彭世強(qiáng)
“新課改、新教材”給了學(xué)生更多的提出問題的機(jī)會(huì),給了教師更大的發(fā)揮自主性的空間。能夠提出問題代表學(xué)生真正地思考過,代表學(xué)生的學(xué)習(xí)是真正的自主建構(gòu),但往往是學(xué)生的這些小問題,有時(shí)候甚至是一些“傻問題”,給教師教學(xué)帶來了挑戰(zhàn)和思考,也迫使我們深入思考:作為教師,我們到底缺的是什么?也正是這樣,使我們深刻認(rèn)識(shí)到:作為數(shù)學(xué)教師首先應(yīng)該領(lǐng)會(huì)新課程理念,深刻鉆研教材,要真正把握學(xué)科教學(xué)的本質(zhì)。
前段時(shí)間我拜讀了《小學(xué)數(shù)學(xué)課堂的有效教學(xué)》一書,對(duì)書中劉加霞老師的觀點(diǎn)進(jìn)行了反復(fù)閱讀和思考,感同身受,受益匪淺。下面結(jié)合我的教學(xué)實(shí)踐談?wù)劯惺芎腕w會(huì)。
數(shù)學(xué)學(xué)科本質(zhì)一:對(duì)數(shù)學(xué)基本概念的理解
所謂“對(duì)數(shù)學(xué)基本概念的理解”是指了解我們?yōu)槭裁匆獙W(xué)習(xí)這一概念,這一概念在現(xiàn)實(shí)中的原型是什么,這一概念特有的數(shù)學(xué)內(nèi)涵、數(shù)學(xué)符號(hào)又是什么,以這一概念為核心是否能構(gòu)建一幅“概念網(wǎng)絡(luò)圖”。
我們平時(shí)學(xué)習(xí)的小學(xué)數(shù)學(xué)的基本概念主要有:十進(jìn)位制、單位(份)、用字母表示數(shù)、位置、變換、四則運(yùn)算、統(tǒng)計(jì)、平面圖形。
數(shù)學(xué)學(xué)科本質(zhì)二:對(duì)數(shù)學(xué)思想方法的把握
日本著名數(shù)學(xué)家米山國藏曾經(jīng)說過:“作為知識(shí)的數(shù)學(xué),出校門不到兩年可能就忘了,唯有深深銘記在頭腦中的數(shù)學(xué)精神、數(shù)學(xué)思想、研究方法和著眼點(diǎn)等,這些都隨時(shí)隨地發(fā)生作用,使他們終身受益?!?/p>
小學(xué)數(shù)學(xué)教材中有很多豐富的數(shù)學(xué)思想方法如:轉(zhuǎn)化思想(化歸思想)、集合思想、類比思想、極限思想、數(shù)形結(jié)合思想,一一對(duì)應(yīng)思想……但這些思想?yún)s沒有明確地寫在教材上。數(shù)學(xué)知識(shí)是我們能在教材上明確看到的東西,是一條明線,而數(shù)學(xué)思想暗含在數(shù)學(xué)知識(shí)中,在書上沒有明確地體現(xiàn)出來,是一條暗線。明線我們很容易就能理解,但暗線卻不是一眼能看明白的。因此教師只有掌握好數(shù)學(xué)思想方法,才能從本質(zhì)上明確理解教材,只有對(duì)教材中的數(shù)學(xué)思想有了深刻的理解和思考,才能科學(xué)地運(yùn)用教學(xué)方法,提高學(xué)生的思維能力。
例如,在教學(xué)“長方形的面積”時(shí),書本上運(yùn)用的初級(jí)方法是數(shù)格法,在圖形不規(guī)則時(shí)運(yùn)用割補(bǔ)法;除此之外,我們在學(xué)習(xí)數(shù)學(xué)中運(yùn)用得比較多的還有轉(zhuǎn)化思想和數(shù)形結(jié)合思想,把我們不熟悉的轉(zhuǎn)化成我們熟悉的,把難解決的轉(zhuǎn)化為圖形表達(dá),數(shù)行結(jié)合解決問題。
數(shù)學(xué)學(xué)科本質(zhì)三:對(duì)數(shù)學(xué)特有思維方式的感悟
每一門學(xué)科都有自己的特點(diǎn),有特有的思維方式,有特有的認(rèn)識(shí)世界的角度,人們給予數(shù)學(xué)的美譽(yù)是:鍛煉思維的體操,啟迪智慧的鑰匙。多么美的贊譽(yù),會(huì)讓人不自覺地愛上數(shù)學(xué)這門學(xué)科。數(shù)學(xué)的思維方式比較獨(dú)特,如我們常用的有:抽象、概括、比較、類比、猜想、驗(yàn)證、概括等。比如我們在教學(xué)三角形內(nèi)角和時(shí),通常是先觀察、測量,形成猜想,再用不同的方法剪拼求和或分割求和來驗(yàn)證猜想,然后反思提煉,說出結(jié)論,最后類比推理求四邊形內(nèi)角和。
案例:我在執(zhí)教“軸對(duì)稱圖形”一課時(shí)首先給學(xué)生創(chuàng)設(shè)一個(gè)問題情境,問:通過概念我們已經(jīng)知道了什么是軸對(duì)稱圖形,那么任意給你們看一個(gè)圖形,你們能看出這個(gè)圖形是不是軸對(duì)稱圖形嗎,大家也可以用紙裁出這么一個(gè)圖形,然后折一折、看一看,驗(yàn)證自己的猜想。然后再引導(dǎo)學(xué)生“深入研究”,引導(dǎo)學(xué)生理解一般三角形的“非對(duì)稱性”及等腰(邊)三角形的“對(duì)稱性”,并由此類推到梯形、平行四邊形等;最后讓學(xué)生根據(jù)活動(dòng)經(jīng)驗(yàn),判斷對(duì)稱軸的條數(shù)。最后教師小結(jié):討論平行四邊形、三角形、五邊形時(shí),既要考慮一般的情況,又要考慮特殊的情形,但圓就不同,所有的圓都是軸對(duì)稱圖形??磥碓跀?shù)學(xué)學(xué)習(xí)中,具體問題還得具體對(duì)待?。ń探o學(xué)生思考問題的方法)在思維的體操中啟迪孩子的智慧。
數(shù)學(xué)學(xué)科本質(zhì)四:對(duì)數(shù)學(xué)美的鑒賞
數(shù)學(xué)美是數(shù)學(xué)素養(yǎng)的基本內(nèi)容,把握數(shù)學(xué)美的本質(zhì)有助于培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的看法和態(tài)度以及學(xué)習(xí)數(shù)學(xué)的動(dòng)力。數(shù)學(xué)的基本原則:求真、求簡、求美。其中“對(duì)稱”是數(shù)學(xué)美的核心內(nèi)容。
哲學(xué)家羅素說:“數(shù)學(xué),如果正確地看她,不但擁有真理,而且也具有至高的美?!比缭趫?zhí)教“軸對(duì)稱圖形”一課時(shí),可以向?qū)W生展示生活中常見的對(duì)稱圖形,讓學(xué)生感知對(duì)稱的美;在教學(xué)“找規(guī)律”這一課時(shí)可以向?qū)W生展示生活中各種有規(guī)律排列的美麗圖形;在教學(xué)“圓的認(rèn)識(shí)”時(shí)可以讓學(xué)生發(fā)現(xiàn)生活中形形色色的圓,感受圓的魅力……
數(shù)學(xué)學(xué)科本質(zhì)五:對(duì)數(shù)學(xué)精神(理性精神與探究精神)的追求
就數(shù)學(xué)講數(shù)學(xué)對(duì)學(xué)生來說很枯燥,其中可以穿插許多著名數(shù)學(xué)家的趣聞軼事,這樣可以提升學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,也可以拉近學(xué)生與偉人之間的心理距離,感受數(shù)學(xué)與人類密不可分的關(guān)系。如,阿基米德測皇冠體積的故事;高斯上小學(xué)時(shí)發(fā)現(xiàn)“高斯求和公式”的故事。
綜上所述,在新課程改革的過程中,我們要深入鉆研教材,牢牢把握數(shù)學(xué)本質(zhì),讓每一堂數(shù)學(xué)課扎扎實(shí)實(shí),有實(shí)效!為培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)打下扎實(shí)的基礎(chǔ),讓我們的學(xué)生快樂成長,也讓我們在追尋數(shù)學(xué)課堂教學(xué)高效性的道路上一路陽光燦爛!
編輯 溫雪蓮