亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一次模擬聯(lián)考中的文理科導數(shù)綜合題命制過程

        2019-10-11 05:48:36湖北省恩施州教育科學研究院
        中學數(shù)學雜志 2019年19期

        ☉湖北省恩施州教育科學研究院 周 威

        2019年3月湖北省七市州聯(lián)考在緊張的復習備考中結(jié)束,筆者恰好與十堰程老師、宜昌向老師擔任此次模擬考的命題任務,從湖北省教育學會2019年3月的質(zhì)量分析會來看,頗為好評.現(xiàn)將此次聯(lián)考文理科中兩個導數(shù)壓軸題的命制過程進行簡單總結(jié),與大家分享交流.

        一、文科導數(shù)綜合題的主要命題過程

        1.從理科高考題中尋找文科命題的靈感

        一直以來,聯(lián)考或者模擬考的命題都是以高考為模板,改編策略的文章也比比皆是,事實上,高考題也確實是最好的原創(chuàng)命題素材.2018年全國理科數(shù)學卷Ⅱ的第21題導數(shù)綜合題也一直被許多專家拿來深入研究或改編,原題如下:

        題目已知函數(shù)f(x)=ex-ax2.

        (1)若a=1,證明:當x≥0時,f(x)≥1;

        (2)若f(x)在(0,+∞)內(nèi)只有一個零點,求a.

        這道題不是太難,但作為考查文科生一輪復習情況確實可以了,再加之現(xiàn)在文理合卷是必然,那么能不能從此理科題出發(fā),命制一道此次聯(lián)考的文科導數(shù)綜合題呢?雖然改編較多,但是都保留了f(x)=ex-ax2本身不動.靈感一來,就繼續(xù)思考:如何對f(x)本身進行改編成為一個全新的函數(shù)?第一感覺就是若把參數(shù)a提前作為ex的系數(shù)構(gòu)成一個新的函數(shù),那么第一問就可以令a等于某個常數(shù),改編成常規(guī)的求單調(diào)區(qū)間問題;第二問自然通過某個不等式成立時,探究參數(shù)a的范圍來考查學生的數(shù)學抽象、邏輯推理、數(shù)學運算的核心素養(yǎng).這種結(jié)構(gòu)也恰好與上面的高考題保持一致.

        2.從積分計算中確定函數(shù)表達式

        首先,如何確定f(x),是不是就簡單地變?yōu)閒(x)=aex-x2?但總感覺就是太“簡單”,讓人忘不了“原型”,于是構(gòu)建了函數(shù)f(x)=aex-(x+1)2,但在第一問中求導之后,要確定f(x)=aex-(x+1)2的單調(diào)區(qū)間時,要二階求導,這與文科歷年高考有出入.那么如何解決這一個問題呢?最好的方法就是在求導之后能進行因式分解.要出現(xiàn)因式分解,就必須有(x+1)公因子,也就是aex部分要加入一個因式使得求導之后變?yōu)閍ex(x+1)的形式,那么其原函數(shù)是什么呢?于是通過不定積分axex+C,最終將函數(shù)修改為f(x)=axex-(x+1)2.表達式簡潔干凈,完全沒有了“原型”的影子.

        3.從數(shù)形結(jié)合中確定設(shè)問

        根據(jù)之前的設(shè)想,令a=1得到了第一問:若a=1,求函數(shù)f(x)的單調(diào)區(qū)間.那么如何通過某個不等式成立時,探究參數(shù)a的范圍呢?誠然,必須畫出此函數(shù)的圖像,為了方便快捷,通過幾何畫板動態(tài)演示a變化時圖像的形狀,如圖1所示:

        圖1

        圖中A點的橫坐標表示a的值,通過移動A點時的細心觀察,在a為正數(shù)變化時,總在x≥1部分,有f(x)≥-2恒成立!到這里,不免讓人有點激動,因為第二問就可以設(shè)為:若x≥1時f(x)≥-2恒成立,求a的取值范圍.那么計算的角度能不能做出來答案呢?如是筆者著手計算,結(jié)果如預設(shè)一樣,恰好可以!但考慮到高考中主要是以f(x)≥0恒成立為主,所以對原函數(shù)作了向上移動兩個單位的修改,如是題目最終呈現(xiàn)為:

        文科成題已知函數(shù)f(x)=axex-x2-2x+1(其中a∈R,e為自然對數(shù)的底數(shù)).

        (1)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;

        (2)若x≥1時,f(x)≥0恒成立,求a的取值范圍.

        4.從“一題多解”中驗證結(jié)果

        第一問的解答,自然是考查學生基礎(chǔ)知識,基本運算,基本方法,直接求導,根據(jù)固定步驟求出f′(x)的零點(解答略).第二問主要考查學生的分類討論,具體解答為:

        解法1:(2)由已知得f′(x)=aex(x+1)-2(x+1)=(x+1)(aex-2)=0,其中x≥1.

        ①當a≤0時,由于x≥1,得f′(x)=(x+1)(aex-2)<0,故f(x)在[1,+∞)上為減函數(shù),顯然不成立.

        那么,此題是否陷入單一解法的思維定式呢,對于平時復習中經(jīng)常用到的“分離變量”是否可以呢?簡答如下:

        解法2:x≥1時,f(x)=axex-x2-2x+1≥0恒成立,即對x≥1恒成立,令,則h′(x),所以

        對h(x)求導看似復雜,實則計算完畢的時候恰好分子中不含ex,給計算帶來了方便.

        5.從“變式”中強化考點

        第二問的設(shè)問,只是我們考查學生知識、技能、思想與方法的諸多形式中的一種,事實上,我們還可以根據(jù)平時高頻考點,進行如下設(shè)問,達到觸類旁通的效果:

        變式1:若函數(shù)f(x)在(0,+∞)內(nèi)只有一個零點,求a的取值范圍.

        變式2:若方程f(x)=-1有解,求a的取值范圍.

        變式3:對任意的x1,x2∈(0,2),總有|f(x1)-f(x2)|≤ae,求a的取值范圍.

        二、理科導數(shù)綜合題的主要命題過程

        1.從改編中把握穩(wěn)中求變的命題規(guī)律

        理科函數(shù)零點問題從2017年以來就是熱點,函數(shù)考查形式采取“指+冪”或“對+冪”或“指+對”的形式,導數(shù)一般不難求,例如2018年全國卷Ⅰ理科21題中f(x)2015年山東卷理科21題中f(x)=ln(x+1)+a(x2-x),2011年遼寧卷理科21題中f(x)=-ax2+(2-a)x+lnx等,都是類似lnx和二次式Ax2+Bx+C的組合,那么是否可以出現(xiàn)lnx和三次式Ax3+Bx2+Cx+D的組合呢?這種“變化”讓人很自然地想到.如是經(jīng)過查找資料,驚喜地發(fā)現(xiàn)了與lnx的組合,就有了如下題目主干與第一問:

        思考:y=f(x)+g(x)的零點個數(shù)與a的關(guān)系好不好計算呢?

        2.體現(xiàn)“多考一點想,少考一點算”

        為了設(shè)置第二問和解答上面的思考,如是借助了幾何畫板得到簡圖,如圖2、圖3、圖4所示:

        圖2

        圖3

        圖4

        當a=-0.38時,y=f(x)+g(x)才有圖2的情況,當a≥0時圖像不是很理想,當a<0時圖像形狀與圖2差不多,只是位置不一樣,也不好繼續(xù)設(shè)問.但是,當分別畫出f(x),g(x)的圖像時,伴隨a<0變化,會出現(xiàn)圖3和圖4的情況,如果只考慮函數(shù)min{f(x),g(x)}的圖像,那么函數(shù)min{f(x),g(x)}的零點會最多出現(xiàn)3個(圖4)的情況,如是得到整個理科21題:

        理科成題已知函數(shù)f(x)=lnx,g(x)=x3+2(1-a)x2-8x+8a+7.

        (1)當a=0時,求y=f(x)+g(x)的單調(diào)區(qū)間;

        (2)當a<0時,記函數(shù)h(x)=min{f(x),g(x)},x>0,若函數(shù)y=h(x)至少有三個零點,求實數(shù)a的取值范圍.

        三、考試結(jié)果及反思

        這兩個導數(shù)綜合題,都是在高考的影子中尋找出路,都是常規(guī)的求參數(shù)值或取值范圍、求函數(shù)的性質(zhì)(單調(diào)區(qū)間、最值、極值、零點等)、求解或證明不等式、處理探究性問題等知識點,考查學生的函數(shù)思想、轉(zhuǎn)化與化歸思想、數(shù)形結(jié)合能力、綜合分析解決問題能力、運算推理能力等,預設(shè)難度是0.3至0.35.從筆者所在地區(qū)考試結(jié)果來看文科導數(shù)綜合題的難度系數(shù)為0.18,理科導數(shù)綜合題的難度系數(shù)為0.24,與其他地市交流時,這個難度系數(shù)值也差距不大.這就很好地達到了檢查第一輪復習效果的目的,暴露了一輪復習中對導數(shù)綜合應用的弱點,也為第二輪復習或?qū)m棌土曁峁┝藚⒖家罁?jù).

        數(shù)學命題確實是一件讓人痛苦并快樂的事情,它沒有現(xiàn)成的套路,屬于創(chuàng)造性的智力活動,在命題過程中,除了本文中說到的幾點,也有很多文章關(guān)于這方面的真知灼見,總之,需要不斷嘗試、實驗、探索、合作.值得一提的是,整個命題過程中都不可避免地用到了幾何畫板,它為我們在平時的試題改編、疑難求解提供了一種較為簡便的途徑,這也從另一個角度說明了信息技術(shù)2.0時代,數(shù)學課堂與數(shù)學軟件的結(jié)合必然是大勢所趨.

        白色月光在线观看免费高清| 亚洲精品蜜夜内射| 久久精品免费一区二区三区| 欧美多毛肥胖老妇做爰| 午夜无遮挡男女啪啪免费软件| 亚洲av成人中文无码专区| 无码一区二区三区亚洲人妻| 免费无码又黄又爽又刺激| 国产第19页精品| 四虎影视国产884a精品亚洲| 亚洲av区一区二区三区| 老熟妇嗷嗷叫91九色| 国产免费av手机在线观看片| 亚瑟国产精品久久| 最新国产日韩AV线| 国产精品白浆一区二区免费看| 亚洲一二三四五区中文字幕| 深夜一区二区三区视频在线观看| 风情韵味人妻hd| 欧美性猛交内射兽交老熟妇| 欧美色图50p| 女同视频网站一区二区| 久久精品熟女亚洲av麻| 人人摸人人操| 欧美在线a| 亚洲a级片在线观看| 精品国产麻豆一区二区三区| 丝袜美腿视频一区二区 | 国产亚洲成av人片在线观看| 久久人妻少妇嫩草av蜜桃| 91精品啪在线观看国产色| 日韩亚洲国产中文字幕| 欧美性白人极品1819hd| 国产精品久久久久影院嫩草| 桃花影院理论片在线| 精品四虎免费观看国产高清 | 国产精品久久av高潮呻吟| 少妇粉嫩小泬喷水视频| 亚洲av无码一区二区二三区下载| 国产成人亚洲合色婷婷| 人人妻人人澡人人爽国产|