亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        通往風景園林行業(yè)的BIM之路—數(shù)字化豎向設計教育

        2019-12-03 02:42:40瑞士彼得派切克黃鄧楷
        風景園林 2019年5期
        關鍵詞:景觀建筑模型

        著:(瑞士)彼得·派切克 譯:黃鄧楷

        1 數(shù)字化豎向設計和建筑信息模型

        “簡單地說,地形塑造就是設計?!盵1]12因此,豎向設計在風景園林中扮演著至關重要的角色。盡管不是每個項目都涉及大規(guī)模的豎向設計,但景觀設計師的每次設計干預都會改變地形。正如斯托姆所說:“場地規(guī)劃師和景觀設計師最主要的職能之一就是地形塑造?!盵1]135

        建筑信息模型(Building Information Modeling,簡稱BIM)最初是為復雜的建筑項目開發(fā)的。值得注意的是,BIM不僅僅是一個軟件,也是一種方法、一個過程。BIM建造、協(xié)同和管理是BIM流程中的3個任務級別。從主要內容來看,基礎設施的BIM與建筑的BIM相似,都是創(chuàng)造供土木、結構、環(huán)境工程師,規(guī)劃師,景觀設計師,建筑承包商,政府或城市機構等不同項目管理者使用的同一個完整的數(shù)據(jù)模型。由于所有規(guī)劃師和工程師共同使用同一模型,因此在規(guī)劃初期便可以檢測出場地中潛在的設計沖突,避免到施工階段才發(fā)現(xiàn)問題?;A設施的BIM目前仍不能簡單地與建筑的BIM掛鉤。一方面,因為基礎設施建設項目通常更加多樣化、涉及更大的地理區(qū)域;另一方面,基礎設施建設項目已經使用Little BIM一段時間了,之所以稱之為“Little”是因為只有某一學科在使用同一模型,如全球導航衛(wèi)星系統(tǒng)(Global Navigation Satellite Systems,簡稱GNSS)的土方工程案例。

        目前多數(shù)瑞士中、大型建筑公司都在使用GNSS技術。GNSS技術結合了土方工程的數(shù)字地面模型(Digital Terrain Model,簡稱DTM),提高精度的同時降低了成本。智慧造景(landscapingSMART)[2]闡述了Little BIM的工作流程,包括從數(shù)據(jù)生成及建模到GNSS機械控制土方施工現(xiàn)場的數(shù)據(jù)準備工作。智慧造景不涵蓋數(shù)據(jù)結構和工作組織等BIM協(xié)同和管理任務,而強調以下內容。

        1)精確的現(xiàn)狀數(shù)據(jù)對GNSS機械控制的數(shù)字地面模型的構建十分必要。最好能雇請專業(yè)的測量師獲取數(shù)據(jù),因為這不是景觀設計師的工作。

        1 以數(shù)字地面模型為核心元素的智慧造景過程The landscapingSMART process with the DTM data model in the center

        2 拉珀斯維爾應用科技大學的學生使用3D全球導航衛(wèi)星系統(tǒng)挖掘機工作(2017年)HSR students working with a 3D GNSS excavator (2017)

        2)DTM是智慧造景的核心元素(圖1)。場地的DTM使正確、高效、精確的地表設計和地下設計成為可能。構建精細的數(shù)字地面模型是景觀設計師的重要技能。

        3)模擬地形模型也是景觀設計中非常重要的工具。雖然手工模型始終在豎向設計研究中發(fā)揮重要作用,但最終必須將它們轉化為數(shù)字地面模型。攝影測量軟件有助于這種轉化,景觀設計師應該熟悉攝影測量的概念并運用相關軟件。

        4)基于3D機械控制(指導)系統(tǒng)和GNSS的挖掘機和推土機需要DTM數(shù)據(jù)來進行場地的豎向設計,這些機器保證了高精度的地表(圖2)。雖然承包商負責此任務,但景觀設計師需要了解構建正確的DTM的基本操作。

        智慧造景不但提高了施工效率,而且Little BIM是整個基礎設施BIM的一部分。

        2 拉珀斯維爾應用科技大學的數(shù)字化豎向設計教育

        跟歐洲(例如德國)其他院校相比,豎向設計在瑞士拉珀斯維爾應用科技大學(Hochschule für Technik Rapperswil, 簡 稱 HSR)的場地工程教育中更為重要。HSR的模擬豎向設計課程與美國、加拿大院校的十分相似,都需要高標準地培養(yǎng)學生在設計過程中使用等高線、高程點、剖面圖、容量計算、地下排水等方法。在與布魯斯 沙基教授的電郵通信中談論到美國豎向設計教育的歷史,他提到,“我知道,自“二戰(zhàn)”以來,可能美國所有的景觀設計課程都包含這些學科,可能甚至更早”[3]。美國出版的一系列有關豎向設計的書籍也證實了其重要性,例如《Grade Easy》[4]。

        多年以來,“大多數(shù)與場地工程相關的計算和繪圖任務都已經完全自動化了”[1]211。HSR的豎向設計教學先后采用虛擬和數(shù)字方法。通過第一學期手工控制等高線,對集水池、檢查井、管道進行尺寸標注等扎實的學習(實踐或學徒期間加深對測量設備的理解),HSR學生第二學期幾乎都在學習數(shù)字化豎向設計(圖3)。數(shù)字化豎向設計課程包括以下幾方面:

        1)導入測量和GIS數(shù)據(jù);

        2)點、輪廓和斷線的三角測量;

        3)不規(guī)則三角網絡(Triangulated Irregular Network,簡稱TIN);

        4)控制用于場地設計的點、約束線;

        5)容量計算,數(shù)字化管道、集水池、檢查井布局;

        6)道路路線和廊道設計;

        7)使用無人機技術(UAV)或智能手機進行近景攝影測量;

        8)GNSS挖掘機說明。

        隨著建筑業(yè)的發(fā)展,數(shù)字化豎向設計因其操作簡單,受到越來越多的關注。幾年前,HSR利用一個對比實驗證明了學生更善于使用數(shù)字化工具解決豎向設計的問題。HSR學生先后參加以不同方法解決同一典型豎向設計問題的試驗。第一次試驗中,學生被要求使用傳統(tǒng)模擬的、人工計算和手繪的方法計算和繪制網球場的布置,第二次測試學生使用Civil 3D軟件。結果顯而易見,相較于傳統(tǒng)方法,更多的學生選擇利用數(shù)字化豎向設計方法解決問題(上述結果分享于2009年國際風景園林教育大會)?,F(xiàn)在,軟件所具備的更直觀的分析計算功能使數(shù)字化豎向設計的優(yōu)勢更加突出。

        3 數(shù)字化豎向設計(景觀設計項目的一部分)可發(fā)展為風景園林的BIM項目

        2018年秋季學期起,Revit(建筑業(yè)BIM體系的軟件)已經被整合到第1學期CAD教學以及場地設計項目中。學生在第1學期課程中必須建造一個小型建筑的模型,如公車站、雨篷或展館。第2學期的場地設計項目是第1年場地工程教育的核心,對于理解數(shù)字化豎向設計至關重要。學生必須在項目中應用豎向設計知識,明確建筑、落客區(qū)、道路、停車場、露臺和小路的位置并對場地進行地形優(yōu)化。GIS數(shù)據(jù)是現(xiàn)有場地(航拍圖和asci柵格地形)的基礎。學生們還使用Revit建造了通往山頂?shù)臉翘荩ńㄖ?、道路、停車場的開挖料)。第2學期的場地設計項目在第5學期得到了完善,學生被要求將Revit建筑模型和Civil 3D土木工程模型合并為同一個BIM模型,建筑模型包括瑞士城區(qū)典型的構筑物—帶有停車庫的大露臺(圖4)。該區(qū)域使用Revit和Civil 3D組合的BIM建造模型,以檢測潛在的設計問題(集水池深度、交叉管線、坡度變化、球狀根的位置等)。合成Civil 3D數(shù)據(jù)的BIM Revit模型是未來計算、模擬等操作的信息中心。

        3 拉珀斯維爾應用科技大學涉及數(shù)字化豎向設計的場地設計項目(Civil 3D)HSR site design project with digital grading (Civil 3D)

        4 第5學期場地設計項目中Revit和Civil 3D組合的模型A combined Civil 3D and Revit model of the HSR 5th semester site design project

        2018年11月初,HSR學生首次提交的學期作業(yè)(第5學期)的結果非常樂觀。相關問卷調查的評估結果也表明學生的滿意度較高,且對學生的訪談也顯示同樣的結果。上述BIM的構建過程(Civil 3D/Revit)也在2018年春、夏季HSR為瑞士景觀設計部門設置的多個繼續(xù)教育課程中進行了檢驗。2018年6月和11月,BIM的構造過程分別在東南大學風景園林系研究生課程“景觀技術前沿”和清華大學風景園林工程BIM應用工作營又進行了測試,可見該方法是有效且可靠的。

        除了材料、測量、巖土工程和施工技術等傳統(tǒng)工程課程外,豎向設計在HSR場地工程教學中是最重要的課題。作為智慧造景過程的一部分,數(shù)字化豎向設計可以促進BIM模型的建造,推進風景園林行業(yè)BIM的發(fā)展(圖 5~6)。

        注釋:

        ① 本文作者對文章內容負全部責任。文章內容不代表風景園林教育工作者委員會(CELA)的官方立場,其印刷和發(fā)行不構成對可能表達的觀點的認可。引用本文請說明其來自CELA會議論文。有關獲得重印或復制本文的許可的信息,請通過staff@thecela.org與風景園林教育工作者委員會聯(lián)系。

        ② 所有圖片均由本文作者提供。

        (編輯/劉玉霞)

        1 Digital grading and BIM

        ‘Simply put, grading is design.’[1]12Therefore,grading plays a key role in landscape architecture.Every intervention designed by a landscape architect involves some modification of the earth’s surface, although intense grading is not necessarily part of each project.As Storm states,‘The shaping of the earth’s surface is one of the primary functions of site planners and landscape architects’[1]135.

        Building Information Modeling (BIM) was originally developed for complex architectural projects.It is also important to keep in mind, BIM is a method and a process not just a software.The three levels of tasks within the BIM process are BIM construction,BIM coordination and BIM management.The main idea of BIM for Infrastructure, similar to that of BIM for Architecture, is the use of one complete data model by the different project partners.Partners which may include civil, structural and environmental engineers, planners, landscape architects, building contractors and government or city agencies.All planners and engineers use only one model and therefore can detect conflicts during the planning phase instead of on site during construction.BIM for infrastructure is not yet as clearly defined as BIM for Architecture, with infrastructure projects tending to be more diverse and spread over larger geographical areas.On the other hand, the infrastructure industry has been using Little BIM for quite a while.The term little is used when only one discipline is using the data,as is the case with GNSS earth works.

        5~6 BIM Revit信息中心平臺中具有Civil 3D界面(如自然石材、基床、地基等)的Revit模型。圖中簡易的樹木模型為結構工程師提供其荷載等重要信息The Revit model with Civil 3D surfaces (natural stone, bedding, foundation, etc.) on the terrace in the BIM Revit Information Hub.The simple looking trees provide important weight information for the structural engineer

        Today the majority of medium to large sized construction companies in Switzerland are using Global Navigation Satellite Systems (GNSS)technology.Combined with digital terrain models for earthwork projects, precision is increased,and costs are reduced.landscapingSMART[2]describes the Little BIM workflow starting with data generation and the modeling to preparation of data for a GNSS machine-controlled earthwork construction site.It does not cover BIM topics like data structure and work organization, which are BIM coordination and management tasks.landscapingSMART emphasizes the following:

        1) In order to build a Digital Terrain Model(DTM) for GNSS controlled machines precise data of the existing conditions are necessary.It is better to hire a surveyor to acquire the data, as it is not the job of landscape architects.

        然而,上述分析由于缺乏異常前后的水質化學對比分析,仍具有一定的局限性。因此建議每隔幾年要對流體觀測井做一次水質化驗,并保存詳細歷史資料,以供對比分析,提高流體觀測的科學內涵。

        2) The DTM is the central element in landscapingSMART (Fig.1).The DTM for a proposed site enables a correct, efficient and precise surface and subsurface design.The knowledge to model a detailed DTM is an important skill for landscape architects.

        3) Analog terrain models are also very important tools in landscape architecture.While hand-built models will always play an important role in grading design studies, eventually they must be transferred to digital terrain models.Photogrammetric software facilitates this transfer.Landscape architects must be familiar with the concept of photogrammetry and able to apply the software.

        4) Excavators and dozers with Global Navigation Satellite Systems (GNSS) based 3D machine control (guidance) systems need the DTM data for shaping the proposed site (Fig.2).The machines guarantee high precision surfaces.Contractors are responsible for this task, but Landscape Architects need a basic understanding in order to create a correct DTM.

        Not only does landscapingSMART improve the efficiency of the construction process,but Little BIM is part of the overall BIM for Infrastructure.

        2 Digital grading education at Hochschule für Technik Rapperswil(HSR)

        Grading is more important in the site engineering education at HSR compared to other schools in Europe, for example Germany.The curriculum for analogue grading is very similar to schools in the U.S.and Canada, where rigorous training is required in design using contour lines,spot elevations, profiles, volume calculations,subsurface drainage, etc.In an e-mail by Prof.Bruce Sharky on the topic of history of grading education in the USA he states that, ‘I do know that probably all landscape architecture programs in the USA have included these subjects in their curricula since WWII and perhaps even much earlier’[3].A whole array of books published in the USA on grading, for example Grade Easy[4], also show the importance of the topic.

        Over the years, “most computational and drafting tasks associated with site engineering have become completely automated”[1]211.At HSR grading is first taught using analogue methods and then followed by digital methods.With a solid background in manipulating contour lines by hand and dimensioning catch basin/manhole/pipe in the first semester (combined with a good understanding of surveying equipment during their practical year or apprenticeship), HSR students are then exposed almost exclusively to digital grading in their second semester (Fig.3).The digital grading course includes the following aspects:

        1) Import of survey and GIS data;

        2) Triangulation of points, contours and break lines;

        4) Point and feature line commands for site design;

        5) Volume calculations, digital pipe and catch basin/manhole layouts;

        6) Roadway alignment and corridor design;

        7) Close Range Photogrammetry using UAV technology (drone) or smart phones;

        8) GNSS excavator instructions.

        One reason for the emphasis on digital grading is advancement in the construction industry, the second reason is simply that it is easier for students to use.How can we prove that students are better at solving grading problems using digital tools?A couple of years ago, an experiment using a comparative approach demonstrated the advantages of digital tools.HSR students had to take two exams in which they had to solve a typical grading problem.The first exam required calculating and drafting the placement of a tennis court in the traditional,analogue, hand-calculated and hand-drawn method.In the second exam, the students used Civil 3D.The findings were clear, more students solved the task with digital grading than with analogue.The results were presented at the 2009 Council of Educators in Landscape Architecture Conference.Today more intuitive software would likely show that results tend to be even more in favor of digital grading.

        3 Digital grading as part of a site design project to become BIM in landscape architecture project

        Since the 2018 fall Semester, Revit, a BIM for Architecture software, has been integrated into the first semester CAD teaching as well as in the site design project.In the first semester course,students must model a small architecture project,for example a bus stop, rain shelter, or pavilion.The site design project in the second semester is the core of the site engineering education in the first year and is very important for understanding digital grading.Here students must apply their knowledge of grading in a project.They must define and grade into a landscape the location of a building, drop off area, access road, parking spaces, terraces, and paths.GIS data is the basis for the existing site (aerial photo and asci grid terrain).The students also model a staircase leading on top of a hill (excavation material of the building, access road and parking) with Revit.In the fifth semester the site design project from the second semester is refined.Students are required to combine a Revit architecture model and the Civil 3D civil engineering model into one BIM model (Fig.4).The architecture model includes a large terrace covering a parking garage, which is a typical structure in urban Switzerland.This area is constructed using combined Revit and Civil 3D and leads to a BIM construction model for checking possible conflicts (catch basin depth,crossing pipes, grade changes, location of tree root balls etc.).The BIM Revit model, with the integrated Civil 3D data, is the information hub for further calculations, simulations, etc.

        The results of the first HSR fifth semester work submitted at the beginning of November 2018 are very promising.A survey was taken by the students and the evaluations indicate a high level of satisfaction.Interviews with students show the same results.The above BIM construction workflow (Civil 3D/Revit) was also tested in several continuing education courses at HSR for Swiss Landscape Architecture of fices in spring and summer 2018.In China at SouthEast University in Nanjing the workflow was used in the Advanced Landscape Technology course as part of the SEU Landscape Architecture Master program first time in June 2018, while at Tsinghua University in Beijing it was tested as part of a “Teaching for Teachers” workshop in November 2018.Thus, the approach is valid and reliable.

        Besides traditional engineering courses on materials, surveying, geotechnics, and construction techniques, grading is the most important topic in the site engineering education at HSR.Digital grading as part of the landscapingSMART process leads to a BIM construction model and is the access road to BIM in Landscape Architecture (Fig.5~6).

        Notes:

        ① The authors are solely responsible for the content of this technical presentation.The technical presentation does not necessarily reflect the official position of the Council of Educators in Landscape Architecture (CELA),and its printing and distribution does not constitute an endorsement of views which may be expressed.Citation of this work should state that it is from a CELA conference paper.For information about securing permission to reprint or reproduce this paper, please contact CELA at staff@thecela.org.

        ② All images are of Peter Petschek.

        猜你喜歡
        景觀建筑模型
        一半模型
        景觀別墅
        《北方建筑》征稿簡則
        北方建筑(2021年6期)2021-12-31 03:03:54
        火山塑造景觀
        重要模型『一線三等角』
        關于建筑的非專業(yè)遐思
        文苑(2020年10期)2020-11-07 03:15:36
        建筑的“芯”
        包羅萬象的室內景觀
        重尾非線性自回歸模型自加權M-估計的漸近分布
        3D打印中的模型分割與打包
        久久亚洲中文字幕精品二区| 国产国语对白一区二区三区| 麻豆成年视频在线观看| 国产免费成人自拍视频| 少妇被爽到高潮喷水久久欧美精品| 亚洲自偷自拍熟女另类| 国产亚洲sss在线观看| 成人av在线免费播放| 亚洲一区二区二区视频| 国产在视频线精品视频| av天堂精品久久久久| 亚洲av大片在线免费观看| 国产一区二区三区日韩精品| 夜夜躁狠狠躁2021| 视频在线观看一区二区三区| 亚洲中文字幕一区高清在线| 色爱情人网站| 又湿又黄裸乳漫画无遮挡网站| 91精品国产免费青青碰在线观看 | 欧美性videos高清精品| 久久久国产精品ⅤA麻豆百度| 精品国产乱子伦一区二区三| 97人妻人人做人碰人人爽| 日韩精品无码久久久久久 | 按摩女内射少妇一二三区| 国产精品福利高清在线| 国产精品一区二区在线观看| 國产AV天堂| 国产成av人在线观看| 国产精品久久久爽爽爽麻豆色哟哟| 亚洲欧美日韩一区二区三区在线| 久久91精品国产91久| 成人av综合资源在线| 国产av无码专区亚洲av中文| 青春草国产视频| 国产风骚主播视频一区二区| 国内精品久久久久影院优| 免费人成年小说在线观看| 日韩精品极品免费观看| 亚洲男人天堂一区二区| av香港经典三级级 在线|