亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于YOLO V3的垃圾自動定位及分類方法

        2019-12-25 01:14:48王銘杰
        無線互聯(lián)科技 2019年20期
        關(guān)鍵詞:數(shù)據(jù)增強(qiáng)垃圾分類

        王銘杰

        摘? ?要:目前垃圾分類主要依靠人工來進(jìn)行,存在效率低、對人體健康有害的問題,文章提出了基于YOLO V3的垃圾自動定位及分類方法。首先,采集公共場所的廢棄物圖像并進(jìn)行標(biāo)注;其次,通過K-mean++確定先驗框大小;最后,加載ImageNet數(shù)據(jù)集上預(yù)訓(xùn)練的權(quán)重進(jìn)行遷移訓(xùn)練。結(jié)果顯示:該方法能夠有效完成垃圾的定位及分類,mAP可達(dá)82.87%。

        關(guān)鍵詞:YOLO V3;K-mean++;數(shù)據(jù)增強(qiáng);垃圾分類

        隨著我國經(jīng)濟(jì)的發(fā)展和城鎮(zhèn)化道路的實施,城市中產(chǎn)生的垃圾數(shù)量也在與日俱增,垃圾處理問題受到人們越來越多的關(guān)注。2019年4月26日,我國住房和城鄉(xiāng)建設(shè)部等部門發(fā)布了《關(guān)于在全國地級及以上城市全面開展生活垃圾分類工作的通知》,決定從2019年開始按要求啟動生活垃圾分類工作,所列的重點城市兩年后需具備垃圾分類處理系統(tǒng)。對垃圾分類處理首先需要進(jìn)行分類,而人工分類效率低,尤其在面對大量垃圾時,會由于分類環(huán)境惡劣、任務(wù)繁重對人的健康產(chǎn)生不利影響。如果垃圾數(shù)量過多,則可能無法完成對其的分類,而將剩余部分視為其他垃圾處理掉,對環(huán)境造成污染的同時,也浪費了可回收的資源。如今,伴隨著人工智能,尤其是卷積神經(jīng)網(wǎng)絡(luò)在圖像處理方面跨越式的發(fā)展,智能機(jī)器通過攝像頭自動識別和定位不同種類的垃圾成為可能,進(jìn)而可以實現(xiàn)對垃圾的自動分類投放,在減輕人工勞動量、提高分類效率的同時能夠降低對環(huán)境的污染,減少對資源的浪費。

        目標(biāo)檢測的方法有兩種:(1)基于區(qū)域建議的兩階段法,主流的算法包括Fast R-CNN[1]和Faster R-CNN[2]。(2)無區(qū)域建議的一階段法,主流的算法包括SSD[3]和YOLO V3。其中,YOLO V3不僅有較高的檢測精度,而且檢測速度也較快。本文選用YOLO V3對垃圾進(jìn)行分類和定位,并根據(jù)公共場所垃圾圖像的特點,重新選定了先驗框大小及其他超參數(shù)。

        1? ? 試驗數(shù)據(jù)

        1.1? 圖像數(shù)據(jù)采集

        本次試驗的垃圾圖像數(shù)據(jù)于2019年6—7月采集自太谷城區(qū)的公共場所。采集時從平視、俯視、斜視3個角度對垃圾進(jìn)行圖像采集,用手機(jī)作為采集設(shè)備,型號為紅米note7,圖像分辨率為4 000×3 000像素。圖像數(shù)據(jù)中既有只含一種垃圾的圖片,也有含兩種或兩種以上垃圾的圖片。

        1.2? 數(shù)據(jù)集建立

        本次試驗共采集各類垃圾圖像6 107張。其中僅含一類垃圾的圖像有可回收物887張、濕垃圾873張、有害垃圾829張和干垃圾867張,含兩類及兩類以上垃圾的圖像有2 651張。考慮到模型訓(xùn)練的速度及計算機(jī)內(nèi)存和顯存的占用情況,這里將所有圖像在保證原始圖像長寬比的前提下,壓縮為416×416像素,空白部分用灰色(128,128,128)填充。從采集的各類垃圾圖像6 107張中隨機(jī)抽取1 220張作為測試集,剩余的作為訓(xùn)練集和驗證集。使用LabelImg工具對圖像進(jìn)行目標(biāo)位置及類別標(biāo)注,生成XML文件,隨后將其轉(zhuǎn)為TXT文件,內(nèi)含垃圾所屬類別、中心坐標(biāo)以及最小外接矩形框的長和寬。

        為使最終的訓(xùn)練結(jié)果有較好的泛化性能,對訓(xùn)練集進(jìn)行了數(shù)據(jù)增強(qiáng),主要包括:水平翻轉(zhuǎn)、垂直翻轉(zhuǎn)、旋轉(zhuǎn)180°、隨機(jī)縮放寬高比例、隨機(jī)剪切、亮度變化和飽和度變化。以一張垃圾圖像為例,其圖像數(shù)據(jù)增強(qiáng)結(jié)果如圖1所示。經(jīng)數(shù)據(jù)增強(qiáng)后,作為訓(xùn)練集和驗證集的圖像數(shù)量變?yōu)?9 096張,后續(xù)訓(xùn)練時采用10折交叉驗證。

        2? ? 檢測方法

        2.1? YOLO? V3模型

        YOLO V3模型是對YOLO V1和YOLO V2的改進(jìn)。YOLO V3以Darknet-53為骨干網(wǎng)絡(luò),相對于YOLO V2中的Darknet-19去掉了池化層,改為用步長為2的卷積層,實現(xiàn)特征圖的尺寸變換。除最后一個卷積層外,其余卷積層和Leaky ReLU之間都有一個BN層。Darknet-53網(wǎng)絡(luò)通過對Resnet網(wǎng)絡(luò)的借鑒使之擁有更深的網(wǎng)絡(luò)深度,更好的分類效果。

        YOLO V3采用多尺度檢測,本文中圖片大小為416× 416像素,所以多尺度對應(yīng)的特征圖大小分別為13×13像素,26×26像素和52×52像素。其中,13×13像素用于檢測較大的物體,26×26像素用于檢測中等大小的物體,52×52像素用于檢測較小的物體,每種尺度對應(yīng)3種先驗框,共9種先驗框。在對較小的物體進(jìn)行檢測時,將原圖分為52×52個格子,當(dāng)小物體的中心處于某個格子時,該格子對該物體進(jìn)行檢測。該格子輸出的信息中包括物體預(yù)測框中心坐標(biāo)(x,y)、預(yù)測框的寬與高(w,h)、物體而非背景的置信度C以及物體屬于各類的可能性。對于像素為416×416的圖片,YOLO V3可產(chǎn)生10 647個預(yù)測框,后期通過判斷是否超過閾值和采用非極大值抑制來篩選預(yù)測框。

        2.2? 先驗框計算

        先驗框參數(shù)不僅對YOLO V3在訓(xùn)練時的收斂速度有影響,而且對檢測精度也會有一定程度的影響。為使YOLO V3對垃圾檢測擁有較高的檢測精度,本文對垃圾目標(biāo)框采用聚類的方法來確定先驗框參數(shù)。

        K-means是一種常用的聚類方法,但K-means的聚類中心在初始時是隨機(jī)選擇的,這會導(dǎo)致最終的聚類結(jié)果存在較大的隨機(jī)性。為盡量減小聚類結(jié)果的隨機(jī)性,本文采用改進(jìn)后的K-means++來確定先驗框參數(shù),并使用1-IOU代替歐氏距離作為聚類指標(biāo),其中IOU為垃圾目標(biāo)框與先驗框之間的交并比。經(jīng)K-means++聚類確定的k=9時的先驗框參數(shù)為(15,9)、(17,20)、(24,35)、(37,50)、(49,63)、(64,90)、(109,87)、(172,101)和(381,355)。

        3? ? 實驗

        3.1? 評價指標(biāo)

        為評價本方法對垃圾進(jìn)行定位及分類的性能優(yōu)劣,本文使用平均精度均值(mean Average Precision,mAP)作為評價指標(biāo)。平均精度均值可以通過計算精確度(Precision)和查全率(Recall)得到,具體計算公式為:

        其中,TP為將某類垃圾正確預(yù)測為某類垃圾的個數(shù),F(xiàn)P為將非某類垃圾錯誤預(yù)測為某類垃圾的個數(shù),F(xiàn)N為將某類垃圾錯誤預(yù)測為不是某類垃圾的個數(shù),AP為某類垃圾的平均精度。mAP是4類垃圾各自計算的AP的平均值。

        3.2? 訓(xùn)練設(shè)置

        本文依靠遷移學(xué)習(xí)用經(jīng)ImageNet數(shù)據(jù)集訓(xùn)練的Darknet-53參數(shù)進(jìn)行初始化,訓(xùn)練時設(shè)置批次大小為16,最大訓(xùn)練次數(shù)為120 000,激活函數(shù)選用Leaky ReLU,優(yōu)化器采用隨機(jī)梯度下降算法(Stochastic Gradient Descent,SGD),初始學(xué)習(xí)率為0.001,動量為0.9,權(quán)重衰減正則系數(shù)為0.000 5,迭代至63 000次時,將學(xué)習(xí)率改為0.000 1,迭代至99 000次時,將學(xué)習(xí)率再改為0.000 01,迭代至120 000次或損失收斂時停止訓(xùn)練。在訓(xùn)練過程中通過比較損失大小,保存損失最小的模型參數(shù)。

        3.3? 識別結(jié)果

        使用訓(xùn)練好的模型對測試集中4類共1 220張垃圾圖片進(jìn)行檢測,其mAP可達(dá)82.87%,對測試集檢測的部分結(jié)果如圖2所示,其中,rec_w為可回收垃圾(recyclable waste),resi_w為干垃圾(residual waste),hou_f_w為濕垃圾(household food waste),haz_w為有害垃圾(hazardous waste),從圖2可以看出本方法能對垃圾進(jìn)行有效的分類和定位。

        4? ? 結(jié)語

        基于對垃圾分類的要求,本文提出了一種基于YOLO V3的檢測方法。該方法采用K-means++算法對先驗框的大小進(jìn)行了優(yōu)化,利用YOLO V3完成了對垃圾的定位及分類,其最終的mAP可達(dá)82.87%,另外,得益于YOLO V3在目標(biāo)檢測速度上的優(yōu)勢,本文所提方法能夠滿足垃圾分類任務(wù)的要求,在城市垃圾分類方面有廣闊的應(yīng)用前景。

        [參考文獻(xiàn)]

        [1]GIRSHICK R.Fast R-CNN[C].Washington:IEEE Conference on Computer Vision and Pattern Recognition,2015.

        [2]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis&Machine Intelligence,2017(6):1137-1149.

        [3]LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multiBox detector[J].European Conference on Computer Vision,2016(6):21-37.

        猜你喜歡
        數(shù)據(jù)增強(qiáng)垃圾分類
        一種算法對于深層神經(jīng)網(wǎng)絡(luò)訓(xùn)練速度的提升
        基于深度學(xué)習(xí)網(wǎng)絡(luò)的乳腺癌圖片分類研究
        基于卷積神經(jīng)網(wǎng)絡(luò)的森林火災(zāi)煙霧探測算法研究
        基于深度網(wǎng)絡(luò)的車輛前后端圖像識別方法研究
        基于雙卷積神經(jīng)網(wǎng)絡(luò)的鐵路集裝箱號OCR
        基于卷積神經(jīng)網(wǎng)絡(luò)的圖像分類研究
        基于互聯(lián)網(wǎng)思維的再生資源智能回收系統(tǒng)設(shè)計(寶特瓶類)
        小學(xué)校本課程《垃圾分類》智慧教育案例研究
        淺析我國農(nóng)村垃圾處理難題
        青年時代(2016年19期)2016-12-30 17:40:46
        日本城市垃圾分類的做法
        青春歲月(2016年22期)2016-12-23 16:15:10
        免费国产在线精品一区| 国产人成在线免费视频| 青青草视频在线观看精品在线| 色偷偷色噜噜狠狠网站30根 | 人妻激情另类乱人伦人妻| 成人爽a毛片一区二区免费| 亚洲一区二区三区99区| 国产va精品免费观看| 亚洲国产黄色在线观看| 亚洲av天堂在线视频| 国产精品无码久久久久久久久久| 亚洲AⅤ无码日韩AV中文AV伦| 青青草视频在线播放81| 中文字幕一区二区三区视频| 图片区小说区激情区偷拍区| 国产偷国产偷高清精品| 亚洲综合中文一区二区| а天堂中文在线官网在线| 欧美日韩一卡2卡三卡4卡 乱码欧美孕交| 国产91一区二这在线播放| 看国产亚洲美女黄色一级片| 亚洲一区二区三区影院| 国内少妇偷人精品视频免费| 中文字幕日本一区二区在线观看| 开心五月婷婷激情综合网| 一本一道av中文字幕无码| 女的把腿张开男的猛戳出浆| 日本国产一区二区在线观看| 国产免费无遮挡吸奶头视频| 日日摸夜夜添夜夜添无码免费视频 | 亚洲综合伊人久久综合| 国产97色在线 | 国产| 精品性高朝久久久久久久| 亚洲视频在线播放免费视频| 真实夫妻露脸爱视频九色网| 国产精品无码av一区二区三区| 北岛玲中文字幕人妻系列| 国产天堂av在线播放资源| 欧美顶级少妇作爱| 国精产品一品二品国在线| 成人av天堂一区二区|