亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        茶樹(shù)CsGPX基因全基因組鑒定和表達(dá)分析

        2019-07-23 07:37:55王贊曹紅利岳川郭雅玲
        熱帶作物學(xué)報(bào) 2019年6期
        關(guān)鍵詞:非生物脅迫茶樹(shù)

        王贊 曹紅利 岳川 郭雅玲

        摘 ?要 ?為明確茶樹(shù)谷胱甘肽過(guò)氧化物酶(CsGPX)基因與非生物脅迫的關(guān)系,本研究利用生物信息學(xué)手段在茶樹(shù)基因組中篩選得到3條CsGPX基因,對(duì)其編碼蛋白理化性質(zhì)、基因結(jié)構(gòu)、系統(tǒng)進(jìn)化樹(shù)、順式作用元件進(jìn)行了分析。結(jié)果表明,CsGPX包含完整GPX結(jié)構(gòu)域和3段保守序列,都具6個(gè)外顯子。預(yù)測(cè)啟動(dòng)子上有參與植物激素和非生物脅迫響應(yīng)的順式作用元件。使用實(shí)時(shí)熒光定量PCR測(cè)定該基因的表達(dá)譜,發(fā)現(xiàn)它們?cè)诓煌M織中的表達(dá)有顯著差異。進(jìn)一步分析表明,CsGPX被低溫、ABA、鹽以及干旱處理上調(diào)表達(dá),但CsGPX2和CsGPX3的表達(dá)受低溫抑制。本研究為茶樹(shù)CsGPX家族基因克隆和功能驗(yàn)證提供基礎(chǔ)。

        關(guān)鍵詞 ?茶樹(shù);谷胱甘肽過(guò)氧化物酶(GPX);非生物脅迫

        中圖分類號(hào) ?S571.1 ?????文獻(xiàn)標(biāo)識(shí)碼 ?A

        Abstract ?To reveal the possible involvement of glutathione peroxidase genes (CsGPX) in the responses of tea plants to abiotic stresses, three CsGPX genes were identified by bioinformatics tools from the tea genome data, and the gene structures, the cis-elements on their promoters, the physiochemical characteristics of the encoded proteins and the phylogenetic trees were also studied. The results showed that all the CsGPX genes contained 6 exons and shared the gene family-specific GPX domain in addition to three other conserved domains. Cis-elements for the responses of plants to hormones and abiotic stresses were identified on the promoters. Quantitative real-time PCR analysis of the expression profiles revealed that they were significantly different in expression in different tissues. Further analysis showed that the three CsGPX genes were, in general, up-regulated by treatments of low temperature, ABA, salt and drought except that CsGPX2 and CsGPX3 were down-regulated by treatment of low-temperature. The results should have laid down a basis for further characterization of CsGPX family genes in tea plant.

        Keywords ?tea plant (Camellia sinensis); glutathione peroxidase (GPX); abiotic stress

        DOI ?10.3969/j.issn.1000-2561.2019.06.014

        生長(zhǎng)環(huán)境造成的非生物脅迫是農(nóng)作物減產(chǎn)、品質(zhì)下降的重要因素[1]。植物在低溫、干旱、高鹽、重金屬和農(nóng)藥等非生物脅迫下產(chǎn)生大量活性氧(reactive oxygen species, ROS)[2-4],導(dǎo)致脂質(zhì)過(guò)氧化、DNA和蛋白質(zhì)氧化以及光合器官的損傷[5]。而酶促和非酶促抗氧化防御機(jī)制是調(diào)節(jié)植物體內(nèi)ROS穩(wěn)態(tài),提高抗氧化能力的重要途徑[6-7]。

        谷胱甘肽過(guò)氧化物酶(glutathione peroxidase, GPXs)作為重要的酶促抗氧化劑,依賴于硫氧還蛋白(thioredoxin, Trx)還原分解H2O2,避免植物細(xì)胞氧化損傷,提高植物的抗逆性[8-10]。已經(jīng)在擬南芥[11]、水稻[12]、棉花[13]等植物中鑒定得到谷胱甘肽過(guò)氧化物酶基因家族,也驗(yàn)證其在非生物脅迫氧化應(yīng)激響應(yīng)中的重要性。Martinez等[14]檢測(cè)番茄葉綠素?zé)晒鈪?shù)發(fā)現(xiàn),LeGPX表達(dá)增加了對(duì)高鹽和熱脅迫抗性,保護(hù)光反應(yīng)系統(tǒng)功能。大豆GPX減少脂質(zhì)過(guò)氧化對(duì)細(xì)胞的損傷,緩解干旱脅迫帶來(lái)的危害[15]。轉(zhuǎn)錄組分析表明擬南芥AtGPX參與了低溫脅迫導(dǎo)致的氧化應(yīng)激響應(yīng),通過(guò)維持ROS平衡而減少氧化損害[16]。Wang等[17]發(fā)現(xiàn)水稻OsGPX突變體萌發(fā)活力低,對(duì)脅迫敏感并且發(fā)育不良。Zhou等[18]利用蛋白質(zhì)組學(xué)方法發(fā)現(xiàn)非生物脅迫導(dǎo)致ROS積累,而GPX等抗氧化酶活性的增加則有利于植物對(duì)抗ROS脅迫。

        隨著茶樹(shù)栽培面積的擴(kuò)大,由環(huán)境脅迫導(dǎo)致的茶芽萌發(fā)遲、長(zhǎng)勢(shì)差,營(yíng)養(yǎng)積累困難等問(wèn)題同步增長(zhǎng),對(duì)茶產(chǎn)量和品質(zhì)的影響更加嚴(yán)重[19-21]。雖然植物GPX基因在脅迫氧化應(yīng)激響應(yīng)中十分重要,但茶樹(shù)CsGPX在多種非生物脅迫下的表達(dá)模式的報(bào)道還少。茶樹(shù)基因組測(cè)序的完成使挖掘功能基因資源成為可能[22-23]。本研究通過(guò)生物信息學(xué)方法,基于已公開(kāi)的基因組數(shù)據(jù),對(duì)茶樹(shù)CsGPX家族基因進(jìn)行了全基因組鑒定,并分析了它們?cè)诜巧锩{迫下的表達(dá)模式,為CsGPX基因功能的進(jìn)一步研究打下初步基礎(chǔ)。

        1 ?材料與方法

        1.1 ?植物材料與非生物脅迫處理

        2018年5月中旬,在福建農(nóng)林大學(xué)園藝學(xué)院教學(xué)實(shí)驗(yàn)基地采取以下供試材料:

        (2)按照Yue等[24]的方法,選取2年生、健壯的盆栽鐵觀音茶苗,分別進(jìn)行如下處理:通過(guò)葉片噴灑濃度為100 μmol/L ABA溶液;將植株移入并保持在4?℃人工氣候室中;將茶苗從盆中小心取出,用清水洗凈根部泥土后放置在10% (w/V) PEG-6000溶液中;用250 mmol/L NaCl溶液灌溉。所有處理分別在0、3、9、24 h取樣,取頂端第2和第3片成熟葉片,用錫箔紙分裝后迅速投入液氮速凍,然后移至?80?℃保存?zhèn)溆?。各樣品均設(shè)置3次生物學(xué)重復(fù)。

        1.2 ?方法

        1.2.1 ?茶樹(shù)基因組CsGPX基因鑒定方法 ?從Pfam數(shù)據(jù)庫(kù)(http://pfam.xfam.org)下載GPX基因典型保守結(jié)構(gòu)域隱馬可夫模型HMM(Hidden Markov Modelle)文件Pf00255[8],利用HMMER3.0軟件分別在中國(guó)科學(xué)院昆明植物研究所公布的阿薩姆種[Camellia sinensis var. assamica (CSA; Assam type)]茶樹(shù)基因組數(shù)據(jù)庫(kù)中(http://www.plantkingdomgdb.com/tea_tree/)進(jìn)行比對(duì)搜索[22]。同時(shí)從TAIR數(shù)據(jù)庫(kù)(https://www. arabidopsis.org/)下載擬南芥AtGPX蛋白序列,作為檢索序列使用本地BLAST在茶樹(shù)基因組數(shù)據(jù)庫(kù)中檢索候選蛋白(E-value≤10?10)。利用Pfam和SMART(http://smart.embl-heidelberg.de/)檢測(cè)候選蛋白結(jié)構(gòu)域,獲得CsGPX蛋白序列。

        2 ?結(jié)果與分析

        2.1 ?茶樹(shù)CsGPX基因鑒定

        利用HMMER 3.0軟件和本地BLAST在茶樹(shù)基因組數(shù)據(jù)庫(kù)中檢索出候選蛋白,然后通過(guò)Pfam、SMART和DNAMAN比對(duì),確定包含完整GPX結(jié)構(gòu)域以及3個(gè)高度保守域(圖1A)的CsGPX基因,并依次命名為CsGPX1、CsGPX2和CsGPX3。生物信息學(xué)分析表明,CsGPX1編碼

        169氨基酸殘基,分子量為18.76 ku。CsGPX2編碼250氨基酸殘基,分子量為27.99 ku。CsGPX3編碼161氨基酸殘基,分子量為18.39 ku(表2)。

        2.2 ?茶樹(shù)CsGPX蛋白保守結(jié)構(gòu)域和進(jìn)化分析

        利用Pfam和SMART對(duì)CsGPX蛋白序列檢索發(fā)現(xiàn),這3條CsGPX包含了完整的GSHPx結(jié)構(gòu)域,還包含了GPX家族的PLN02399和GSH_Peroxidase結(jié)構(gòu)域(圖1C),主要集中在C端。多序列比對(duì)發(fā)現(xiàn),CsGPX含有3段高度保守序列(圖1A),分別為GKVLLIVNVASXCG(GPX signature 1),ILAFPCNQ(GPX signature 2)和WNFXKF[27],還有3個(gè)半胱氨酸殘基(Cys)以及組成預(yù)測(cè)的催化活性位點(diǎn)的氨基酸殘基。

        從Phytozome 12數(shù)據(jù)庫(kù)其他12個(gè)物種的GPX蛋白序列,采用N-J法與擬南芥和茶樹(shù)CsGPX構(gòu)建系統(tǒng)進(jìn)化樹(shù),bootstrap檢驗(yàn)采用1000次重復(fù)。結(jié)果顯示,CsGPX1、CsGPX2與可可TcGPX6、桃PpGPX6和擬南芥AtGPX6聚為一類,CsGPX3與西紅柿SiGPX8、蕓薹BrGPX8和擬南芥AtGPX8聚在一起(圖1B)。

        2.3 茶樹(shù)CsGPX保守元件和基因結(jié)構(gòu)分析

        利用MEME在線軟件對(duì)CsGPX和擬南芥AtGPX蛋白序列分析發(fā)現(xiàn)(圖2A),所有序列都包含第1、2、3、4總共4個(gè)Motif。其中Motif 1、Motif 2和Motif 3組成了CsGPX蛋白GSHPx結(jié)構(gòu)域,Motif 1、Motif 2、Motif 3和Motif 4則構(gòu)成PLN02399和GSH_Peroxidase結(jié)構(gòu)域,是CsGPX蛋白主要功能區(qū)域。

        將CsGPX基因CDS和其對(duì)應(yīng)的基因組序列通過(guò)GSDS在線分析,進(jìn)一步了解CsGPX基因結(jié)構(gòu)。結(jié)果顯示,這些基因結(jié)構(gòu)相似,都包括5個(gè)內(nèi)含子和6個(gè)外顯子(圖2B),與Zhai等人[28]的研究結(jié)果一致。

        下劃線分別表示3個(gè)保守結(jié)構(gòu)區(qū)域,紅色三角形表示哺乳動(dòng)物中被Sec取代的半胱氨酸殘基。綠色三角表示植物GPX蛋白的3個(gè)半胱氨酸殘基,紅色方框表示組成GPX催化部位的氨基酸殘基(Cys、Gln、Trp和Asn)。AcGPX:菠蘿Ananas comosus;SbGPX:高粱Sorghum bicolor;TcGPX:可可Theobroma cacao;CcGPX:克萊門(mén)柚Citrus clementina;StGPX:馬鈴薯Solanum tuberosum;GrGPX:棉花Gossypium raimondii;AtGPX:擬南芥Arabidopsis thaliana;VvGPX:葡萄Vitis vinifera;OsGPX:水稻Oryza sativa;PpGPX:桃Prunus persica;SlGPX:西紅柿Solanum lycopersicum;ZmGPX:玉米Zea mays;BrGPX:蕓薹Brassica rapa。

        2.4 ?茶樹(shù)CsGPX基因順式作用元件分析

        將每條CsGPX起始密碼子ATG上游2000 bp作為啟動(dòng)子區(qū),在線軟件PlantCARE預(yù)測(cè)了該區(qū)域順式作用元件。結(jié)果顯示(表3),3條CsGPX具有的順式作用元件主要分為植物激素響應(yīng)元件,如脫落酸響應(yīng)元件(ABRE)、乙烯響應(yīng)元件(ERE)、生長(zhǎng)素響應(yīng)元件(AuxRR-core)、茉莉酸甲酯響應(yīng)元件(CGTCA-motif)、赤霉素響應(yīng)元件(GARE-motif)等。植物生長(zhǎng)發(fā)育相關(guān)順式作用元件,如O2-site、Skn-1 motif和circadian。生物和非生物脅迫響應(yīng)順式作用元件,如熱脅迫響應(yīng)元件(HSE)、干旱誘導(dǎo)元件(MBS)、逆境防御響應(yīng)元件(TC-rich)、真菌誘導(dǎo)子響應(yīng)元件(Box-W1)。預(yù)測(cè)結(jié)果表明茶樹(shù)CsGPX在調(diào)節(jié)生長(zhǎng)發(fā)育、激素信號(hào)和應(yīng)對(duì)環(huán)境脅迫方面有重要作用。

        2.5 ?茶樹(shù)CsGPX基因表達(dá)分析

        通過(guò)實(shí)時(shí)熒光定量PCR分析了CsGPX在鐵觀音不同組織中的表達(dá),結(jié)果顯示CsGPX1在根中的表達(dá)水平遠(yuǎn)高地上部組織,而CsGPX2則是地上部的表達(dá)量高于地下部根系,CsGPX3則在莖、葉中有較高的表達(dá)量(圖3)。

        茶樹(shù)CsGPX在ABA、干旱(PEG)、低溫(4?℃)和高鹽(NaCl)脅迫下的表達(dá)譜見(jiàn)圖4,各處理下CsGPX表達(dá)的總體趨勢(shì)是上調(diào),其中ABA誘導(dǎo)CsGPX上調(diào)表達(dá)的速度快于PEG和NaC。低溫處理只對(duì)CsGPX1的表達(dá)有明顯的誘導(dǎo)作用。不同小寫(xiě)字母表示顯著差異(P<0.05)。

        3 ?討論

        本研究對(duì)茶樹(shù)全基因組范圍內(nèi)進(jìn)行了CsGPX基因鑒定,共得到3個(gè)CsGPX家族基因。生物信息學(xué)分析顯示均含有完整GPX保守結(jié)構(gòu)域,以及3段保守蛋白序列GKVLLIVNVASXCG(GPX signature 1),ILAFPCNQ(GPX signature 2)和WNFXKF[29]。植物GPX活性依賴3個(gè)保守的半胱氨酸(Cys)殘基的前2個(gè)[30-31],這與動(dòng)物的不同,動(dòng)物GPX的催化活性位點(diǎn)依賴含硒代半胱氨酸(SeCys)殘基。此外,茶樹(shù)CsGPX至少包含4個(gè)Motif,構(gòu)成了CsGPX蛋白主要保守功能區(qū)域[32],這也不同于動(dòng)物GPX。啟動(dòng)子區(qū)預(yù)測(cè)結(jié)果顯示,茶樹(shù)CsGPX的啟動(dòng)子上主要有植物激素、生物和非生物脅迫等響應(yīng)順式作用元件,暗示它們和其他植物中GPX基因一樣會(huì)受到多種植物激素的調(diào)控[33-35]。

        植物中GPX的組織特異性表達(dá)分析顯示,作為葉綠體蛋白的擬南芥AtGPX1通常在綠色組織中大量表達(dá)[31],荷花LjGPX家族成員在不同組織中的表達(dá)水平同樣差異顯著[27]。本研究結(jié)果表明根是CsGPX1主要表達(dá)部位,CsGPX2在莖、葉、花和果實(shí)中的表達(dá)量均較高,CsGPX3則是主要在莖、葉中表達(dá)。有研究認(rèn)為抗氧化基因的組織差異性表達(dá)模式有利于維持不同組織中的ROS穩(wěn)態(tài),有利于抗逆性的提高[36]。

        作為抗氧化代謝網(wǎng)絡(luò)中的關(guān)鍵酶,GPX維持細(xì)胞ROS水平從而保護(hù)細(xì)胞膜結(jié)構(gòu)完整,提高植物對(duì)脅迫氧化應(yīng)激的耐受程度[37-38]。過(guò)表達(dá)擬南芥AtPGX3不僅能夠調(diào)控H2O2穩(wěn)態(tài),并且通過(guò)Ca2+通道調(diào)節(jié)氣孔參與到ABA代謝途徑,提高對(duì)干旱脅迫耐受性[35]。在冷害脅迫下,水稻OsGPX參與了根部ROS清除,OsGPX高表達(dá)及其酶活性的增加提高了水稻的冷害耐受性[39-40]。Gao等[33]采用蛋白免疫印跡和熒光定量PCR技術(shù)發(fā)現(xiàn)高鹽脅迫在根和葉中調(diào)節(jié)鹽芥TsGPX表達(dá),TsGPX家族成員中TsGPX7對(duì)于抵御高鹽脅迫最為重要。非生物脅迫下的CsGPX表達(dá)譜說(shuō)明其參與茶樹(shù)的氧化應(yīng)激防御機(jī)制,本研究結(jié)果與已有報(bào)道結(jié)果相似[8, 12],干旱(PEG)、低溫(4?℃)和高鹽(NaCl)脅迫均能誘導(dǎo)提高茶樹(shù)葉片中不同CsGPX的表達(dá)水平,盡管不同的CsGPX對(duì)不同的處理的響應(yīng)程度有明顯的差異。

        ABA信號(hào)傳導(dǎo)途徑將外界環(huán)境的脅迫壓力通過(guò)一系列的ABA受體傳遞到下游代謝通道,進(jìn)而調(diào)控抗性基因表達(dá)來(lái)增強(qiáng)植物耐受性[41]。Dong等[42]對(duì)ABA合成突變體擬南芥研究發(fā)現(xiàn),ABA介導(dǎo)的信號(hào)網(wǎng)絡(luò)增強(qiáng)了酶催活性氧清除劑的基因轉(zhuǎn)錄水平,提高了耐鹽性。本研究中,CsGPX能迅速響應(yīng)ABA處理,3 h內(nèi)表達(dá)量就提高了3倍,并在處理的中后期保持較高水平。結(jié)合啟動(dòng)子序列分析,3條CsGPX均存在響應(yīng)ABA的順式作用元件ABRE,使得ABA可以調(diào)控CsGPX表達(dá)。通過(guò)水稻抗寒性轉(zhuǎn)錄分析揭示,在低溫脅迫下OsGPX表達(dá)量被上調(diào),谷胱甘肽過(guò)氧化物酶是主要的抗氧化劑,ABA信號(hào)轉(zhuǎn)導(dǎo)途徑相關(guān)基因參與了冷應(yīng)激反應(yīng),并且ABA信號(hào)通路起著主導(dǎo)作用[40]。Gaber[43]發(fā)現(xiàn)ABA作為脅迫響應(yīng)基因誘導(dǎo)物可調(diào)節(jié)擬南芥AtGPX家族基因表達(dá),通過(guò)在擬南芥中異源表達(dá)小麥TaGPX發(fā)現(xiàn),其在非生物脅迫和ABA信號(hào)傳導(dǎo)中有重要作用[28]。

        茶樹(shù)基因組數(shù)據(jù)的公布有利于從全基因組水平上對(duì)重要功能基因進(jìn)行篩選,其結(jié)果更為全面。本研究利用生物信息學(xué)手段,在茶樹(shù)全基因組中鑒定的到3條CsGPX基因家族成員,分析其在不同非生物脅迫中的表達(dá)模式。明確了該家族基因在茶樹(shù)逆境氧化應(yīng)激響應(yīng)中具有重要功能,豐富了茶樹(shù)抗逆機(jī)理研究,為進(jìn)一步在模式植物中對(duì)CsGPX進(jìn)行功能驗(yàn)證和優(yōu)良品種選育提供理論基礎(chǔ)。

        參考文獻(xiàn)

        Hu H, Xiong L. Genetic engineering and breeding of drought-resistant crops[J]. Annual Review of Plant Biology 2014, 65: 715-741.

        Shakir S K, Irfan S, Akhtar B, et al. Pesticide-induced oxidative stress and antioxidant responses in tomato (Solanum lycopersicum) seedlings[J]. Ecotoxicology, 2018(9): 1-17.

        Kumar D, Yusuf M A, Singh P, et al. Modulation of antioxidant machinery in -tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions[J]. Protoplasma, 2013, 250(5): 1079-1089.

        Manquián-Cerda K, Cruces E, Escudey M, et al. Interactive effects of aluminum and cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets cultivated in vitro[J]. Ecotoxicology and Environmental Safety, 2018, 150: 320- 326.

        Mates J M. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology[J]. Toxicology, 2000, 153(1-3): 83-104.

        Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12): 909-930.

        You J, Chan Z. ROS regulation during abiotic stress responses in crop plants[J]. Front Plant Science, 2015, 6: 1092.

        Zhou Y, Hu L, Ye S, et al. Genome-wide identification of glutathione peroxidase (GPX) gene family and their ?response to abiotic stress in cucumber[J]. 3 Biotech, 2018, 8(3): 159.

        Herbette S, Menn A L, Rousselle P, et al. Modification of photosynthetic regulation in tomato overexpressing glutathione peroxidase[J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2005, 1724(1-2): 108-118.

        Iqbal A, Yabuta Y, Takeda T, et al. Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thaliana[J]. The Federation of European Biochemical Societies Journal, 2006, 273(24): 5589- 5597.

        Milla M A R, Maurer A, Huete A R, et al. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways[J]. The Plant Journal, 2003, 36(5): 602-615.

        Islam T, Manna M, Kaul T, et al. Genome-wide dissection of Arabidopsis and rice for the identification and expression analysis of glutathione peroxidases reveals their stress-specific and overlapping response patterns[J]. Plant Molecular Biology Reporter, 2015, 33(5): 1413-1427.

        Chen M, Li K, Li H, et al. The glutathione peroxidase gene family in Gossypium hirsutum: genome-wide identification, classification, gene expression and functional analysis[J]. Scientific Reports, 2017, 7: 44743.

        Martinez V, Nieves-Cordones M, Lopez-Delacalle M, et al. Tolerance to stress combination in tomato plants: New insights in the protective role of melatonin[J]. Molecules, 2018, 23(3): 535.

        Xing X, Fang C, Li L, et al. Improved drought tolerance by α-naphthaleneacetic acid-induced ROS accumulation in two soybean cultivars[J]. Journal of Integrative Agriculture, 2016, 15(8): 1770-1784.

        Ren L, Zhang D, Chen G, et al. Transcriptomic profiling revealed the regulatory mechanism of Arabidopsis seedlings response to oxidative stress from cryopreservation[J]. Plant Cell Reports, 2015, 34(12): 2161-2178.

        Wang X, Fang G, Yang J, et al. A thioredoxin-dependent glutathione peroxidase (OsGPX5) is required for rice normal development and salt stress tolerance[J]. Plant Molecular Biology Reporter, 2017, 35(3): 333-342.

        Zhou X, Chen S, Wu H, et al. Biochemical and proteomics analyses of antioxidant enzymes reveal the potential stress tolerance in Rhododendron chrysanthum Pall[J]. Biology Direct, 2017, 12: 10.

        Liu S C, Jin J Q, Ma J Q, et al. Transcriptomic analysis of tea plant responding to drought stress and recovery[J]. PLoS ONE, 2016, 11(1): e0147306.

        Hao X, Yang Y, Yue C, et al. Comprehensive transcriptome analyses reveal differential gene expression profiles of Camellia sinensis axillary buds at para-, endo-, ecodormancy, and bud flush stages[J]. Frontiers in Plant Science, 2017, 8: 553.

        Cheruiyot E K, Mumera L M, Ng'etich W K, et al. High fertilizer rates increase susceptibility of tea to water stress[J]. Journal of Plant Nutrition, 2009, 33(1): 115-129.

        Xia E, Zhang H, Sheng J, et al. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Molecular Plant, 2017, 10(6): 866-877.

        Wei C L, Yang H, Wang S, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proceedings of the National Academy of Sciences, 2018, 115(18): E4151-E4158.

        Yue C, Cao H, Wang L, et al. Molecular cloning and expression analysis of tea plant aquaporin (AQP) gene family[J]. Plant Physiology and Biochemistry, 2014, 83: 65-76.

        Hao X, Horvath D, Chao W, et al. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)[J]. International Journal of Molecular Sciences, 2014, 15(12): 22155-22172.

        Cao H, Wang L, Yue C, et al. Isolation and expression analysis of 18 CsbZIP genes implicated in abiotic stress responses in the tea plant (Camellia sinensis)[J]. Plant Physiology and Biochemistry, 2015, 97: 432-442.

        Ramos J, Matamoros M A, Naya L, et al. The glutathione peroxidase gene family of Lotus japonicus: characterization of genomic clones, expression analyses and immunolocalization in legumes[J]. The New Phytologist 2009, 181(1): 103-114.

        Zhai C, Zhao L, Yin L, et al. Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis[J]. PLoS One, 2013, 8(10): e73989.

        Liu W, Zhao C, Wang P, et al. The response of glutathione peroxidase 1 and glutathione peroxidase 7 under different oxidative stresses in black tiger shrimp, Penaeus monodon[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2018, 217: 1-13.

        Attacha S, Solbach D, Bela K, et al. Glutathione peroxidase-like enzymes cover five distinct cell compartments and membrane surfaces in Arabidopsis thaliana[J]. Plant, Cell & Environment, 2017, 40(8): 1281-1295.

        Navrot N, Collin V, Gualberto J, et al. Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses[J]. Plant Physiology, 2006, 142(4): 1364-1379.

        Kim Y, Jang M, Noh H, et al. Molecular characterization of two glutathione peroxidase genes of Panax ginseng and their expression analysis against environmental stresses[J]. Gene, 2014, 535(1): 33-41.

        Gao F, Chen J, Ma T, et al. The glutathione peroxidase gene family in Thellungiella salsuginea: genome-wide identification, classification, and gene and protein expression analysis under stress conditions[J]. International Journal of Molecular Sciences, 2014, 15(2): 3319-3335.

        Passaia G, Queval G, Bai J, et al. The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2014, 65(5): 1403-1413.

        Miao Y, Lv D, Wang P, et al. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses[J]. The Plant Cell, 2006, 18(10): 2749-2766.

        Yu L, Ma J, Niu Z, et al. Tissue-specific transcriptome analysis reveals multiple responses to salt stress in populus euphratica seedlings[J]. Genes, 2017, 8(12): 372.

        Islam T, Manna M, Reddy M K. Glutathione peroxidase of pennisetum glaucum (PgGPx) Is a functional Cd2+ dependent peroxiredoxin that enhances tolerance against salinity and drought stress[J]. PLoS One, 2015, 10(11): e143344.

        Koua D, Cerutti L, Falquet L, et al. PeroxiBase: a database with new tools for peroxidase family classification[J/OL]. Nucleic Acids Research, 2009, 37(suppl_1): D261-D266. [2018-10-11]. https://doi.org/10.1093/nar/gkn680

        Yoo Y, Anil Kumar N C, Park J, et al. Global analysis of differentially expressed genes between japonica and indica rice roots reveals the molecular basis for enhanced cold tolerance in japonica rice[J]. Plant Biotechnology Reports, 2017, 11(6): 461-473.

        Zhao J, Zhang S, Yang T, et al. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms[J]. Physiologia Plantarum, 2015, 154(3): 381-394.

        Lim C W, Baek W, Jung J, et al. Function of ABA in stomatal defense against biotic and drought stresses[J]. International Journal of Molecular Sciences, 2015, 16(12): 15251-15270.

        Dong W, Wang M, Xu F, et al. Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging[J]. Plant Physiology 2013, 161(3): 1217-1228.

        Gaber A. The importance of Arabidopsis glutathione peroxidase 8 for protecting Arabidopsis plant and E. coli cells against oxidative stress[J]. GM Crops & Food, 2014, 5(1): 20-26.

        猜你喜歡
        非生物脅迫茶樹(shù)
        茶樹(shù)吸收營(yíng)養(yǎng)物質(zhì)的特性
        茶道(2022年3期)2022-04-27 00:15:46
        徐紀(jì)英:呼之欲出的“茶樹(shù)花掛面”
        山茶樹(shù)變身?yè)u錢樹(shù)
        木薯MeP5CS1基因的克隆、表達(dá)分析及載體構(gòu)建
        白木香轉(zhuǎn)錄因子AsMYB1和AsMYB2克隆及表達(dá)分析
        非生物脅迫對(duì)擬南芥IQM4基因表達(dá)的影響
        科技視界(2016年16期)2016-06-29 11:55:38
        兩個(gè)推薦茶樹(shù)品種
        茶樹(shù)灣
        水稻富亮氨酸類受體蛋白激酶參與外界脅迫應(yīng)答的研究進(jìn)展
        葡萄NAC轉(zhuǎn)錄因子的生物信息學(xué)分析
        无码AV大香线蕉伊人久久| 无人视频在线观看免费播放影院| 少妇特黄a一区二区三区| 免费毛片在线视频| 一区二区三区视频在线免费观看| 亚洲天堂av中文字幕在线观看| 亚洲国产av玩弄放荡人妇| 色偷偷88888欧美精品久久久| 国产高清黄色在线观看91| 一区二区三区四区黄色av网站 | 国产精品麻豆成人av电影艾秋 | 两人前一后地插着她丰满| 日本特黄特色特爽大片| 91日韩高清在线观看播放| 日本高清不卡一区二区三区 | 一区二区三区人妻在线| 男人天堂网2017| 免费看泡妞视频app| 久久久久久久国产精品电影| 日本一区二区视频免费在线观看| 国产精品久久国产精麻豆99网站 | 欧美色图中文字幕| 99国产精品欲av麻豆在线观看 | 免费无码av一区二区三区| 国产精品视频一区国模私拍| 国产在线观看精品一区二区三区| 国产女同舌吻1区2区| 特级毛片a级毛片100免费播放 | 欧美两根一起进3p做受视频| 亚洲色图综合免费视频| 国产一区二区中文字幕在线观看| 一本色道久久综合狠狠躁篇| 亚洲妇女水蜜桃av网网站| 亚洲老女人区一区二视频 | 女同重口味一区二区在线| 亚洲人成自拍网站在线观看| 亚洲精品国产v片在线观看| 国产精品一区二区三密桃| 中国亚洲一区二区视频| 人人澡人人澡人人看添av| 国产一级淫片a免费播放口 |