何偉佳,岳思遠(yuǎn),王翔,孫天妹,董慶利
食源性致病菌群體感應(yīng)信號分子的檢測
何偉佳,岳思遠(yuǎn),王翔,孫天妹,董慶利
上海理工大學(xué) 醫(yī)療器械與食品學(xué)院,上海 200093
群體感應(yīng) (Quorum sensing,QS) 在食物中毒導(dǎo)致的食源性疾病暴發(fā)機(jī)制和食物腐敗變質(zhì)中起主要作用,QS影響致病菌的細(xì)胞被膜形成和致病性。文中通過深入了解食源性致病菌的QS信號分子,綜述了革蘭氏陰性和革蘭氏陽性菌產(chǎn)生的信號分子類型,同時介紹了檢測QS信號分子的不同技術(shù),并根據(jù)QS機(jī)制在食品中的影響提出了思考和建議,為監(jiān)控食源性致病菌提供依據(jù)。
食源性致病菌,群體感應(yīng),檢測技術(shù),信號分子
近年來,人們越來越關(guān)注群體感應(yīng)(Quorum sensing,QS) 信號分子對食品質(zhì)量與安全的影響。許多研究表明,QS在生物被膜形成、食物中毒導(dǎo)致的食源性疾病暴發(fā)機(jī)制和食物腐敗變質(zhì)中起主要作用。目前已在牛奶、肉類和蔬菜等不同食品類別中檢測到多種信號分子[1],而產(chǎn)生信號分子的嗜冷菌是導(dǎo)致動物源食品腐敗變質(zhì)的主要因素[2]。同時,食源性致病菌大腸桿菌O157:H7、單增李斯特菌及銅綠假單胞菌[3]等易在食品表面和食品接觸設(shè)備上形成生物被膜,進(jìn)而導(dǎo)致消費(fèi)者產(chǎn)生嚴(yán)重的健康問題和經(jīng)濟(jì)損失[4]。因此,為加強(qiáng)食品安全,降低食源性疾病的暴發(fā)水平和減少消費(fèi)者的經(jīng)濟(jì)損失,需深入研究QS對食源性致病菌細(xì)胞個體和細(xì)胞間的影響。
實(shí)際生活中有很多控制物質(zhì)可以解決食品設(shè)備上生物被膜的形成,如各種抗菌精油[3]及中草藥[5]等群體感應(yīng)抑制劑[6]。自1994年Fuqua等首次提出“群體感應(yīng)”這一術(shù)語,人們對QS系統(tǒng)及其信號分子的研究逐漸增多。QS是指細(xì)胞與細(xì)胞之間的交流過程,該過程通過產(chǎn)生和感知某些自誘導(dǎo)小分子物質(zhì)的局部濃度,來進(jìn)一步調(diào)節(jié)基因表達(dá)產(chǎn)物(如酶或毒性因子) 的產(chǎn)生[7]。自誘導(dǎo)物質(zhì)也稱為信號分子,它的濃度隨種群數(shù)量的增加而增加,在達(dá)到臨界閾值后,會引發(fā)一種調(diào)節(jié)反應(yīng),進(jìn)而導(dǎo)致整個細(xì)菌群體中與QS相關(guān)的目標(biāo)基因協(xié)調(diào)表達(dá)或抑制[8-9]。研究發(fā)現(xiàn)許多致病菌可以釋放QS信號分子,它們在食品中發(fā)揮著重要的作用,因此通過新型檢測技術(shù)對QS信號分子進(jìn)行監(jiān)測,并預(yù)防食源性疾病的發(fā)生顯得尤為重要。
本文綜述了食源性致病菌信號分子的分類及其機(jī)制對食品的影響,同時介紹了食源性致病菌信號分子的檢測方法,并根據(jù)當(dāng)前QS研究的不足之處,提出了思考和建議,為監(jiān)控食品環(huán)境中致病菌的生長提供了理論依據(jù)。
QS信號分子按化學(xué)結(jié)構(gòu)的不同主要分為4個類別:自誘導(dǎo)劑-1 (AI-1)、自誘導(dǎo)劑-2 (AI-2)、自誘導(dǎo)劑-3 (AI-3) 和自誘導(dǎo)多肽(AIP)[10]。表1為部分食源性致病菌的QS信號分子及調(diào)控的表現(xiàn)型,除此之外,在肺炎克雷伯菌、志賀氏菌、陰溝腸桿菌等致病菌中也發(fā)現(xiàn)AI-3,但它們的信號分子合成途徑、結(jié)構(gòu)和調(diào)控功能尚不清楚。
食源性致病菌大致分為兩類:革蘭氏陰性和革蘭氏陽性(細(xì)胞壁類型是主要區(qū)別)。其中AI-1和AI-3主要存在于革蘭氏陰性菌中,AIP主要被革蘭氏陽性菌使用,這3類QS信號系統(tǒng)主要涉及的是種內(nèi)交流[19]。而AI-2在革蘭氏陰性菌和革蘭氏陽性菌中均可發(fā)現(xiàn),其在QS信號系統(tǒng)中主要是用于種間通信[20-21]。革蘭氏陽性菌的QS信號分子通常使用的是肽類衍生物,而革蘭氏陰性菌的QS信號分子一般使用脂肪酸衍生物,最常見的是AI-1類的N-?;?髙絲氨酸內(nèi)酯(N-acyl L-homoserine lactones,AHLs)[22]。自從在研究費(fèi)氏弧菌中生物發(fā)光現(xiàn)象時發(fā)現(xiàn)第一個基于AHL的QS系統(tǒng)以來,到目前為止,已在50多種革蘭氏陰性菌中發(fā)現(xiàn)了含AHLs的QS系統(tǒng)。自誘導(dǎo)多肽(AIPs)則在40多個物種中已得到確認(rèn),AIPs具有體積小、穩(wěn)定性高、特異性和多樣性等特點(diǎn)[23]。
表1 部分食源性致病菌的QS信號分子及調(diào)控的表現(xiàn)型
對于食源性致病菌而言,QS作為一種細(xì)胞間的傳播機(jī)制,它通常發(fā)生在相同或不同種類的細(xì)菌之間。當(dāng)信號分子達(dá)到閾值時就會激活一些基因的轉(zhuǎn)錄,從而改變生物表型[11]。因此,依靠QS改變的基因大多發(fā)生在細(xì)菌生長指數(shù)期后半段或穩(wěn)定期,而不是在生長初期被激活或抑制[24]。QS調(diào)控性狀包括生物被膜的形成、毒力因子的產(chǎn)生、生物發(fā)光、耐酸脅迫、細(xì)菌素生產(chǎn)、粘附能力、形態(tài)轉(zhuǎn)換和定向生長[23]。圖1簡單地列舉了群體感應(yīng)與信號分子的關(guān)系。
根據(jù)分子結(jié)構(gòu),QS信號分子通常可以通過生物測定或化學(xué)方法檢測。
生物傳感技術(shù)是一種選擇性和敏感性較高的技術(shù),在該技術(shù)中,分析物被結(jié)合到生物成分(如組織、酶、蛋白質(zhì)等) 中,使信號被轉(zhuǎn)換成可分析和可測量的輸出量[25]。通常使用的生物傳感器自身不產(chǎn)生信號分子,但擁有它們的同源受體,其檢測是通過不同的表型,包括色素、光(生物發(fā)光)、綠色熒光蛋白和β-半乳糖苷酶來實(shí)現(xiàn)的。生物傳感技術(shù)因其靈敏度高和可檢測多種AHL型系統(tǒng)/自誘導(dǎo)分子而得到廣泛應(yīng)用[26]。
使用生物傳感器也有一定缺陷。菌株產(chǎn)生的AHLs濃度通常較低且低于大多數(shù)生物傳感器的檢測極限,同時,生物傳感器檢測信號分子生產(chǎn)的能力受培養(yǎng)基組分、食品組分及食品中添加劑的影響,因此,盡管AHLs分子存在,生物傳感器仍可能會產(chǎn)生假陰性結(jié)果[27-28]。雖然每個生物傳感器適用于AHLs化合物的范圍有限,但生物傳感器已被應(yīng)用于一些食品中QS信號分子的檢測。Blana等[29]和Almasoud等[30]為測試精油、乳酸和蘋果酸類抗菌物質(zhì)對細(xì)菌的信號分子活性的影響,使用生物傳感技術(shù)篩選菌株并測試微生物培養(yǎng)液中AI-2活性,從而證明植物精油和有機(jī)酸可有效抑制細(xì)菌的QS能力。在不久的將來,生物傳感器有可能發(fā)展成為儀器,為更精確和靈敏的測定提供方向。
2.2.1 薄層色譜法(Thin layer chromatography,TLC)
圖1 群體感應(yīng)調(diào)控圖[11]
TLC是跟蹤有機(jī)化學(xué)反應(yīng)進(jìn)展、分析植物化學(xué)和生物技術(shù)中有機(jī)化合物純度的最有效工具之一。與所有的色譜方法一樣,它利用分析物與流動相和固定相的不同親和力,實(shí)現(xiàn)了有機(jī)分子復(fù)雜混合物的分離[31]。在QS檢測中,一般是當(dāng)細(xì)菌生長到指數(shù)后期或晚期時,用二氯甲烷、乙酸乙酯或氯仿等有機(jī)溶劑提取培養(yǎng)上清液中的AHLs,然后通過TLC在C18反相層析板上分離細(xì)菌提取物,最后覆蓋一層含傳感菌的瓊脂培養(yǎng)基后進(jìn)行培養(yǎng)[32-33]。
TLC是文獻(xiàn)中普遍報道的一種技術(shù),可用于所有信號分子的檢測和表征[26]。為判斷信號分子對細(xì)菌動態(tài)生長行為的影響,Chorianopoulos等[34]和Dourou等[35]通過TLC分析發(fā)現(xiàn),部分細(xì)菌(例如哈夫尼菌屬、耶爾森菌屬等) 的AHLs會抑制其他細(xì)菌的代謝活性和生物被膜的生長。TLC雖操作繁瑣,但因不需要昂貴的硬件設(shè)備,且其結(jié)合生物傳感技術(shù)分析AHLs較為敏感可靠,現(xiàn)已作為一種有效分析方法并被廣泛采用。
2.2.2 高效液相色譜-質(zhì)譜(High-performance liquid chromatography-MS,HPLC-MS)
HPLC-MS集成了高效液相色譜和質(zhì)譜掃描,可以在檢測產(chǎn)AHLs離子質(zhì)量的同時,在單個質(zhì)譜圖中以高分辨率和高質(zhì)量精度生成全質(zhì)譜-色譜運(yùn)行,該方法可篩選多種革蘭氏陰性菌中的AHLs產(chǎn)生,如銅綠假單胞菌、洋蔥伯克霍爾德菌、歐文氏菌等[36]。高效液相色譜(HPLC) 被證明是一種有效的生物液體、中藥物和代謝產(chǎn)物的定量測定技術(shù)。對于AIPs,尤其是與食品相關(guān)的細(xì)菌素,檢測方法主要是通過瓊脂平板做抑制試驗,基于HPLC技術(shù)測定指示菌株的抑制圈以及測量指示菌株的透明區(qū)域[37]。
綦國紅等[38]證明,在沒有標(biāo)樣的情況下,樣品經(jīng)過處理后可應(yīng)用HPLC-MS對樣品中任意的AHLs分子進(jìn)行定性分析。HPLC-MS不僅對檢測的AHLs化合物分離能力強(qiáng),而且對AHLs的分析范圍較廣。隨著技術(shù)的進(jìn)步,為滿足信號分子的定性及定量分析,HPLC-MS已逐漸被HPLC- MS/MS替代并被廣泛使用。
2.2.3 氣相色譜-質(zhì)譜(Gas chromatography- MS,GC-MS)
因為可檢測到?;湹淖兓?,GC-MS已被證明是定性和定量測定AHL的一種簡便方法。GC-MS可直接、有效地反映細(xì)菌培養(yǎng)液上清中存在的信號分子[39]。GC-MS適用于沸點(diǎn)低于400 ℃、揮發(fā)性強(qiáng)、極性小的化合物[26]。
Cataldi等[40]利用GC-MS明確地鑒定了沙門氏菌、銅綠假單胞菌、結(jié)腸炎耶爾森菌和熒光假單胞菌提取物中的信號分子,并在沙門氏菌無細(xì)胞培養(yǎng)上清液的提取物中,發(fā)現(xiàn)了幾種新型的AHLs。Davenport等[41]通過GC-MS對銅綠假單胞菌的代謝產(chǎn)物進(jìn)行分析,顯示約三分之一的代謝產(chǎn)物(包括三羧酸循環(huán)中間體、氨基酸和脂肪酸的濃度變化) 均受QS的干擾。一般采用GC-MS對低分子量化合物進(jìn)行優(yōu)選分析,用HPLC-MS對體積較大、極性較大的化合物進(jìn)行分析。
除了上述方法,還可通過串聯(lián)質(zhì)譜法(Tandem mass spectrometry,MS/MS)、核磁共振光譜(Nuclear magnetic resonance spectroscopy,NMR)、紅外光譜法(Infrared spectroscopy) 等分析方法檢測和定量AHLs[10]。質(zhì)譜、氣相色譜和液相色譜的結(jié)合為精確地測定分析物提供了有力的工具。根據(jù)不同的分子類型選擇相應(yīng)的檢測方法,有助于食品中信號分子的定量檢測,因此應(yīng)提高QS信號分子檢測的靈敏度,保障食品安全。
一個生物體可擁有多個具有不同功能的QS系統(tǒng),不同QS系統(tǒng)之間相互合作,共同調(diào)節(jié)生物體表型[42]。以銅綠假單胞菌為例,它有3個經(jīng)典的QS系統(tǒng),分別為Las、Rhl和PQS系統(tǒng)。Las系統(tǒng)轉(zhuǎn)錄調(diào)節(jié)因子和合成蛋白酶;Rhl系統(tǒng)產(chǎn)生合成酶并控制鼠李糖脂的產(chǎn)生,以及參與銅綠假單胞菌毒素蛋白向宿主細(xì)胞細(xì)胞質(zhì)的釋放;而假單胞菌PQS系統(tǒng)則與一些基因的產(chǎn)生和信號分子經(jīng)外膜囊泡的轉(zhuǎn)運(yùn)有關(guān)[43]。此外,假單胞菌PQS系統(tǒng)還誘導(dǎo)鼠李糖脂和其他分子參與銅綠假單胞菌中生物被膜的形成[44]。各系統(tǒng)相互合作且分工明確,調(diào)節(jié)細(xì)胞內(nèi)部和細(xì)胞之間的信息交流,幫助細(xì)胞更快適應(yīng)周圍環(huán)境并接收外界信息。銅綠假單胞菌的QS通路圖見圖2。
由QS機(jī)制可以看出,細(xì)菌在信號分子的調(diào)控下,可改變自身的代謝速率、表現(xiàn)型以及酶的產(chǎn)生等,從而對食品造成潛在的影響。研究發(fā)現(xiàn),牛奶的變質(zhì)主要與蛋白水解性嗜冷菌有關(guān)[45-46],Pinto等[1]從生乳中分離到的幾種蛋白水解性嗜冷菌(銅綠假單胞菌、沙雷氏菌、大腸桿菌、哈氏弧菌) 均產(chǎn)生不同的AHLs,結(jié)果表明,QS可能在牛奶和乳制品的變質(zhì)過程中發(fā)揮重要作用。Bruhn等[47]通過TLC檢測發(fā)現(xiàn),肉及肉制品在儲存和變質(zhì)過程中一直存在AHLs,其中,肉類樣品中產(chǎn)AHLs的細(xì)菌主要為腸桿菌科(占91%),其次是假單胞菌。Dogan等[48]、Ammor等[49]和Skandamis等[50]等研究證實(shí)與食物變質(zhì)相關(guān)的幾種細(xì)菌降解酶的活性均受QS調(diào)節(jié),包括蛋白水解、脂質(zhì)水解、幾丁質(zhì)水解和果膠水解,這表明這種細(xì)胞間通訊在食物變質(zhì)中可能發(fā)揮作用。
QS不僅參與許多食物的腐敗和發(fā)酵[23],還參與細(xì)菌的致病性,增加食品的致病機(jī)率。Kariminik等[12]發(fā)現(xiàn)銅綠假單胞菌作為一種條件致病菌,可以利用QS來調(diào)控其基因表達(dá),影響宿主的免疫應(yīng)答反應(yīng)。Silagyi等[51]確定大腸桿菌O157:H7在QS的影響下,會促進(jìn)細(xì)菌的生物被膜形成和粘附性,從而增加致病菌與食品接觸表面交叉污染的機(jī)率。種種跡象都表明QS在食品變質(zhì)過程和細(xì)菌致病性中發(fā)揮了重要作用。
圖2 銅綠假單胞菌的QS通路圖[12]
越來越多的報道證明QS不僅與食品的腐敗變質(zhì)有關(guān),還與食源性致病菌的毒性和致病機(jī)制有關(guān)。雖然在變質(zhì)的食品中可檢測到一定量的信號分子,但食品基質(zhì)對信號分子的影響仍不清楚。例如,它們?nèi)绾斡绊懫渌N類的細(xì)菌,它們對腐敗變質(zhì)的影響(如果有的話) 或食品成分如何影響QS分子(例如食品基質(zhì)中的抑制劑) 的釋放和穩(wěn)定性。因此,還需要進(jìn)一步研究,以了解信號分子在食品基質(zhì)中的潛在作用。為了解復(fù)雜的微生物群落中相互交流的信息,深入研究QS系統(tǒng),以積極改善食品質(zhì)量和保障食品安全,提出以下幾點(diǎn)建議:1) 確定食品環(huán)境中細(xì)菌相互作用的機(jī)制以及食品成分對信號分子的釋放和穩(wěn)定性的影響。2) 更新信號分子檢測技術(shù),根據(jù)致病毒素或食品中信號分子的濃度提高QS檢測靈敏度。3) 明確能改變細(xì)胞表型的信號分子閾值,對信號分子定量建模,提前預(yù)防食品變質(zhì)和安全問題。4) 開發(fā)QS抑制劑,以減小QS對食品的負(fù)面影響。
[1] Pinto UM, de Souza Viana E, Martins ML, et al. Detection of acylated homoserine lactones in gram-negative proteolytic psychrotrophic bacteria isolated from cooled raw milk. Food Control, 2007, 18(10): 1322–1327.
[2] de Oliveira GB, Favarin L, Luchese RH, et al. Psychrotrophic bacteria in milk: how much do we really know? Braz J Microbiol, 2015, 46(2): 313–321.
[3] Tapia-Rodriguez MR, Hernandez-Mendoza A, Gonzalez-Aguilar GA, et al. Carvacrol as potentialinhibitor ofand biofilm production on stainless steel surfaces. Food Control, 2017, 75: 255–261.
[4] de Kievit TR, Iglewski BH. Bacterial quorum sensing in pathogenic relationships. Infect Immun, 2000, 68(9): 4839–4849.
[5] Li XP, Chen GF, Wang JX, et al. Synergistic effect of cortex mouton extract combined with tea polyphenols on quality of cold-stored turbot fillets based on the inhibition of quorum sensing. Food Sci, 2017, 38(19): 223–229 (in Chinese).李學(xué)鵬, 陳桂芳, 王金廂, 等. 基于群體感應(yīng)抑制的丹皮提取物和茶多酚對冷藏大菱鲆的協(xié)同保鮮作用. 食品科學(xué), 2017, 38(19): 223–229.
[6] Ellappan K, Thirumalaswamy K, Harish BN, et al. Inhibition of quorum sensing-controlled biofilm formation inby quorum-sensing inhibitors. Microb Pathog, 2017, 111: 99–107.
[7] Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol, 1994, 176(2): 269–275.
[8] Bassler BL. Small talk: cell-to-cell communication in bacteria. Cell, 2002, 109(4): 421–424.
[9] Williams P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology, 2007, 153(12): 3923–3938.
[10] Bai AJ, Rai VR. Bacterial quorum sensing and food industry. Compr Rev Food Sci Food Saf, 2011, 10(3): 183–193.
[11] Pérez-Velázquez J, G?lgeli M, García-Contreras R. Mathematical modelling of bacterial quorum sensing: a review. Bull Math Biol, 2016, 78(8): 1585–1639.
[12] Kariminik A, Baseri-Salehi M, Kheirkhah B.quorum sensing modulates immune responses: an updated review article. Immunol Lett, 2017, 190: 1–6.
[13] Taga ME, Semmelhack JL, Bassler BL. The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in. Mol Microbiol, 2001, 42(3): 777–793.
[14] Brito PH, Rocha EPC, Xavier KB, et al. Natural genome diversity of AI-2 quorum sensing in: conserved signal production but labile signal reception. Genome Biol Evol, 2013, 5(1): 16–30.
[15] Bassler BL, Greenberg EP, Stevens AM. Cross-species induction of luminescence in the quorum-sensing bacterium. J Bacteriol, 1997, 179(12): 4043–4045.
[16] DuanisAssaf D, Steinberg D, Chai YR, et al. The LuxS based quorum sensing governs lactose induced biofilm formation by. Front Microbiol, 2016, 6: 1517.
[17] Walters M, Sircili MP, Sperandio V. AI-3 synthesis is not dependent onin. J Bacteriol, 2006, 188(16): 5668–5681.
[18] Pollitt EJG, West SA, Crusz SA, et al. Cooperation, quorum sensing, and evolution of virulence in. Infect Immun, 2014, 82(3): 1045–1051.
[19] Smith JL, Fratamico PM, Novak JS. Quorum sensing: a primer for food microbiologists. J Food Prot, 2004, 67(5): 1053–1070.
[20] Schauder S, Shokat K, Surette MG, et al. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol, 2001, 41(2): 463–476.
[21] de Keersmaecker SCJ, Sonck K, Vanderleyden J. Let LuxS speak up in AI-2 signaling. Trends Microbiol, 2006, 14(3): 114–119.
[22] Ahumedo M, Drosos JC, Vivas-Reyes R. Application of molecular docking and ONIOM methods for the description of interactions between anti-quorum sensing active (AHL) analogues and thebinding site. Mol BioSyst, 2014, 10(5): 1162–1171.
[23] Johansen P, Jespersen L. Impact of quorum sensing on the quality of fermented foods. Curr Opin Food Sci, 2017, 13: 16–25.
[24] Goo E, An JH, Kang YS, et al. Control of bacterial metabolism by quorum sensing. Trends Microbiol, 2015, 23(9): 567–576.
[25] Rodriguez-Mozaz S, de Alda MJL, Barceló D. Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem, 2006, 386(4): 1025–1041.
[26] Turan NB, Chormey DS, Büyükp?nar ?, et al. Quorum sensing: little talks for an effective bacterial coordination. TrAC Trends Anal Chem, 2017, 91: 1–11.
[27] Steindler L, Venturi V. Detection of quorum-sensing-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett, 2007, 266(1): 1–9.
[28] Zhao J, Quan CS, Jin LM, et al. Production, detection and application perspectives of quorum sensing autoinducer-2 in bacteria. J Biotechnol, 2018, 268: 53–60.
[29] Blana VA, Nychas GJE. Presence of quorum sensing signal molecules in minced beef stored under various temperature and packaging conditions. Int J Food Microbiol, 2014, 173: 1–8.
[30] Almasoud A, Hettiarachchy N, Rayaprolu S, et al. Inhibitory effects of lactic and malic organic acids on autoinducer type 2 (AI-2) quorum sensing ofO157:H7 andTyphimurium. LWT-Food Sci Technol, 2016, 66: 560–564.
[31] Kumar S, Jyotirmayee K, Sarangi M. Thin layer chromatography: a tool of biotechnology for isolation of bioactive compounds from medicinal plants. Int J Pharm Sci Rev Res, 2013, 18(1): 126–132.
[32] Blana V, Georgomanou A, Giaouris E. Assessing biofilm formation byserovar Typhimurium on abiotic substrata in the presence of quorum sensing signals produced by. Food Control, 2017, 80: 83–91.
[33] Zhang QQ. Study on quorum-sensing signal of spoilage bacteria in raw chicken meat[D]. Nanjing: Nanjing Agricultural University, 2014: 1–131 (in Chinese).張秋勤. 生鮮雞肉中腐敗菌群體感應(yīng)信號分子研究[D]. 南京: 南京農(nóng)業(yè)大學(xué)博士論文, 2014: 1–131.
[34] Chorianopoulos NG, Giaouris ED, Kourkoutas Y, et al. Inhibition of the early stage ofserovar enteritidis biofilm development on stainless steel by cell-free supernatant of aculture. Appl Environ Microbiol, 2010, 76(6): 2018–2022.
[35] Dourou D, Ammor MS, Skandamis PN, et al. Growth ofenteritidis andtyphimurium in the presence of quorum sensing signalling compounds produced by spoilage and pathogenic bacteria. Food Microbiol, 2011, 28(5): 1011–1018.
[36] Patel NM, Moore JD, Blackwell HE, et al. Identification of unanticipated and novel-Acyl L-homoserine lactones (AHLs) using a sensitive non-targeted LC-MS/MS method. PLoS ONE, 2016, 11(10): e0163469.
[37] Ge JP, Fang BZ, Wang Y, et al.enhances production of Paracin1.7, a bacteriocin produced byHD1-7, isolated from Chinese fermented cabbage. Ann Microbiol, 2014, 64(4): 1735–1743.
[38] Qi GH, Dong MS, Wu SM, et al. Determination of signal molecules N-Acyl-homoserine lactones by HPLC-MS. J Instrum Anal, 2007, 26(3): 417–419 (in Chinese).綦國紅, 董明盛, 吳勝明, 等. HPLC-MS法檢測N-?;?高絲氨酸內(nèi)酯類信號分子. 分析測試學(xué)報, 2007, 26(3): 417–419.
[39] Cataldi TRI, Bianco G, Frommberger M, et al. Direct analysis of selected-acyl-L-homoserine lactones by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom, 2004, 18(12): 1341–1344.
[40] Cataldi TRI, Bianco G, Palazzo L, et al. Occurrence of-acyl-L-homoserine lactones in extracts of some Gram-negative bacteria evaluated by gas chromatography-mass spectrometry. Anal Biochem, 2007, 361(2): 226–235.
[41] Davenport PW, Griffin JL, Welch M, et al. Quorum sensing is accompanied by global metabolic changes in the opportunistic human pathogen. J Bacteriol, 2015, 197(12): 2072–2082.
[42] Williams P, Cámara M. Quorum sensing and environmental adaptation in: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol, 2009, 12(2): 182–191.
[43] Wade DS, Calfee MW, Rocha ER, et al. Regulation ofquinolone signal synthesis in. J Bacteriol, 2005, 187(13): 4372–4380.
[44] Mellbye B, Schuster M. Physiological framework for the regulation of quorum sensing-dependent public goods in. J Bacteriol, 2014, 196(6): 1155–1164.
[45] Gargouri A, Hamed H, ElFeki A. Analysis of raw milk quality at reception and during cold storage: Combined effects of somatic cell counts and psychrotrophic bacteria on lipolysis. J Food Sci, 2013, 78(9): 1405–1411.
[46] Ribeiro Júnior JC, de Oliveira AM, Silva FDG, et al. The main spoilage-related psychrotrophic bacteria in refrigerated raw milk. J Dairy Sci, 2018, 101(1): 75–83.
[47] Bruhn JB, Christensen AB, Flodgaard LR, et al. Presence of acylated homoserine lactones (AHLs) and AHL-producing bacteria in meat and potential role of AHL in spoilage of meat. Appl Environ Microbiol, 2004, 70(7): 4293–4302.
[48] Dogan B, Boor KJ. Genetic diversity and spoilage potentials amongspp.isolated from fluid milk products and dairy processing plants. Appl Environ Microbiol, 2003, 69(1): 130–138.
[49] Ammor MS, Michaelidis C, Nychas GJE. Insights into the role of quorum sensing in food spoilage. J Food Prot, 2008, 71(7): 1510–1525.
[50] Skandamis PN, Nychas GJE. Quorum sensing in the context of food microbiology. Appl Environ Microbiol, 2012, 78(16): 5473–5482.
[51] Silagyi K, Kim SH, Lo YM, et al. Production of biofilm and quorum sensing byO157:H7 and its transfer from contact surfaces to meat, poultry, ready-to-eat deli, and produce products. Food Microbiol, 2009, 26(5): 514–519.
Progress in detection and modeling of quorum sensing molecules of foodborne pathogens
Weijia He, Siyuan Yue, Xiang Wang, Tianmei Sun, and Qingli Dong
School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Quorum sensing (QS) plays a major role in the outbreak mechanism of foodborne diseases caused by food poisoning and food spoilage. QS affects the formation of cell membrane and pathogenicity ofpathogenic bacteria. Through the in-depth understanding of QS molecules of food-borne pathogens, we describe here the types of signal molecules produced by Gram-negative and Gram-positive bacteria, and the differences in QS molecules. Meanwhile, we introduce the detection of QS molecules by different technologies. According to the influence of QS on food, we propose also future research needs for the control of foodborne pathogenic bacteria.
foodborne pathogen, quorum sensing, detecting techniques, signal molecules
February 11, 2019;
May 14, 2019
National Key Research and Development Project "Research and Development of Key Technologies for Food Safety" (No. 2018YFC1602502).
Qingli Dong. Tel: +86-21-55271117; E-mail: dongqingli@126.com
國家重點(diǎn)研發(fā)計劃“食品安全關(guān)鍵技術(shù)研發(fā)”重點(diǎn)專項(No. 2018YFC1602502)資助。
2019-05-29
http://kns.cnki.net/kcms/detail/11.1998.q.20190529.1338.001.html
何偉佳, 岳思遠(yuǎn), 王翔, 等. 食源性致病菌群體感應(yīng)信號分子的檢測. 生物工程學(xué)報, 2019, 35(9): 1707–1714.
He WJ, Yue SY, Wang X, et al. Progress in detection and modeling of quorum sensing molecules of foodborne pathogens. Chin J Biotech, 2019, 35(9): 1707–1714.
(本文責(zé)編 陳宏宇)