肌肉力量的共同機(jī)制[59-60]。但也有不少學(xué)者對(duì)此持否定的態(tài)度:有研究者[61-63]認(rèn)為,加壓訓(xùn)練后所產(chǎn)生的肌肉肥大,有可能與加壓訓(xùn)練所導(dǎo)致的肌細(xì)胞的腫脹有關(guān),而這一觀點(diǎn)目前已得到影像學(xué)研究的支持;Yasuda等[53]采用核磁共振成像方法對(duì)6周加壓訓(xùn)練后實(shí)驗(yàn)對(duì)象的肌肉厚度及肌肉橫截面積進(jìn)行測(cè)量后發(fā)現(xiàn),導(dǎo)致肌肉肥大的最主要原因是肌細(xì)胞腫脹。究其原因,血流限制可能導(dǎo)致了靜脈血流量減少,使肢體遠(yuǎn)端出現(xiàn)了靜脈池,進(jìn)而誘發(fā)了肌細(xì)胞體積增大及肌肉橫截面積增加。另外,有研究認(rèn)為,衛(wèi)星細(xì)胞能夠促進(jìn)肌肉的生長(zhǎng)和修復(fù),而肌肉生長(zhǎng)抑制素則能夠通過(guò)上調(diào)Cdk抑制劑p21,并降低衛(wèi)星細(xì)胞中Cdk2蛋白的水平和活性,使衛(wèi)星細(xì)胞處于靜止?fàn)顟B(tài)[64],因此,肌肉生長(zhǎng)抑制素是骨骼肌生長(zhǎng)的有效負(fù)調(diào)節(jié)因子[65]。進(jìn)行加壓訓(xùn)練時(shí),血流限制導(dǎo)致缺氧誘導(dǎo)因子的表達(dá)水平提高,并降低了骨骼肌中肌肉生長(zhǎng)抑制素m-RNA的表達(dá)水平,這一過(guò)程使得肌肉生長(zhǎng)抑制素水平降低,促使更多的衛(wèi)星細(xì)胞激活[66],進(jìn)而促進(jìn)肌肉的生長(zhǎng)和修復(fù)。Laurentino等[67]進(jìn)行的一項(xiàng)隨機(jī)對(duì)照實(shí)驗(yàn)研究也證明了這一觀點(diǎn),相比對(duì)照組的傳統(tǒng)抗阻運(yùn)動(dòng),低強(qiáng)度阻力運(yùn)動(dòng)結(jié)合加壓的訓(xùn)練方式的實(shí)驗(yàn)組受試者肌肉生長(zhǎng)抑制素的m-RNA表達(dá)降低了45%。因此,加壓訓(xùn)練通過(guò)降低抑制肌肉生長(zhǎng)蛋白的表達(dá),促使蛋白質(zhì)平衡趨向于正合成,這也是加壓訓(xùn)練引起肌肉肥大的重要機(jī)制之一。
筆者認(rèn)為,加壓訓(xùn)練最重要的特征是加壓訓(xùn)練后局部肌肉組織缺氧、代謝產(chǎn)物堆積,這與大強(qiáng)度抗阻訓(xùn)練時(shí)產(chǎn)生的肌肉組織缺氧、代謝產(chǎn)物堆積狀態(tài)極為相似,而這種局部缺氧狀態(tài)及代謝產(chǎn)物堆積引發(fā)的神經(jīng)-內(nèi)分泌-免疫網(wǎng)絡(luò)系統(tǒng)的適應(yīng)性調(diào)節(jié)可能是肌肉體積及肌肉量增加的重要機(jī)制。
4.1.2? 加壓訓(xùn)練提升受試者肌肉功能的作用機(jī)制
加壓訓(xùn)練對(duì)肌肉功能產(chǎn)生的影響效果主要表現(xiàn)在肌肉力量的提升方面。有研究發(fā)現(xiàn),加壓訓(xùn)練不僅能夠降低肌肉廢退性萎縮的程度,而且可使不同年齡組受試者肌肉力量恢復(fù)與增加[9,28,68-70]。
通常決定個(gè)體肌肉力量的主要因素有肌肉量、神經(jīng)系統(tǒng)的調(diào)控能力、肌肉中ATP酶類活性等。上述分析表明,加壓訓(xùn)練對(duì)于個(gè)體的肌肉量有明顯的增大作用。同時(shí),加壓訓(xùn)練在對(duì)個(gè)體神經(jīng)系統(tǒng)調(diào)控能力的影響方面,主要表現(xiàn)為加壓狀態(tài)下神經(jīng)系統(tǒng)所調(diào)動(dòng)的肌纖維數(shù)量顯著增加。早期研究表明,運(yùn)動(dòng)單位閾值的高低除了與肌肉收縮的力量和速度存在相關(guān)性以外,與運(yùn)動(dòng)中的氧濃度也存在關(guān)聯(lián)[71-72]。在加壓狀態(tài)下,由于血液中氧含量降低、代謝產(chǎn)物累積增多,使得傳入神經(jīng)的代謝刺激逐漸增強(qiáng)[73]。同時(shí)由于肌纖維的募集原則,肌肉在運(yùn)動(dòng)中首先募集的是慢肌纖維,而后隨著運(yùn)動(dòng)強(qiáng)度增大而增加對(duì)高閾值快肌纖維的募集,這可能就是加壓訓(xùn)練能夠引起肌肉力量增加的機(jī)制之一[74]。
此外,肌肉中的酶活性對(duì)肌肉力量的影響是通過(guò)酶類物質(zhì)促進(jìn)肌肉的生長(zhǎng)來(lái)實(shí)現(xiàn)的。Bodine等[75]的研究表明,在運(yùn)動(dòng)過(guò)程中蛋白激酶β能夠被IGF-1 激活,進(jìn)而誘導(dǎo)mTOR 信號(hào)通路刺激蛋白質(zhì)轉(zhuǎn)譯,在促進(jìn)肌肉的生長(zhǎng)方面發(fā)揮著重要的作用。在運(yùn)動(dòng)過(guò)程中,細(xì)胞內(nèi)Ca離子濃度的逐漸升高能夠使一氧化氮合酶(NOS)逐漸激活以產(chǎn)生一氧化氮(NO),一氧化氮可直接激活mTOR 通路并促進(jìn)蛋白質(zhì)合成[76];同時(shí)通過(guò)合成肝生長(zhǎng)因子(HGF)激活衛(wèi)星細(xì)胞,使其增殖后不斷分化,形成新的肌纖維或融合現(xiàn)有肌纖維,進(jìn)而使肌纖維肥大[77]。Larkin等[78]在加壓訓(xùn)練時(shí)觀察到一氧化氮合酶的表達(dá)有顯著增加,因此,認(rèn)為加壓訓(xùn)練對(duì)肌纖維的增加有顯著的促進(jìn)作用。此外,加壓訓(xùn)練狀態(tài)下,肌肉處于缺血、缺氧的狀態(tài),代謝產(chǎn)物累積增多,熱休克蛋白的活性也會(huì)發(fā)生相應(yīng)改變。熱休克蛋白在正常狀態(tài)下有助于蛋白質(zhì)的組裝及轉(zhuǎn)運(yùn),在缺氧、缺血的狀態(tài)下被誘導(dǎo),產(chǎn)生抑制肌肉萎縮信號(hào)通路的作用[79],這一特點(diǎn)能夠使肌肉在收縮較少的情況下,防止蛋白質(zhì)降解。因此,熱休克蛋白的增加也可能是加壓訓(xùn)練引起肌肉肥大及預(yù)防肌肉萎縮的機(jī)制之一。
4.2? 加壓訓(xùn)練周期的設(shè)定
有研究表明,在3 d急性訓(xùn)練之后,加壓訓(xùn)練組與傳統(tǒng)訓(xùn)練組的肌力均有顯著提升[80],但在組間比較中,加壓訓(xùn)練組除了在降低安靜心率方面有顯著效果外[81],在肌肉體積及力量方面與對(duì)照組比較未見(jiàn)顯著差異。另有研究發(fā)現(xiàn),急性加壓訓(xùn)練雖然增強(qiáng)了肌肉的激活程度,但對(duì)于肌肉功能的影響,低強(qiáng)度結(jié)合加壓訓(xùn)練的方式甚至還不如高強(qiáng)度抗阻訓(xùn)練效果顯著。而隨著訓(xùn)練周期的延長(zhǎng),加壓訓(xùn)練的效果會(huì)逐漸顯現(xiàn)出來(lái)[82]。例如,Abe等[16]的研究發(fā)現(xiàn),男性田徑運(yùn)動(dòng)員在進(jìn)行8 d的低強(qiáng)度結(jié)合加壓訓(xùn)練后,相比對(duì)照組,其大腿橫截面積增加了4.5%,并且短跑成績(jī)也有顯著改善,但跳躍能力未見(jiàn)明顯改善。橄欖球運(yùn)動(dòng)員在進(jìn)行4周的加壓訓(xùn)練之后[52],實(shí)驗(yàn)組臥推力及深蹲1RM力量分別增加了7.0%和8.0%,胸圍增長(zhǎng)了3%,上臂圍度也有明顯增粗。在康復(fù)患者當(dāng)中,加壓訓(xùn)練的周期為2周至36周不等。Tennent等[83]發(fā)現(xiàn),膝關(guān)節(jié)術(shù)后康復(fù)患者在術(shù)后開(kāi)始進(jìn)行康復(fù)練習(xí),每日2次,2周之后便會(huì)看到明顯的效果。劉莉等[9]的研究發(fā)現(xiàn),膝關(guān)節(jié)鏡術(shù)后患者在術(shù)后15 d進(jìn)行加壓訓(xùn)練,2周之后康復(fù)患者的大腿圍度、步行速度及伸膝肌力等各項(xiàng)指標(biāo)與對(duì)照組比較已見(jiàn)明顯差異,可認(rèn)為加壓訓(xùn)練能夠加速膝關(guān)節(jié)功能的恢復(fù)。對(duì)于健康人群來(lái)說(shuō),為期2周的加壓訓(xùn)練便能顯著增加受試者的大腿維度及肌肉力量 [11,31]。
以往研究顯示,加壓訓(xùn)練相比傳統(tǒng)抗阻訓(xùn)練在提升肌肉力量、增大肌肉體積等方面更加高效,但在未來(lái)的訓(xùn)練實(shí)踐當(dāng)中,仍有許多問(wèn)題需要注意。在加壓訓(xùn)練時(shí),應(yīng)當(dāng)合理設(shè)置加壓方式及強(qiáng)度,避免出現(xiàn)安全性問(wèn)題[84]。研究發(fā)現(xiàn),大約10%的最大強(qiáng)度是刺激肌肉產(chǎn)生肥大的最小強(qiáng)度[20],這與肌肉激活程度和肌肉細(xì)胞腫脹程度密切相關(guān)。而在加壓訓(xùn)練后肢體和軀干肌肉得到適應(yīng),低強(qiáng)度(20%~30%的1RM)阻力訓(xùn)練結(jié)合加壓訓(xùn)練所引起肌肉肥大及肌肉力量增強(qiáng)的效果最優(yōu)。
5? ?結(jié)論
1)加壓訓(xùn)練能夠顯著增加受試健康人群的上臂圍度及上臂橫截面積、大腿圍度、大腿橫截面積、股四頭肌橫截面積,對(duì)受試運(yùn)動(dòng)員的上臂圍度、大腿圍度及受試康復(fù)患者的大腿圍度的增加作用明顯,在改善肌肉形態(tài)方面具有良好的效果。
2)加壓訓(xùn)練能夠增加受試健康人群的屈肘1RM力量、臥推1RM力量、膝關(guān)節(jié)屈曲(伸展)等速力矩、膝伸1RM力量,能增加受試運(yùn)動(dòng)員屈肘1RM力量、臥推1RM力量、膝關(guān)節(jié)屈曲(伸展)等速力矩、深蹲力量,對(duì)受試康復(fù)患者的膝關(guān)節(jié)屈曲(伸展)等速力矩及膝伸1RM力量增加作用明顯。
3)加壓訓(xùn)練可以作為傳統(tǒng)抗阻訓(xùn)練的補(bǔ)充,可應(yīng)用于受試康復(fù)患者肌力恢復(fù)、受試健康人群提高肌適能及受試運(yùn)動(dòng)員增加肌肉力量和提高運(yùn)動(dòng)成績(jī)等多個(gè)領(lǐng)域。在進(jìn)行加壓訓(xùn)練時(shí),應(yīng)當(dāng)根據(jù)受試對(duì)象的個(gè)體特征,合理設(shè)置加壓強(qiáng)度、訓(xùn)練強(qiáng)度及訓(xùn)練周期,以保障其運(yùn)動(dòng)過(guò)程中的安全,并達(dá)到預(yù)期效果。
參考文獻(xiàn):
[1]? CRUZ-JENTOFT A J , BAEYENS J P , BAUER J M , et al. Sarcopenia: european consensus on definition and diagnosis: report of the European working group on sarcopenia in older people[J]. Age & Ageing, 2010, 39(4): 412.
[2]? 黎涌明,王然,劉陽(yáng),等. 2019年中國(guó)健身趨勢(shì):針對(duì)國(guó)內(nèi)健身行業(yè)從業(yè)人員的網(wǎng)絡(luò)問(wèn)卷調(diào)查[J]. 上海體育學(xué)院學(xué)報(bào),2019,43(1):90.
[3]? PESCATELLO L S , THOMPSON W R , GORDON N F. A preview of acsms guidelines for exercise testing and prescription, eighth edition[J]. Acsms Health & Fitness Journal, 2009, 13(4): 23.
[4]? 魏佳,李博,楊威,等.血流限制訓(xùn)練的應(yīng)用效果與作用機(jī)制[J].體育科學(xué),2019,39(4):71.
[5]? 王曉偉,曹雪濱.力竭性運(yùn)動(dòng)對(duì)心臟影響的研究進(jìn)展[J].醫(yī)學(xué)研究與教育,2012,29(2):60.
[6]? JADAD A. Assessing the quality of reports of randomized clinical trials : is blinding necessary?[J]. Controlled Clinical Trials, 1996, 17(1): 1.
[7]? 牛嚴(yán)君,喬玉成.核心力量訓(xùn)練效果的系統(tǒng)評(píng)價(jià)[J].首都體育學(xué)院學(xué)報(bào),2018,30(4):352.
[8]? 李志遠(yuǎn),趙之光,王明波,等.4周加壓訓(xùn)練對(duì)男子手球運(yùn)動(dòng)員身體成分和最大力量的影響[J].中國(guó)體育科技,2019,55(5):37.
[9]? 劉莉,李靜,趙冬梅,等.血流限制訓(xùn)練在膝關(guān)節(jié)鏡術(shù)后患者康復(fù)訓(xùn)練中的應(yīng)用[J].護(hù)理學(xué)雜志,2017,32(24):82.
[10]? 劉玉琳,葉瓊,劉昊為.加壓結(jié)合抗阻訓(xùn)練對(duì)糖耐量減低人群骨密度、胰島素敏感性、肌力、激素分泌影響研究[J].中國(guó)骨質(zhì)疏松雜志,2018,24(11):1451.
[11]? 盛菁菁,魏文哲,孫科,等.加壓狀態(tài)下慢速下坡步行的生理負(fù)荷與增肌效果研究[J].中國(guó)體育科技,2019,55(3):13.
[12]? 王菲.有關(guān)加壓抗阻訓(xùn)練對(duì)心血管系統(tǒng)影響的Meta分析及實(shí)證研究[D].上海:上海體育學(xué)院,2015.
[13]? 王明波,李志遠(yuǎn),魏文哲,等.高水平男子手球運(yùn)動(dòng)員下肢加壓力量訓(xùn)練效果實(shí)證研究[J].中國(guó)體育科技,2019,55(5):30.
[14]葉瓊.加壓訓(xùn)練搭配振動(dòng)訓(xùn)練對(duì)老年男性骨質(zhì)代謝和骨密度影響[J].中國(guó)骨質(zhì)疏松雜志,2018,24(3):290.
[15]? ABE T, YASUDA T, MIDORIKAWA T, et al.Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily “KAATSU” resistance training[J]. International Journal of KAATSU Training Research, 2005, 1(1): 6.
[16]? ABE T, KAWAMOTO K, YASUDA T, et al. Eight days KAATSU-resistance training improved sprint but not jump performance in collegiate male track and field athletes[J]. International Journal of KAATSU Training Research, 2005, 1(1): 19.
[17]? ABE T, KEARNS C F , SATO Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training[J]. Journal of Applied Physiology, 2006, 100(5): 1460.
[18]? ABE T, KEARNS C F, FUJITA S, et al. Skeletal muscle size and strength are increased following walk training with restricted leg muscle blood flow: implications for training duration and frequency[J]. International Journal of KAATSU Training Research, 2009, 5(1): 9.
[19]? ABE T, SAKAMAKI M, FUJITA S, et al. Effects of low-intensity walk training with restricted leg blood flow on muscle strength and aerobic capacity in older adults[J]. Journal of Geriatric Physical Therapy, 2009, 33(1): 34.
[20]? ABE T, FUJITA S, NAKAJIMA T, et al. Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2max in young men[J]. Journal of Sports Science & Medicine, 2010, 9(3): 452.
[21]? BEEKLEY M D, SATO Y, ABE T. KAATSU-walk training increases serum bone-specific alkaline phosphatase in young men[J]. International Journal of KAATSU Training Research, 2005, 1(2): 77.
[22]? BJ?覫RNSEN T, WERNBOM M , KIRKETEIG A, et al. Type 1 muscle fiber hypertrophy after blood flow-restricted training in powerlifters[J]. Medicine & Science in Sports & Exercise, 2019, 51(2): 288.
[23]? FAHS C A, LOENNEKE J P , THIEBAUD R S, et al. Muscular adaptations to fatiguing exercise with and without blood flow restriction[J]. Clinical Physiology and Functional Imaging, 2014, 35(3): 167.
[24]? FARUP J, PAOLI F, BJERG K, et al. Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy[J]. Scandinavian Journal of Medicine & Science in Sports, 2015, 25(6): 10.
[25]? FUJITA T, BRECHUE W F, KURITA K, et al. Increased muscle volume and strength following six days of low-intensity resistance training with restricted muscle blood flow[J]. International Journal of KAATSU Training Research, 2008, 4(1): 1.
[26]? GILES L, WEBSTER K E, MCCLELLAND J, et al. Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial[J]. British Journal of Sports Medicine, 2017, 20(23): 100.
[27]? GODAWA T M, CREDEUR D P, WELSCH M A. Influence of compressive gear on powerlifting performance[J].Journal of Strength and Conditioning Research, 2012, 26(5): 1274.
[28]? HARPER S, ROBERTS L, LAYNE A, et al. Blood-flow restriction resistance exercise for older adults with knee osteoarthritis: a pilot randomized clinical trial[J]. Journal of Clinical Medicine, 2019, 8(2): 265.
[29]? KERAMIDAS M E, KOUNALAKIS S N, GELADAS N D. The effect of interval training combined with thigh cuffs pressure on maximal and submaximal exercise performance[J]. Clinical Physiology and Functional Imaging, 2011, 32(3): 205.
[30]? KIM D , SINGH H , LOENNEKE J P , et al. Comparative effects of vigorous-intensity and low-intensity blood flow restricted cycle training and detraining on muscle mass, strength, and aerobic capacity[J]. Journal of Strength and Conditioning Research, 2016, 30(5): 1453.
[31]? KUBOTA A, SAKURABA K, SAWAKI K, et al. Prevention of disuse muscular weakness by restriction of blood flow[J]. Medicine & Science in Sports & Exercise, 2008, 40(3): 529.
[32]? LAURENTINO G, UGRINOWITSCH C, AIHARA A, et al.Effects of strength training and vascular occlusion[J]. International Journal of Sports Medicine, 2008, 29(8): 664.
[33]? LETIERI R V, TEIXEIRA A M, FURTADO G E, et al. Effect of 16 weeks of resistance exercise and detraining comparing two methods of blood flow restriction in muscle strength of healthy older women: a randomized controlled trial[J]. Experimental Gerontology, 2018, 114(10): 78.
[34]? LIXANDR?魨O M E, UGRINOWITSCH C, LAURENTINO G. Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction[J]. European Journal of Applied Physiology, 2015, 115(12): 2471.
[35]? LUEBBERS P E , FRY A C , KRILEY L M , et al. The effects of a 7-week practical blood flow restriction program on well-trained collegiate athletes[J]. Journal of Strength and Conditioning Research, 2014, 28(8): 2270.
[36]? LUEBBERS P E, WITTE E V, OSHEL J Q. The effects of practical blood flow restriction training on adolescent lower body strength[J]. Journal of Strength and Conditioning Research, 2017, 1(1): 1.
[37]? MADARAME H, NEYA M, OCHI E, et al. Cross-transfer effects of resistance training with blood flow restriction[J]. Medicine & Science in Sports & Exercise, 2008, 40(2): 258.
[38]? MART?魱N-HERN?魣NDEZ J, MAR?魱N P J, MEN?魪NDEZ H, et al. Muscular adaptations after two different volumes of blood flow-restricted training[J]. Scandinavian Journal of Medicine & Science in Sports, 2013, 23(2): 114.
[39]? NETO G R, SANTOS H H, SOUSA J B C, et al. Effects of high-intensity blood flow restriction exercise on muscle fatigue[J]. Journal of Human Kinetics, 2014, 41(1): 163.
[40]? OZAKI H, SAKAMAKI M, YASUDA T, et al. Increases in thigh muscle volume and strength by walk training with leg blood flow reduction in older participants[J]. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 2011, 66(3): 257.
[41]? PARK S, KIM J K, CHOI H M, et al. Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes[J]. European Journal of Applied Physiology, 2010, 109(4): 591.
[42]? PATON C D, ADDIS S M, TAYLOR L A. The effe cts of muscle blood flow restriction during running training on measures of aerobic capacity and run time to exhaustion[J]. European Journal of Applied Physiology, 2017, 117(12): 2579.
[43]? POPE Z K, WILLARDSON J M, SCHOENFELD B J, et al. Hypertrophic and strength responses to eccentric resistance training with blood flow restriction: a pilot study[J]. International Journal of Sports Science and Coaching, 2015, 10(5): 919.
[44]? SHIMIZU R, HOTTA K, YAMAMOTO S, et al. Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people[J]. European Journal of Applied Physiology, 2016, 116(4): 749.
[45]? SLYSZ J, BURR J F. The effects of blood flow restricted electrostimulation on strength & hypertrophy[J]. Journal of Sport Rehabilitation, 2017, 27(3): 1.
[46]? SUMIDE T, SAKURABA K, SAWAKI K, et al. Effect of resistance exercise training combined with relatively low vascular occlusion[J]. Journal of Science and Medicine in Sport, 2007, 12(1): 107.
[47]? TENNENT D J, HYLDEN C M, JOHNSON A E, et al. Blood flow restriction training after knee arthroscopy: a randomized controlled pilot study[J]. Clinical Journal of Sport Medicine: Clinical Journal of Sport Medicine, 2016, 27(3): 245.
[48]? VECHIN F C, LIBARDI C A, CONCEIC?魨O M S, et al. Comparisons between low-intensity resistance training with blood flow restriction and high-intensity resistance training on quadriceps muscle mass and strength in elderly[J]. Journal of Strength and Conditioning Research, 2015, 29(4): 1071.
[49]? WEATHERHOLT A, BEEKLEY M, GREER S, et al. Modified kaatsu training[J]. Medicine & Science in Sports & Exercise, 2013, 45(5): 952.
[50]? YASUDA T, OGASAWARA R, SAKAMAKI M, et al. Relationship between limb and trunk muscle hypertrophy following high-intensity resistance training and blood flow-restricted low-intensity resistance training[J]. Clinical Physiology & Functional Imaging, 2011, 31(5): 347.
[51]? YASUDA T, OGASAWARA R, SAKAMAKI M, et al. Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size[J]. European Journal of Applied Physiology, 2011, 111(10): 2525.
[52]? YAMANAKA T, FARLEY R S, CAPUTO J L. Occlusion training increases muscular strength in division IA football players[J]. Journal of Strength and Conditioning Research, 2012, 26(9): 2523.
[53]? YASUDA T, FUKUMURA K, FUKUDA T, et al. Muscle size and arterial stiffness after blood flow-restricted low-intensity resistance training in older adults[J]. Scandinavian Journal of Medicine & Science in Sports, 2014, 24(5): 799.
[54]? YASUDA T, FUKUMURA K, SATO Y, et al. Effects of detraining after blood flow-restricted low-intensity training on muscle size and strength in older adults[J]. Aging Clinical and Experimental Research, 2014, 26(5): 561.
[55]? 黃婷婷,夏晴,范利華,等.正常人不同姿勢(shì)膝關(guān)節(jié)等速肌力測(cè)試[J].法醫(yī)學(xué)雜志,2014,30(3):181.
[56]? LOENNEKE J P, PUJOL T J. The use of occlusion training to produce muscle hypertrophy[J]. Strength and Conditioning Journal, 2009, 31(3): 77.
[57]? LOENNEKE J P, FAHS C A, WILSON J M, et al. Blood flow restriction: the metabolite/volume threshold theory[J]. Medical Hypotheses, 2011, 77(5): 748.
[58]? YUDAI T, YUTAKA N, SEIJI A, et al. Rapid increase in plasma growth hormone after, low-intensity resistance exercise with vascular occlusion[J]. Journal of Applied Physiology, 2000, 88(1): 61.
[59]? SPRANGER M D, KRISHNAN A C, LEVY P D, et al. Blood flow restriction training and the exercise pressor reflex: a call for concern[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2015, 309(9): 1440.
[60]? 彭一騰,黃驊.加壓力量訓(xùn)練的研究評(píng)述[J].基因組學(xué)與應(yīng)用生物學(xué),2018,37(12): 5676.
[61]? COOK S B, BROWN K A, DERUISSEAU K, et al. Skeletal muscle adaptations following blood flow-restricted training during 30 days of muscular unloading[J]. Journal of Applied Physiology, 2010, 109(2): 341.
[62]? GUNDERMANN D M, FRY C S, DICKINSON J M, et al. Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise[J]. Journal of Applied Physiology, 2012, 112(9): 1520.
[63]? 徐飛,王健.加壓力量訓(xùn)練:釋義及應(yīng)用[J].體育科學(xué),2013,33(12):71.
[64]? MCCROSKERY S. Myostatin negatively regulates satellite cell activation and self-renewal[J]. The Journal of Cell Biology, 2003, 162(6): 1135.
[65]? REBBAPRAGADA A. Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis[J]. Molecular & Cellular Biology, 2003, 23(20): 7230.
[66]? DRUMMOND M J, FUJITA S, TAKASHI A, et al. Human muscle gene expression following resistance exercise and blood flow restriction[J]. Medicine & Science in Sports & Exercise, 2008, 40(4): 691.
[67]? LAURENTINO G C, UGRINOWITSCH C, ROSCHEL H, et al. Strength training with blood flow restriction diminishes myostatin gene expression[J]. Medicine & Science in Sports & Exercise, 2012, 44(3): 406.
[68]? 李新通,潘瑋敏,覃華生,等.血流限制訓(xùn)練:加速肌肉骨骼康復(fù)的新方法[J].中國(guó)組織工程研究,2019,23(15):2415.
[69]? LOENNEKE J, ABE T, WILSON J, et al. Blood flow restriction: an evidence based progressive model (review)[J]. Acta Physiologica Hungarica, 2012, 99(3): 235.
[70]? OHTA H, KUROSAWA H, IKEDA H, et al. Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction[J]. Acta Orthopaedica Scandinavica, 2003, 74(1): 62.
[71]? KATZ A, SAHLIN K. Effect of decreased oxygen availability on NADH and lactate contents in human skeletal muscle during exercise[J]. Acta Physiologica Scandinavica, 1987, 131(1): 119.
[72]? MORITANI T, SHERMAN W M, SHIBATA M, et al. Oxygen availability and motor unit activity in humans[J]. European Journal of Applied Physiology & Occupational Physiologyl, 1992, 64(6): 552.
[73]? KUBOTA A, SAKURABA K, KOH S, et al. Blood flow restriction by low compressive force prevents disuse muscular weakness[J]. Journal of Science & Medicine in Sport, 2011, 14(2): 95.
[74]? KIM L J. Changes of compound muscle action potential after low-intensity exercise with transient restriction of blood flow: a randomized, placebo-controlled trial[J]. Journal of Physical Therapy Science, 2009, 21(4): 361.
[75]? BODINE S C, STITT T N, GONZALEZ M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo[J]. Nature Cell Biology, 2001, 3(11): 1014.
[76]? ITO N, RUEGG U T, KUDO A, et al. Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy[J]. Nature Medicine, 2013, 19(1): 101.
[77]? SNIJDERS T, NEDERVEEN J P, MCKAY B R, et al. Satellite cells in human skeletal muscle plasticity[J]. Frontiers in Physiology, 2015(6): 283.
[78]? LARKIN K A, MACNEIL R G, DIRAIN M, et al. Blood flow restriction enhances post-resistance exercise angiogenic gene expression[J]. Medicine & Science in Sports & Exercise, 2012, 44(11): 2077.
[79]? DODD S, HAIN B, JUDGE A. Hsp70 prevents disuse muscle atrophy in senescent rats[J]. Biogerontology, 2009, 10(5): 605.
[80]? WERNBOM M, JARREBRING R, ANDREASSON M A, et al. Acute effects of vascular occlusion on muscle activity and endurance during fatiguing dynamic knee extensions at low load[J]. Journal of Strength & Conditioning Research, 2009, 23(8): 2389.
[81]? NETO G R, SOUSA M S C, COSTA E S G V, et al. Acute resistance exercise with blood flow restriction effects on heart rate, double product, oxygen saturation and perceived exertion[J]. Clinical Physiology and Functional Imaging, 2014, 36(1): 53.
[82]? FATELA P, REIS J F, MENDONCA G V, et al. Acute neuromuscular adaptations in response to low-intensity blood-flow restricted exercise and high-intensity resistance exercise[J]. Journal of Strength and Conditioning Research, 2018, 32(6):? 8.
[83]? TENNENT D J, HYLDEN C M, JOHNSON A E, et al. Blood flow restriction training after knee arthroscopy: a randomized controlled pilot study[J]. Clinical Journal of Sport Medicine: Official Journal of the Canadian Academy of Sport Medicine, 2016, 27(3): 245.
[84]? NAKAJIMA T, MORITA T, SATO Y. Key considerations when conducting KAATSU training[J]. International Journal of Kaatsu Training Research, 2011, 7(1): 1.
首都體育學(xué)院學(xué)報(bào)2020年1期