王強(qiáng)
華羅庚先生曾說過:“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微;數(shù)形結(jié)合百般好,隔離分家萬事休”.從多年的數(shù)學(xué)教學(xué)角度來看,如何建立數(shù)與形的聯(lián)系,利用幾何圖形描述問題,以及借助幾何直觀理解問題,這是教學(xué)的難點(diǎn),根據(jù)2017版的普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)來說,就是要培養(yǎng)學(xué)生的直觀想象的素養(yǎng).作者通過分析2019年南京市中考數(shù)學(xué)第23題,發(fā)現(xiàn)學(xué)生對于第二問的束手無策,基于初高中的教學(xué)要求,我們以本題為例,看初高中數(shù)學(xué)教學(xué)銜接.
4 ?教學(xué)思考
4.1 直觀發(fā)現(xiàn)思路 推理驗(yàn)證思路
直觀想象是借助幾何直觀和空間想象感知事物的形態(tài)與變化,利用圖形理解和解決數(shù)學(xué)問題的素養(yǎng).通過建立數(shù)與形的關(guān)系,引導(dǎo)學(xué)生建立數(shù)學(xué)解題的直觀模型,再運(yùn)用邏輯推理和數(shù)學(xué)建模探索解決問題的思路和模型.試題的第二問通過結(jié)合圖像進(jìn)行研究,為學(xué)生解題提供了方向,幫助學(xué)生挖掘思路.解法二的圖形直觀簡潔,但思維含量大,大部分學(xué)生不一定能搞得明白直線變化的過程.基于課標(biāo),通過圖形的變化來提升學(xué)生幾何直觀的能力,教學(xué)中要給學(xué)生充分時(shí)間思考,在畫圖中發(fā)展學(xué)生直觀想象素養(yǎng).
邏輯推理是指從一些事實(shí)和命題出發(fā),依據(jù)規(guī)則推理出其他命題的素養(yǎng).邏輯推理是解題中的基本思維品質(zhì),既要保證解題的嚴(yán)謹(jǐn)性,又要把握事物之間的關(guān)聯(lián)并引導(dǎo)出進(jìn)一步的解題思路.求解kx+2>x-3的解集可以借助直觀想象,也可以通過推理得到解答,解法一是基于分離變量的分類,從而轉(zhuǎn)化成為y=k-1與y= -5 x 的探究,而y= -5 x 作為初中基本函數(shù),對于學(xué)生的理解相對容易,此刻的推理驗(yàn)證變得順理成章. 解法三是整體建構(gòu)y=(k-1)x+5,思維層次更高,但轉(zhuǎn)化的結(jié)果是“一次函數(shù)”,理解起來也許相對容易,但是嚴(yán)格的邏輯推理是初高中的區(qū)別,對解題過程的書寫,不僅要用正確的公式或文字進(jìn)行表達(dá),頭腦中還要通過邏輯推理素養(yǎng)對整個(gè)解題思路進(jìn)行一步步推理與探索,從而完成解題.
想象和推理是相輔相成的,無法完全地割裂開來,直觀想象中需要邏輯推理輔助發(fā)現(xiàn)思路;邏輯推理中需要直觀想象優(yōu)化思路.直觀發(fā)現(xiàn)思路,推理驗(yàn)證思路,初中教學(xué)中要適時(shí)滲透嚴(yán)密的邏輯推理,高中教學(xué)中要給予學(xué)生直觀想象的空間,可以優(yōu)化解題策略,同時(shí)進(jìn)一步增強(qiáng)學(xué)生數(shù)形結(jié)合的意識(shí).4.2 解題助力教學(xué) 評價(jià)指導(dǎo)教學(xué)
波利亞說“掌握數(shù)學(xué)就意味著善于解題”,但是如何善于解題是個(gè)難點(diǎn).在解答問題的過程中要學(xué)會(huì)發(fā)現(xiàn)問題、提出問題,要能根據(jù)題目的條件尋找可行的思路,由已知想可知;通過題目的結(jié)論反演條件,由未知倒逼已知,從而打通條件和結(jié)論的關(guān)系.通過一定的解題策略尋找解題思路,最終形成經(jīng)驗(yàn)反思.這就是波利亞倡導(dǎo)的“理解題目、擬定方案、執(zhí)行方案、回顧反思”解題表.近年來,南京市初中數(shù)學(xué)對于解題教學(xué)的研究還是比較全面的,通過選擇一道立意高的試題,指導(dǎo)學(xué)生能夠整體和聯(lián)系的看待問題,從不同路徑突破問題時(shí)所積累的基本活動(dòng)經(jīng)驗(yàn)是可貴的,有的時(shí)候不成功的策略也許更能激發(fā)學(xué)生的潛能,對后續(xù)思考類似問題時(shí)有借鑒作用.解題教學(xué)的價(jià)值正在改變傳統(tǒng)的習(xí)題課,并不以多為追求導(dǎo)向,重在思想方法和活動(dòng)經(jīng)驗(yàn)的提煉和積累.
考試的評價(jià)將在一定程度上決定教學(xué)的導(dǎo)向.本例的第二問對于學(xué)生的直觀想象能力提出較高要求,但是我們反思教學(xué)中是不是仍然存在代替學(xué)生思考的想象,重習(xí)題的訓(xùn)練而忽略知識(shí)的建構(gòu)過程.課堂的重中之重是關(guān)注學(xué)生對于問題的探索過程[1],理解題意,根據(jù)題意適當(dāng)往前走一步,根據(jù)小結(jié)論尋找解題策略,給予學(xué)生自主探究的時(shí)間,適時(shí)給予提示,再探究,遇到困難時(shí)學(xué)會(huì)表達(dá)思維中的困惑.教學(xué)中要貫徹“慢”和“放”這兩個(gè)字,慢是為了有時(shí)間的思考和總結(jié),放是為了有方向的思考和貫通,放與慢的結(jié)合可以更好地形成自己對問題的理解和經(jīng)驗(yàn).
初高中對于教學(xué)都是關(guān)注的過程性研究以及探究知識(shí)過程的經(jīng)驗(yàn)積累,這是一脈相承的.高中課堂教學(xué)思維層次高,節(jié)奏快,部分初中學(xué)生難以適應(yīng).筆者認(rèn)為初中的“慢”與“放”實(shí)際上是為高中打下堅(jiān)實(shí)的基礎(chǔ),這樣高中教學(xué)才能做到“快”與“收”,這里的“收”指的是經(jīng)過一定階段的“放”能夠洞察問題的本質(zhì),能快速總結(jié)數(shù)學(xué)的本質(zhì),尋找類似的解決問題的策略,這也就是我們說的“類比”.初中課堂要立足于學(xué)生為主體的課堂,教師要給予學(xué)生展示想法的機(jī)會(huì),允許學(xué)生出錯(cuò),并提供思考的方向,關(guān)注學(xué)生的合情推理,學(xué)會(huì)等待,教會(huì)學(xué)生關(guān)注局部知識(shí)之間的聯(lián)系,從而能夠形成體系;高中知識(shí)的學(xué)習(xí)要關(guān)注與初中的聯(lián)系,關(guān)注學(xué)生的最近發(fā)展區(qū),關(guān)注學(xué)生直觀想象,更注重直觀背后的邏輯推理,注重知識(shí)的整體架構(gòu),更系統(tǒng)的理解學(xué)習(xí)的“套路”.
參考文獻(xiàn)
[1] 王紅兵.中考評價(jià)導(dǎo)向視角下解題教學(xué)的新思考[J].中學(xué)數(shù)學(xué)教學(xué)參考(中旬),2017(1-2)37-39.
中學(xué)數(shù)學(xué)雜志(初中版)2019年6期