亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        有關(guān)矩陣廣義逆A(T2,)S的慣性指數(shù)及其應(yīng)用.浙江大學(xué)學(xué)報(bào)(理學(xué)版),2019,46(04):395-398,404

        2019-08-15 09:24:04吳中成賀寧馨上海工程技術(shù)大學(xué)數(shù)理與統(tǒng)計(jì)學(xué)院上海060貴州師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院貴州貴陽(yáng)55000
        關(guān)鍵詞:數(shù)理貴州上海

        吳中成,賀寧馨(.上海工程技術(shù)大學(xué)數(shù)理與統(tǒng)計(jì)學(xué)院,上海060;.貴州師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,貴州貴陽(yáng) 55000)

        0 Introduction

        Throughout this paper,we denote the set of all m×nmatrices over the complex number fieldbym×n,the set of all complex Hermitian matrices of ordermbyHm,thendimensional vector space overbyn.The symbolsA?,r(A),R(A)andN(A)stand for the conjugate transpose,the rank,the range,and the null space of a matrixA,respectively.IfA∈Hmis positive definite, positive semidefinite, negative definite and negative semidefinite,respectively,we writeA>0,A≥0,A<0andA≤0.

        Recall that an out inverse of a matrixAwith prescribed range spaceT and null spaceS is a solution of the restricted matrix equation

        and is denoted byA(2)T,S.Note that the frequentlyused generalized inverse,such as the Moore-Penrose inverse,the weighted Moore-Penrose inverse,the Drazin inverse,and the(generalized)Bott-Duffin inverse of a matrixAare all special cases ofA(2)T,S.Therefore, itis very meaningfulto investigate properties ofA(2)T,S.In the past few years,extensive research has been made related toA(2)T,S.For more details,see[1-4]and the references therein.

        wherei+(A),i-(A)andi0(A)are numbers of the positive,negative and zero eigenvalues ofAcounted with multiplicities,respectively.The inertia divides the eigenvalues of the matrix into three parts on the real line.Therefore,it can be used to characterize definiteness of the Hermitian matrix.

        In this work,we aim to establish the inertia formulae forandAs applications,we study the definiteness of some matrices.

        1 Main results

        We begin with the followingLemma,which follows from the definition ofthe inertia ofa Hermitian matrix.

        The followingLemmais due to[5].

        The followingLemmais needed in what follows.Lemma3[1]SupposeA,r(A)=r,Tis a subspace ofof dimensions≤r,andSis a subspace ofof dimensionm-s,thenAhas a{2}-inverseX such thatR(X)=T,N(X)=Sif and only if

        in which caseXis unique and is denoted byA(2)T,S.

        From[1],we can get the following result.Lemma4 LetA∈,r(A)=r,letTbe a subspace ofof dimensions≤r,andSbe a subspace ofCCmof dimensionm-ssuch thatA(2)T,Sexists.ThenA(2)T,Sif and only ifT=S⊥,whereS⊥stands for the orthogonal complementary ofS.

        Proof If:Let the columns ofUbe a basis forTandS⊥,that isR(U)=TandN(U*)=S.Then the columns ofAUspanAT.It follows from(1)inLemma3 thatr( )AU =s.SupposeU*AUx=0,thenAUxN(U*)=SandAUxR(AU)=AT.A further consequence of(1)isATS=0,thusAUx=0.In view of the fact thatAUis of full column rank,thenx=0,which impliesU*AUis nonsingular.SettingX=U(U*AU)-1U*,we have Xand

        Only if:SupposeX=A(T2,)S.Note the fact(R(X))⊥=N(X*),thenT=S⊥immediately.

        Now,we give the main results of this paper.Theorem 1 LetAj∈,r(Aj)=rj,letTjbe subspaces ofof dimensionssj≤rj,andSjbe subspaces ofof dimensionsm-sandT=S⊥jjjsuch thatexist.Supposethen there exist(j=1,2,…,n)such that

        where

        and

        Proof From the proof ofLemma4,there exists U1such that

        where

        Applying (a2)inLemma2 to (6), (7)and simplifying by elementary block congruence matrix operations yield(2)and(3),whereJ1andJ2can be expressed as(4)and(5).

        In theorem 5,letA1=-A,A2=BandB1,B2be identity matrices with appropriated size andD,Ai,Bi(=3,4,…,n)vanish.Together with(d1)inLemma1,we can easily get the following corollary.Corollary 1 LetA,B,Tj=Sj⊥be subspaces ofsuch thatA(T2)1,S1,B(T22),S2exist.Then there existUjj(j=1,2)such that

        where

        and

        then

        and

        Applying (c1)inLemma1 to the following equality

        whereIm,Instand for the identity matrices of orderm andn,respectively,then

        Combining(10),(11),(13)andLemma2,lead to

        Substituting the following equality

        into(14)and usingLemma2 and(e1)inLemma1,we can get(9).

        2 Applications

        In this part,we study the definiteness of some matrices.Theorem 3 LetAj,Tj,Sj,Bj,Uj,D,J1,J2be as in theorem 1.Then

        Proof In view of(2),(3)and(a1),(b1)inLemma1,we can easily get the results(a)~(d).

        Similarly,we can get the following results.Theorem 4 LetA,B,Tj,Sj,Uj,J3be as in corollary 1.Then

        and only if

        and only if

        Theorem 5 LetA,B,D,P,T,S,Uj,andJbe as in theorem 2.Then

        only if

        3 Conclusion

        In this paper,we firstly present the inertia formulae forand the corresponding results are generalized to the situationThen,we consider the inertia formulae forAs applications,we consider the necessary and sufficient conditions forthe matrix expressions mentionedabove and the expression to be positive(semi-)definite and negative(semi-)definite,respectively.

        猜你喜歡
        數(shù)理貴州上海
        上海電力大學(xué)
        踐行“德融數(shù)理” 打造“行知樂(lè)園”
        上海之巔
        上海諦霖鄒杰 Hi-Fi是“慢熱”的生意,但會(huì)越來(lái)越好
        貴州,有多美
        數(shù)理:多少人吃飯
        孩子(2019年9期)2019-11-07 01:35:49
        沉醉貴州
        多彩的貴州 多彩的茶
        貴茶(2018年6期)2018-05-30 09:53:50
        我與貴州茶一起
        貴茶(2018年6期)2018-05-30 09:53:36
        最天然呆筆記 誰(shuí)說(shuō)數(shù)理就一定枯燥艱深?
        亚洲一区二区三区在线高清中文| 国产成人av一区二区三区无码| 日韩人妻无码精品久久| 亚洲精品毛片一区二区三区| 国产精品一区2区三区| 午夜宅男成人影院香蕉狠狠爱| 中文字幕一区二区三区视频| 97久久国产亚洲精品超碰热| 天天做天天爱天天爽综合网| 国产精品99久久久精品免费观看| 亚洲av一区二区网址| 伊人久久亚洲精品中文字幕| 国产精品久久久久一区二区三区| 特黄a级毛片免费视频| 亚洲国产精品久久久性色av| 国产情侣自拍偷拍精品| 国产精品久久久久久久久电影网| 麻豆精品传媒一二三区| 欧美真人性做爰一二区| 色窝窝手在线视频| 青青草原综合久久大伊人精品 | 精品色老头老太国产精品| av中文字幕一区人妻| 精品国产这么小也不放过| a在线观看免费网站大全| 亚洲精品98中文字幕| 人妻少妇久久中文字幕| 丰满人妻被两个按摩师| 国产一区二区三区在线观看免费 | 日日摸夜夜添夜夜添无码免费视频| AV永久天堂网| 久久亚洲精彩无码天堂| 日本一区二区三区四区啪啪啪| 亚洲一区二区三区四区五区六| 亚州综合激情另类久久久| 亚洲Av无码专区尤物| 国产精品女人一区二区三区| 天天综合天天爱天天做| 日产亚洲一区二区三区| 亚洲色婷婷免费视频高清在线观看| 色se在线中文字幕视频|