■楊彥紅 黃 晶 何中立
1.已知直線l1:a1x+b1y=1和l2:a2x+b2y=1相交于點(diǎn)P(2,3),則經(jīng)過點(diǎn)P1(a1,b1)和P2(a2,b2)的直線方程是( )。
A.3x+2y=1 B.2x-3y=1
C.2x+3y=1 D.3x-2y=1
2.過點(diǎn)P(-2,2)作直線l,使直線l與兩坐標(biāo)軸在第二象限內(nèi)圍成的三角形面積為8,這樣的直線l一共有( )。
A.3條 B.2條
C.1條 D.0條
3.設(shè)m∈R,過定點(diǎn)A的動(dòng)直線x+my=0和過定點(diǎn)B的動(dòng)直線mx-y-m+3=0交于點(diǎn)P(x,y),點(diǎn)P與點(diǎn)A,B不重合,則△PAB面積的最大值是( )。
A.2 5 B.5
C.5 2 D.5
4.動(dòng)點(diǎn)P與定點(diǎn)A(-1,0),B(1,0)的連線的斜率之積為-1,則動(dòng)點(diǎn)P的軌跡方程是( )。
A.x2+y2=1
B.x2+y2=1(x≠0)
C.x2+y2=1(x≠1)
D.y= 1-x2
5.直線l1:ax-y+b=0,l2:bx+ya=0(ab≠0)的圖像只可能是( )。
6.下列關(guān)于平面直角坐標(biāo)系xOy中直線的4種說法:①若兩條直線互相平行,則它們的斜率相等;②若兩條直線互相垂直,則它們的斜率乘積為-1;③直線y=kx-k必過點(diǎn)(1,0);④對于直線Ax+By+C=0,若AB<0,則這條直線必有斜率且傾斜角為銳角。其中正確的說法個(gè)數(shù)是( )。
A.0 B.1
C.2 D.3
7.已知點(diǎn)P(a,b)(ab≠0)是圓O:x2+y2=r2內(nèi)一點(diǎn),直線m是以P為中點(diǎn)的弦所在的直線,若直線n的方程為ax+by=r2,則( )。
A.m∥n,且n與圓O相離
B.m∥n,且n與圓O相交
C.m與n重合,且n與圓O相離
D.m⊥n,且n與圓O相離
8.若三條直線l1:2x+3y+8=0,l2:xy-1=0,l3:x+ky+k+12=0能圍成三角形,則k不等于( )。
9.已知點(diǎn)P在直線x+2y-1=0上,點(diǎn)Q在直線x+2y+3=0上,線段PQ中點(diǎn)為N(x0,y0),且y0>x0+2,則的取值范圍為( )。
10.已知實(shí)數(shù)x,y滿足x2+y2-4x+2=0,則x2+(y-2)2的最小值是( )。
A.2 B.2 2
C.2 D.8
11.若等腰直角三角形的外接圓半徑的長為2,則其內(nèi)切圓半徑的長為( )。
A.2 B.2 2-2
C.2- 2 D.2-1
12.已知直線l:3x+4y-12=0,若圓上恰好存在兩個(gè)點(diǎn)到直線l的距離為1,則稱該圓為 “完美型”圓,則下列圓中是 “完美型”圓的是( )。
A.x2+y2=1
B.x2+y2=16
C.(x-4)2+(y-4)2=1
D.(x-4)2+(y-4)2=16
13.在圓x2+y2-4x-4y-2=0內(nèi),過點(diǎn)E(0,1)的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積為( )。
A.5 2 B.10 2
C.15 2 D.20 2
14.已知圓C:x2+y2+2x-4y+3=0關(guān)于直線l:2ax+by+6=0(a,b∈R)對稱,由點(diǎn)A(a,b)向圓C作切線,則最短的切線長等于( )。
A.2 B.4
C.3 D.6
15.若直線ax+by=1與圓C:x2+y2=1相交,則點(diǎn)P(a,b)與圓C的位置關(guān)系是( )。
A.點(diǎn)P在圓外 B.點(diǎn)P在圓上
C.點(diǎn)P在圓內(nèi) D.不確定
16.過點(diǎn)P(1,1)的直線將圓形區(qū)域{(x,y)|x2+y2≤9}分成兩部分,使得兩部分的面積之差最大,則該直線的方程是____。
17.過點(diǎn)P(-1,2)且在兩坐標(biāo)軸上的截距相等的直線方程為____。
18.已知函數(shù)y=loga(x+1)-2(a>0且a≠1)的圖像恒過點(diǎn)P,則經(jīng)過點(diǎn)P且與直線2x+y-1=0垂直的直線方程為_____。
19.在平面直角坐標(biāo)系內(nèi),到點(diǎn)A(1,2),B(1,5),C(3,6),D(7,-1)的距離之和最小的點(diǎn)的坐標(biāo)是_____。
20.若圓x2+y2=4與圓x2+y2+2ay-6=0(a>0)的公共弦長為23,則a=____。
21.如果實(shí)數(shù)x,y滿足x2+y2=1,則的取值范圍是____。
22.過點(diǎn)A(11,2)作圓x2+y2+2x-4y-164=0的弦,其中弦長為整數(shù)的共有____條。
23.若 圓x2+y2-ax+2y+1=0 與 圓x2+y2=1 關(guān)于直線y=x-1 對稱,過點(diǎn)C(-a,a)的圓P與y軸相切,則圓心P的軌跡方程為____。
24.在矩形ABCD中,AB=2,BC=1,以A為坐標(biāo)原點(diǎn),AB,AD邊分別在x軸,y軸的正半軸上,建立直角坐標(biāo)系。將矩形折疊,使A點(diǎn)落在線段DC上,重新記為點(diǎn)A1。
(1)當(dāng)點(diǎn)A1坐標(biāo)為(1,1)時(shí),求折痕所在的直線方程。
(2)若折痕所在直線的斜率為k,試求折痕所在的直線方程。
25.已知關(guān)于x,y的方程C:x2+y2-2x-4y+m=0。(1)若方程C表示圓,求m的取值范圍。(2)若圓C與圓x2+y2-8x-12y+36=0相外切,求m的值。
(3)若圓C與直線l:x+2y-4=0相交于M,N兩點(diǎn),且|MN|=,求m的值。
26.已知圓O:x2+y2=2,直線l:y=kx-2。
(1)若直線l與圓O相交于不同的兩點(diǎn)A,B,當(dāng)∠AOB=90°時(shí),求k的值。(2)若,P是直線l上的動(dòng)點(diǎn),過P作圓O的兩條切線PC,PD,切點(diǎn)為C,D,試問直線CD是否過定點(diǎn),并說明理由。
(3)若EF,GH為圓O的兩條相互垂直的弦,垂足為,求四邊形EFGH的面積的最大值。
27.已知圓C:(x-3)2+(y-4)2=4,直線l1過定點(diǎn)A(1,0)。
(1)若l1與圓C相切,求l1的方程。
(2)若l1與圓C相交于P,Q兩點(diǎn),線段PQ的中點(diǎn)為M,且l1與l2:x+2y+2=0的交點(diǎn)為N。求證:|AM|·|AN|為定值。