崔方強(qiáng)
摘要:足細(xì)胞是腎小球?yàn)V過(guò)膜的重要組成部分,在維持腎小球正常濾過(guò)功能方面起著至關(guān)重要的作用。足細(xì)胞上皮間質(zhì)轉(zhuǎn)分化(EMT)是多種慢性腎臟疾病蛋白尿產(chǎn)生及疾病進(jìn)展的重要病理機(jī)制。減輕足細(xì)胞EMT已經(jīng)成為慢性腎臟疾病防治研究的熱點(diǎn)。基于此,本文主要就足細(xì)胞的生理特點(diǎn)、EMT病理過(guò)程及相關(guān)信號(hào)通路作一綜述。
關(guān)鍵詞:足細(xì)胞;上皮間質(zhì)轉(zhuǎn)分化;信號(hào)通路;慢性腎臟病
中圖分類號(hào):R692 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? DOI:10.3969/j.issn.1006-1959.2019.22.008
文章編號(hào):1006-1959(2019)22-0021-03
Epithelial Transdifferentiation of Podocytes
CUI Fang-qiang
(Department of Nephrology,Beijing Traditional Chinese Medicine Hospital,Capital Medical University,Beijing 100010,China)
Abstract:Podocytes are an important component of glomerular filtration membrane and play a vital role in maintaining normal glomerular filtration function. Epithelial mesenchymal transition (EMT) of podocytes is an important pathological mechanism for proteinuria production and disease progression in a variety of chronic kidney diseases. Reducing podocyte EMT has become a hot spot in the prevention and treatment of chronic kidney disease. Based on this, this paper reviews the physiological characteristics of podocytes, pathological processes of EMT and related signaling pathways.
Key words:Podocytes;Epithelial-mesenchymal transition;Signaling pathway;Chronic kidney disease
腎小球?yàn)V過(guò)膜由內(nèi)皮細(xì)胞、基底膜和足細(xì)胞組成,其中足細(xì)胞是最為重要的組成部分,在維持腎小球正常的濾過(guò)功能方面起著至關(guān)重要的作用[1]。足細(xì)胞是一種上皮細(xì)胞,具有獨(dú)特的結(jié)構(gòu)和功能[2,3]。當(dāng)足細(xì)胞受到TGF-β、高糖、阿霉素等損傷性刺激后,會(huì)導(dǎo)致其向間充質(zhì)細(xì)胞轉(zhuǎn)化,啟動(dòng)足細(xì)胞EMT過(guò)程[4-6]。研究證實(shí)[7],足細(xì)胞EMT是導(dǎo)致慢性腎臟疾病蛋白尿產(chǎn)生及疾病進(jìn)展重要的病理機(jī)制。減輕足細(xì)胞EMT可以有效的延緩慢性腎臟病的進(jìn)展,探討足細(xì)胞EMT的病理過(guò)程及相關(guān)信號(hào)通路對(duì)于慢性腎臟病的防治顯得至關(guān)重要。基于此,本文主要綜述足細(xì)胞的生理功能、足細(xì)胞EMT病理過(guò)程及相關(guān)信號(hào)通路,旨在為臨床防治慢性腎臟病提供參考。
1足細(xì)胞形態(tài)特點(diǎn)及生理功能
足細(xì)胞又稱為腎小球上皮細(xì)胞,是一種終末分化期細(xì)胞,位于基底膜的外側(cè),是腎小球?yàn)V過(guò)膜的重要組成部分,其具有特殊的細(xì)胞形態(tài)及獨(dú)特的生理功能。足細(xì)胞由細(xì)胞體、主突及足突組成,細(xì)胞體游離于基底膜外側(cè),并依靠足細(xì)胞足突與基底膜連接。足突是足細(xì)胞最為重要的功能結(jié)構(gòu),相鄰足細(xì)胞足突在基底膜上交叉,中間形成直徑約為40 nm的孔徑,稱為裂孔,裂孔上分布著裂孔隔膜[8,9]。裂孔隔膜是由足細(xì)胞裂孔隔膜相關(guān)蛋白如Nephrin、podocin、CD2-AP、P-cadherin等多種蛋白分子相互交叉組成的特殊拉鏈狀結(jié)構(gòu),在維持腎小球正常濾過(guò)功能方面起著重要的作用。足細(xì)胞主要的生理功能是維持腎小球?yàn)V過(guò)膜的完整性,防止蛋白質(zhì)分子漏出。足細(xì)胞還可以抵抗腎小球毛細(xì)血管腔內(nèi)的流體靜水壓,維持腎小球毛細(xì)血管的正常的空間結(jié)構(gòu)。此外足細(xì)胞合成并分泌腎小球基底膜的組成成分及其降解酶,以維持基底膜正常結(jié)構(gòu)。Donblier S等[10]研究發(fā)現(xiàn),DN早期即存在Nephrin表達(dá)異常及重新分布,后期腎小球Nephrin蛋白表達(dá)明顯下調(diào),并伴隨著尿蛋白的增加??傊?,足細(xì)胞特殊細(xì)胞形態(tài)的破壞及生理功能損傷會(huì)直接導(dǎo)致蛋白尿的產(chǎn)生及疾病的進(jìn)展,是多種慢性腎臟疾病重要的病理機(jī)制。
2足細(xì)胞上皮間質(zhì)轉(zhuǎn)分化病理過(guò)程
上皮間質(zhì)轉(zhuǎn)分化是指極化的上皮細(xì)胞受到損傷性刺激后,逐漸失去其上皮細(xì)胞表型,而又獲得間充質(zhì)細(xì)胞表型的一個(gè)病理過(guò)程。足細(xì)胞作為一種腎小球上皮細(xì)胞,在受到TGF-β、高糖、阿霉素等損傷性刺激后同樣會(huì)啟動(dòng)EMT的病理過(guò)程[4-6]。研究發(fā)現(xiàn),體外培養(yǎng)的足細(xì)胞在受到TGF-β?lián)p傷性刺激后,首先會(huì)導(dǎo)致EMT調(diào)節(jié)因子snail和slug的表達(dá)上調(diào),進(jìn)而引起足細(xì)胞上皮樣標(biāo)志蛋白P-cadherin轉(zhuǎn)變?yōu)镹-cadherin蛋白,并伴隨著α-SMA蛋白表達(dá)上調(diào)。足細(xì)胞EMT的病理過(guò)程主要表現(xiàn)為形態(tài)學(xué)及相關(guān)蛋白表達(dá)的異常。Jin J等[11]發(fā)現(xiàn),足細(xì)胞EMT過(guò)程中首先會(huì)發(fā)生一系列形態(tài)學(xué)變化:生理情況下,足細(xì)胞是一種特殊的紡錘形形態(tài);但足細(xì)胞EMT會(huì)導(dǎo)致細(xì)胞極性消失、細(xì)胞骨架重構(gòu)以及細(xì)胞間連接破壞。上述改變最終會(huì)引起足細(xì)胞足突融合,裂孔隔膜消失,紡錘形的細(xì)胞形態(tài)破壞,轉(zhuǎn)變?yōu)轾Z卵石形狀。另外,正常條件下足細(xì)胞會(huì)表達(dá)特定的功能蛋白,以維持其正常的結(jié)構(gòu)和功能,而足細(xì)胞EMT時(shí)其功能蛋白nephrin、ZO-1 WT-1、synaptopodin等表達(dá)下調(diào),desmin、FSP-1、MMP-9、fibronectin、collagenⅠ等蛋白表達(dá)上調(diào)[12,13]。足細(xì)胞EMT會(huì)引起腎小球正常的濾過(guò)功能破壞,導(dǎo)致蛋白尿的產(chǎn)生。損傷性刺激在誘導(dǎo)足細(xì)胞EMT后會(huì)進(jìn)一步導(dǎo)致足細(xì)胞凋亡。Fuchshofer R等[14]發(fā)現(xiàn)局灶節(jié)段性腎小球硬化癥中足細(xì)胞發(fā)生EMT,認(rèn)為足細(xì)胞EMT在本病蛋白尿產(chǎn)生及疾病進(jìn)展中起著至關(guān)重要的作用。Perysinaki GS等[15]研究證實(shí)狼瘡性腎炎患者足細(xì)胞nephrin、podocine蛋白表達(dá)下調(diào),足細(xì)胞α-SMA的表達(dá)上調(diào),表明足細(xì)胞發(fā)生EMT,并且足細(xì)胞EMT是患者蛋白尿及腎功能惡化的重要病理機(jī)制。
3足細(xì)胞上皮間質(zhì)轉(zhuǎn)分化相關(guān)信號(hào)通路
介導(dǎo)足細(xì)胞EMT的主要有TGF-β、ILK及Wnt/β-catenin三條信號(hào)通路。但在不同疾病,損傷刺激不同,其介導(dǎo)的主要信號(hào)通路也不同。如高糖主要是激活TGF-β信號(hào)通路,進(jìn)而介導(dǎo)足細(xì)胞EMT;而阿霉素則是主要通過(guò)ILK通路而啟動(dòng)足細(xì)胞EMT過(guò)程。本文主要分析TGF-β、ILK及Wnt/β-catenin三條信號(hào)通路。
3.1 TGF-β信號(hào)通路 ?TGF-β是介導(dǎo)足細(xì)胞上皮間質(zhì)轉(zhuǎn)分化的重要的細(xì)胞因子。研究發(fā)現(xiàn),TGF-β呈劑量和時(shí)間依賴性的促進(jìn)足細(xì)胞EMT過(guò)程[16]。TGF-β介導(dǎo)足細(xì)胞EMT機(jī)制十分復(fù)雜,可以通過(guò)TGF-β/smad及非TGF-β/smad信號(hào)通路來(lái)實(shí)現(xiàn)。在TGF-β/smad信號(hào)通路中,胞漿蛋白Smads是TGF-β信號(hào)通路重要的下游分子蛋白,Smads家族包括多個(gè)家族成員,主要分為受體調(diào)節(jié)型(R-Smads)、共同介質(zhì)型(co-Smads)及抑制型(I-Smads)三種類型?;罨腎型TGF-β受體使R-Smads中的Smad2和Smad3分子磷酸化,p-Smad2和Smad3與Smad4分子結(jié)合,形成Smad復(fù)合物,隨即轉(zhuǎn)移至核內(nèi),調(diào)控下游靶基因(如 ILK、PINCH-1 等)的轉(zhuǎn)錄,進(jìn)而調(diào)控足細(xì)胞發(fā)生EMT。
此外TGF-β還可以調(diào)控很多非TGF-β/smad信號(hào)通路,進(jìn)而介導(dǎo)足細(xì)胞EMT。TGF-β與胞膜上的TGFβⅠ型和Ⅱ型受體結(jié)合后形成復(fù)合物,可以激活TGF-β/Notch通路、TGF-β/Rho-A 通路、TGF-β/JNK 通路、TGF-β/p38 MAPK 通路及TGF-β/ERK通路等[17]。上述信號(hào)通路激活后可以引起相關(guān)轉(zhuǎn)錄因子轉(zhuǎn)移至細(xì)胞核,進(jìn)而調(diào)控靶基因轉(zhuǎn)錄,促進(jìn)足細(xì)胞EMT。李靜等[18]將TGF-β加入體外培養(yǎng)的足細(xì)胞,發(fā)現(xiàn)足細(xì)胞形態(tài)發(fā)生變化,并且表達(dá)間充質(zhì)細(xì)胞標(biāo)志蛋白,證明TGF-β介導(dǎo)了足細(xì)胞EMT。但是TGF-β介導(dǎo)足細(xì)胞發(fā)生EMT的信號(hào)通路很多,其中哪一條是關(guān)鍵的信號(hào)通路,目前并不清楚,尚需要進(jìn)一步研究。
3.2 ILK信號(hào)通路 ?ILK信號(hào)通路同樣是介導(dǎo)足細(xì)胞EMT重要的信號(hào)通路。當(dāng)配體與細(xì)胞膜上的αβ受體結(jié)合后,可以使ILK活化,進(jìn)一步引起下游分子AKT及GSK-3β磷酸化。磷酸化的AKT及GSK-3β可以抑制β-catenin的磷酸化,從而使的β-catenin在細(xì)胞質(zhì)中處于高濃度狀態(tài)。細(xì)胞質(zhì)中的β-catenin會(huì)轉(zhuǎn)移至細(xì)胞核,與相關(guān)轉(zhuǎn)錄因子結(jié)合,進(jìn)而引起snail蛋白表達(dá)。Snail蛋白是介導(dǎo)足細(xì)胞EMT的重要蛋白,可以上調(diào)足細(xì)胞上皮樣標(biāo)志蛋白desmin、FSP-1、MMP-9、fibronectin、collagenⅠ等蛋白表達(dá),下調(diào)功能蛋白nephrin、ZO-1 WT-1、synaptopodin等表達(dá),介導(dǎo)足細(xì)胞EMT。Gil D等[19]發(fā)現(xiàn)特異性的激活足細(xì)胞ILK信號(hào)通路,可導(dǎo)致足細(xì)胞發(fā)生EMT,證明ILK是足細(xì)胞EMT的重要信號(hào)通路。
3.3 Wnt/β-catenin信號(hào)通路 ?Wnt/β-catenin信號(hào)通路同樣與足細(xì)胞EMT關(guān)系密切[20-22]。在Wnt/β-catenin信號(hào)通路中,β-catenin是其核心分子。在正常情況下,β-catenin可以被GSK-3β磷酸化,磷酸化的β-catenin經(jīng)泛素-蛋白酶體途徑分解,從而使細(xì)胞質(zhì)內(nèi)的β-catenin維持在低水平[23]。Wnt信號(hào)通路激活后,Wnt首先與其受體復(fù)合物結(jié)合,受體復(fù)合物包括低密度脂蛋白受體相關(guān)蛋白(LRP)如LRP-5、LRP-6以及卷曲蛋白(FZ)家族。Wnt與受體結(jié)合使得散亂蛋白(Dvl)磷酸化激活并轉(zhuǎn)移到細(xì)胞膜,阻斷β-catenin被GSK-3β磷酸化,從而短暫提高胞質(zhì)內(nèi)的β-catenin的水平。胞質(zhì)內(nèi)的β-catenin通過(guò)累積會(huì)轉(zhuǎn)移至細(xì)胞核,在核內(nèi)與T細(xì)胞因子/淋巴增強(qiáng)因子(TCF/LEF)結(jié)合,并與細(xì)胞內(nèi)的其他因子共同作用解除TCF/LEF的被抑制狀態(tài),特異地啟動(dòng)、激活下游靶基因的轉(zhuǎn)錄[24]。Snail是TCF/LEF重要的靶基因,其激活后可以引起足細(xì)胞EMT。Dai C等[25]利用轉(zhuǎn)基因小鼠觀察Wnt/β-連環(huán)蛋白信號(hào)通路持續(xù)激活對(duì)腎小球足細(xì)胞的影響,結(jié)果顯示W(wǎng)nt/β-連環(huán)蛋白信號(hào)通路持續(xù)激活可以導(dǎo)致小鼠尿蛋白水平升高,同時(shí)可以引起足細(xì)胞足突融合消失及Nephrin蛋白表達(dá)下調(diào)。
4總結(jié)
足細(xì)胞是腎小球?yàn)V過(guò)膜最為重要的結(jié)構(gòu),對(duì)于維持腎小球正常的濾過(guò)功能起著至關(guān)重要的作用。足細(xì)胞EMT是導(dǎo)致多種腎臟疾病蛋白尿產(chǎn)生及疾病進(jìn)展的重要病理機(jī)制。TGF-β通路、ILK通路和Wnt/β-catenin通路是介導(dǎo)足細(xì)胞EMT的關(guān)鍵信號(hào)通路。通過(guò)干預(yù)相關(guān)信號(hào)通路減輕足細(xì)胞EMT已經(jīng)成為多種腎臟疾病重要的潛在靶點(diǎn)。因此對(duì)于足細(xì)胞EMT的深入研究不僅能夠闡明腎臟疾病的發(fā)病機(jī)制,同時(shí)也會(huì)為其臨床防治該病提供新的選擇。但目前不同疾病中介導(dǎo)足細(xì)胞EMT的主要信號(hào)通路尚未完全闡明,此外并未有特異性針對(duì)上述信號(hào)通路減輕足細(xì)胞EMT的治療藥物或干預(yù)措施。因此針對(duì)足細(xì)胞EMT仍需要大量深入的研究。
參考文獻(xiàn):
[1]Assady S,Wanner N,Skorecki KL,et al.New Insights into Podocyte Biology in Glomerular Health and Disease[J].J Am Soc Nephrol,2017,28(6):1707-1715.
[2]Nagata M.Podocyte injury and its consequences[J].Kidney Int,2016,89(6):1221-1230.
[3]Bose M,Almas S,Prabhakar S.Wnt signaling and podocyte dysfunction in diabetic nephropathy[J].J Investig Med,2017,65(8):1093-1101.
[4]Sakhi H,Moktefi A,Bouachi K,et al.Podocyte Injury in Lupus Nephritis[J].J Clin Med,2019,8(9):1340.
[5]Yoshimura Y,Nishinakamura R.Podocyte development, disease, and stem cell research[J].Kidney Int,2019(19):590-593.
[6]Torban E,Braun F,Wanner N,et al.From podocyte biology to novel cures for glomerular disease[J].Kidney Int,2019(19):583-589.
[7]Lu CC,Wang GH,Lu J,et al.Role of Podocyte Injury in Glomerulosclerosis[J].Adv Exp Med Biol,2019(1165):195-232.
[8]Szrejder M,Piwkowska A.AMPK signalling:Implications for podocyte biology in diabetic nephropathy[J].Biol Cell,2019,111(5):109-120.
[9]Chebotareva NV,Bobkova IN,Lysenko LV.The role of podocytes dysfunction in chronic glomerulonephritis progression[J].Ter Arkh,2018,90(6):92-97.
[10]Doublier S,Salvidio G,Lupia E,et al.Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensinⅡ[J].Diabetes,2003,52(4):1023-1030.
[11]Jin J,Gong J,Zhao L,et al.Inhibition of high mobility group box 1 (HMGB1) attenuates podocyte apoptosis and epithelial-mesenchymal transition by regulating autophagy flux[J].J Diabetes,2019,11(10):826-836.
[12]Wang X,Gao Y,Tian N,et al.Astragaloside IV inhibits glucose-induced epithelial-mesenchymal transition of podocytes through autophagy enhancement via the SIRT-NF-κB p65 axis[J].Sci Rep,2019,9(1):323.
[13]Ling L,Chen L,Zhang C,et al.High glucose induces podocyte epithelial to mesenchymal transition by demethylation mediated enhancement of MMP9 expression[J].Mol Med Rep,2018,17(4):5642-5651.
[14]Fuchshofer R,Ullmann S,Zeilbeck LF,et al.Connective tissue growth factor modulates podocyte actin cytoskeleton and extracellular matrix synthesis and is induced in podocytes upon injury[J].Histochem Cell Biol,2011,136(3):301-319.
[15]Perysinaki GS,Moysiadis DK,Bertsias G,et al.Podocyte mainslit diaphragm proteins nephrin and podocin, are affected at early stages of lupus nephritis and correlate with disease histology[J].Lupus,2011,20(8):781-791.
[16]Chang YP,Sun B,Han Z,et al.Saxagliptin Attenuates Albuminuria by Inhibiting Podocyte Epithelial- to-Mesenchymal Transition via SDF-1α in Diabetic Nephropathy[J]. Front Pharmacol,2017(8):780.
[17]Gui T,Sun Y,Shimokado A,et al.The Roles of Mitogen -Activated Protein Kinase Pathways in TGF -beta -Induced Epithelial -Mesenchymal Transition[J].J Signal Transduct,2012(2012):289243.
[18]李靜,柳斌,樊均明.TGF-β在足細(xì)胞生理功能及病理?yè)p傷中的作用[J].中國(guó)中西醫(yī)結(jié)合腎病雜志,2011,12(12):1120-1122.
[19]Gil D,Ciolczyk-Wierzbicka D,Dulinska-Litewka J,et al.Themechanism of contribution of integrin linked kinase (ILK) to epithelial-mesenchymal transition (EMT)[J].Adv Enzyme Regul,2011,51(1):195-207.
[20]Lin CL,Wang JY,et al.Wnt/β-catenin signaling modulates survival of high glucose-stressed mesangial cells[J].Journal of the American.society of Nephrology,2006,17(10):2812-2820.
[21]Wu X,Gao Y,Xu L,et al.Exosomes from high glucose-treated glomerular endothelial cells trigger the epithelial-mesenchymal transition and dysfunction of podocytes[J].Sci Rep,2017,7(1):9371.
[22]Zhou T,He X,Cheng R,et al.Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic nephropathy[J].Diabetologia,2012,55(1):255-266.
[23]Feng Y,Ren J,Gui Y,et al.Wnt/β-Catenin-Promoted Macrophage Alternative Activation Contributes to Kidney Fibrosis[J].J Am Soc Nephrol,2018,29(1):182-193.
[24]Shi G,Wu W,Wan YG,et al.Low dose of triptolide ameliorates podocyte epithelial-mesenchymal transition induced by high dose of D-glucose via inhibiting Wnt3α/β-catenin signaling pathway activation[J].China Journal of Chinese Materia Medica,2018,43(1):139-146.
[25]Dai C,Stolz DB,et al.Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria[J].J Am Soc Nephrol,2009,20(9):1997-2008.
收稿日期:2019-9-11;修回日期:2019-9-23
編輯/成森