方晨璐,黃峻榕,任瑞珍,楊 麒,蒲華寅,劉樹興
?
酶解薯類淀粉適用于電鏡觀察其顆粒表面及內(nèi)部結(jié)構(gòu)
方晨璐,黃峻榕※,任瑞珍,楊 麒,蒲華寅,劉樹興
(陜西科技大學(xué)食品與生物工程學(xué)院,西安 710021)
為了同步研究淀粉顆粒表面小體和殼層結(jié)構(gòu),用-淀粉酶、-淀粉酶和普魯蘭酶,在室溫下單一或復(fù)合酶解馬鈴薯、紅薯、木薯淀粉顆粒,用掃描電子顯微鏡觀察酶解顆粒并進(jìn)行性質(zhì)測試。研究結(jié)果表明,單一酶作用時,只有-淀粉酶可使3種薯類淀粉顯露顆粒表面小體(直徑29~73 nm)和殼層結(jié)構(gòu)(厚度150~400 nm);馬鈴薯淀粉的酶解率(1.1%)遠(yuǎn)低于其他2種淀粉的(14.1%、16.3%)。馬鈴薯淀粉表面小體的排列較緊密、殼層結(jié)構(gòu)較致密,決定了其具有較強(qiáng)的抗酶解性和較大的峰值黏度(即膨脹能力)。復(fù)合酶作用時,-淀粉酶復(fù)合與其單一作用的效果類似。因此單一-淀粉酶有限酶解法可以作為淀粉顆粒表面小體和殼層結(jié)構(gòu)的研究方法,酶解條件為:酶濃度80 U/mL,室溫下酶解12 h。該研究結(jié)果為淀粉類產(chǎn)品在實(shí)際加工過程中的品質(zhì)控制提供了理論基礎(chǔ)。
淀粉;酶;水解;顆粒;結(jié)構(gòu)
淀粉是高等植物中常見的組分,在薯類作物中含量豐富。淀粉的小體和殼層是介于分子和顆粒之間的2個結(jié)構(gòu)層次[1]。目前,主要采用原子力顯微鏡對淀粉顆粒表面小體進(jìn)行研究[2-5]。濕熱處理后的馬鈴薯淀粉顆粒的原子力顯微鏡圖像,可觀察到尺寸在20~40 nm之間的表面小體[6]。用原子力顯微鏡觀察,發(fā)現(xiàn)經(jīng)反復(fù)凍融后的馬鈴薯淀粉顆粒表面,出現(xiàn)了直徑300 nm的小體[7]。研究發(fā)現(xiàn)經(jīng)-淀粉酶處理后,通過原子力顯微鏡發(fā)現(xiàn)了馬鈴薯淀粉顆粒表面約20 nm的小體[8]。殼層研究方法較多,運(yùn)用染色法、細(xì)胞標(biāo)記法和化學(xué)糊化法處理后的淀粉顆粒,在光學(xué)顯微鏡、原子力顯微鏡和掃描電子顯微鏡下呈現(xiàn)清晰的同心環(huán)狀或?qū)訝罱Y(jié)構(gòu)[9-11]。通過光學(xué)顯微鏡觀察發(fā)現(xiàn)了淀粉顆粒由結(jié)晶層和無定形層交替排列組成,殼層厚度在120~400 nm[12]。經(jīng)多次冷凍和解凍處理后,馬鈴薯淀粉顆粒用原子力顯微鏡發(fā)現(xiàn)了間距為30~40 nm的層狀結(jié)構(gòu)[6]。利用鹽酸對木薯淀粉處理得到微孔淀粉,通過掃描電子顯微鏡發(fā)現(xiàn)了小孔內(nèi)部呈厚度不均的殼層結(jié)構(gòu)[13]。對轉(zhuǎn)基因方法獲得的馬鈴薯淀粉顆粒進(jìn)行冷凍、研磨、-淀粉酶酶解處理后,經(jīng)掃描電子顯微鏡發(fā)現(xiàn)了其殼層結(jié)構(gòu)非常明顯[14]。Atkin等[15]研究發(fā)現(xiàn),淀粉顆粒外殼具有較強(qiáng)的膨脹性,隨著溫度升高,水合作用可使淀粉顆粒外殼膨脹度達(dá)200%。
以上對小體和殼層結(jié)構(gòu)的研究都是分別進(jìn)行的,尚未見可同時觀察淀粉小體和殼層結(jié)構(gòu)的方法報道,本研究以薯類(馬鈴薯、紅薯、木薯)淀粉為研究對象,室溫下用-淀粉酶、-淀粉酶和普魯蘭酶單一或復(fù)合酶解并通過性質(zhì)測定(熱學(xué)特性、結(jié)晶特性)和掃描電子顯微鏡觀察等,建立了可同時觀察淀粉顆粒表面小體和殼層結(jié)構(gòu)的有限酶解法。
馬鈴薯淀粉(榆林市新田源集團(tuán)富元淀粉有限公司);紅薯淀粉(北京德眾嘉鑫經(jīng)貿(mào)有限公司);木薯淀粉(上海禾煜貿(mào)易有限公司第一分公司)。-淀粉酶(489 U/mg 美國Sigma公司);-淀粉酶(42 U/mg 愛爾蘭Megazyme公司);普魯蘭酶(42 U/mg 愛爾蘭mdxxegazyme公司)。其他分析純試劑(天津市天力化學(xué)試劑有限公司)。
1.2.1 有限酶解法的不同處理
稱取1 g淀粉樣品(干基),加入稀釋的淀粉酶酶液,制成100 mg/mL的淀粉乳,在室溫下,于恒溫振蕩器中(100 r/min)分別進(jìn)行單一或復(fù)合酶解,酶解后倒出上清液,取沉淀,先加入蒸餾水(約5 mL),混勻后離心10 min(3 000 r/min),重復(fù)3次,再向沉淀中加入無水乙醇,相同條件醇洗3次,取沉淀自然風(fēng)干后得到酶解淀粉顆粒。單一酶和復(fù)合酶水解試驗(yàn)不同處理見表1,各參數(shù)及范圍根據(jù)預(yù)試驗(yàn)確定。其中單一酶水解試驗(yàn)每種酶分別針對酶濃度、酶解時間對薯類淀粉顆粒酶解率的影響做2組單因素試驗(yàn);復(fù)合酶水解試驗(yàn)復(fù)合比例、酶解時間對薯類淀粉顆粒酶解率的影響做2組單因素試驗(yàn)。
表1 淀粉顆粒的酶水解不同處理Table 1 Different enzymolysis treatment of starch granules
淀粉顆粒酶解率的計算方法:酶解后,取上清液于540 nm處測定其吸光度值,繪制麥芽糖標(biāo)準(zhǔn)曲線,對照標(biāo)準(zhǔn)曲線,根據(jù)上清液吸光度值計算出麥芽糖的含量,依據(jù)公式(1)計算酶解率[16-17]。
式中為麥芽糖質(zhì)量,mg;0為樣品總體積,mL;1為測定吸光度所取體積,mL;為樣品總質(zhì)量,mg;0.947為換算系數(shù)。
1.2.2 熱學(xué)特性測定
配制6~8 mg淀粉乳(淀粉質(zhì)量分?jǐn)?shù)40%),壓盤密封后,用Q2000型差式掃描量熱儀(美國TA公司)進(jìn)行糊化溫度和糊化焓測定,測定條件:升溫速率為10 ℃/min,升溫范圍為10~100 ℃。
1.2.3 結(jié)晶特性測定
樣品采用D/max×2200PC型X-射線衍射儀(日本理學(xué)公司)進(jìn)行相對結(jié)晶度測定,測定條件:射線波長為1.542 ?的Cu-Kα射線,石墨單色器,管電壓和管電流分別為40 kV和40 mA,掃描速度4°/min,掃描范圍4°~60°,DS:1°,SS:1°,RS:0.3 mm。相對結(jié)晶度由分析軟件Jade 5.0計算。
1.2.4 掃描電子顯微鏡觀察
將淀粉樣品用導(dǎo)電膠固定于載物臺上,真空噴金處理后,置于S-4800型掃描電子顯微鏡(日本日立公司)下拍攝[18]。
2.1.1 單一酶水解試驗(yàn)
單一酶解時,以-淀粉酶為例。由圖1a可知,在室溫下,馬鈴薯、紅薯和木薯淀粉顆粒的酶解率都隨-淀粉酶酶濃度的增大而增加,當(dāng)-淀粉酶的酶濃度為80 U/mL時,酶解率基本不變。酶解初期,酶解速率上升較快,當(dāng)-淀粉酶酶解時間達(dá)到12 h時,酶解率基本不再增加(圖1b)。主要由于無定形區(qū)的抗酶解能力弱,酶先作用于無定形區(qū),后作用于結(jié)晶區(qū)[19-20]。馬鈴薯淀粉酶解率(1.1%)遠(yuǎn)低于其他2種淀粉(14.1%、16.3%)。主要因?yàn)轳R鈴薯顆粒較大,比表面積小,與酶接觸的幾率較低;且馬鈴薯淀粉顆粒中酶作用位點(diǎn)和無定形區(qū)均少于其他2種淀粉[21-23]。
注:圖1a酶解時間為12 h; 圖1b酶濃度為80 U·mL-1。
其他酶水解結(jié)果如下:3種薯類淀粉顆粒經(jīng)-淀粉酶和普魯蘭酶單一酶解,酶解率都隨酶濃度和酶解時間的增大而增加,當(dāng)-淀粉酶和普魯蘭酶的酶濃度分別為60、1.0 U/mL時,酶解時間分別為36、2 h時,酶解率基本不變。當(dāng)酶解率基本不變時,-淀粉酶和普魯蘭酶對淀粉的酶解率均低于-淀粉酶。說明淀粉顆粒表面可被-淀粉酶識別的非還原端和普魯蘭酶作用的-1,6糖苷鍵較少(<5%)[24-25]。因此,將-淀粉酶、-淀粉酶和普魯蘭酶的酶濃度分別為80、60、1.0 U/mL ,酶解時間分別為12、36、2 h時,作為3種薯類淀粉單一酶解的條件和復(fù)合酶解的參考值。因酶解率都小于17%,屬于有限酶解。
2.1.2 復(fù)合酶水解試驗(yàn)
以-淀粉酶復(fù)合酶為例,復(fù)合酶水解試驗(yàn)結(jié)果見圖2。由圖2a可知,與-淀粉酶酶解相比,-淀粉酶與-淀粉酶復(fù)合酶解淀粉顆粒酶解率較大,因?yàn)楫?dāng)-淀粉酶作用淀粉顆粒時,暴露出了更多的非還原端,增加了-淀粉酶的作用位點(diǎn)。-淀粉酶和普魯蘭酶復(fù)合酶解淀粉顆粒的酶解率(圖2b)稍低于-淀粉酶與-淀粉酶復(fù)合時的。研究發(fā)現(xiàn),直鏈淀粉含有約99%的-1, 4糖苷鍵和1%的-1, 6糖苷鍵,而支鏈淀粉含有約95%的-1, 4糖苷鍵和5%的-1, 6糖苷鍵,當(dāng)-淀粉酶對淀粉顆粒表面進(jìn)行作用時,淀粉顆粒表面暴露的普魯蘭酶的作用位點(diǎn)(-1, 6糖苷鍵)少于-淀粉酶的[26]。
早期研究也指出,-淀粉酶和普魯蘭酶協(xié)同酶解時,-淀粉酶首先作用于淀粉顆粒表面,僅能暴露小部分可被普魯蘭酶作用的分支點(diǎn)[27]。因此,試驗(yàn)發(fā)現(xiàn),-淀粉酶和普魯蘭酶復(fù)合對顆粒的酶解作用微弱,甚至小于-淀粉酶單一作用的。其他復(fù)合酶處理結(jié)果簡要交待如下:將-淀粉酶與-淀粉酶、-淀粉酶與普魯蘭酶、-淀粉酶和普魯蘭酶的復(fù)合比例分別為4:1、150:1、75:1,酶解時間分別為20、6、10 h,作為3種薯類淀粉復(fù)合酶解的條件。酶解率都小于23%,屬于有限酶解。
注:圖中酶解時間為12 h。
有限酶解后的馬鈴薯、紅薯和木薯淀粉顆粒的起始糊化溫度(T)與原淀粉相比變化不大(表2)。馬鈴薯淀粉糊化焓(Δ)明顯大于木薯和紅薯淀粉的,說明馬鈴薯淀粉顆粒的結(jié)構(gòu)致密,結(jié)晶結(jié)構(gòu)穩(wěn)定性高,破壞需要的熱能大,抗酶解能力強(qiáng),這與上述酶解率的測定結(jié)果相一致,馬鈴薯淀粉的酶解率遠(yuǎn)低于其他2種淀粉的。與原淀粉相比,經(jīng)過-淀粉酶及與其他淀粉酶復(fù)合后,糊化焓(Δ)升高(<0.05)。主要是由于酶作用于淀粉顆粒的無定形區(qū)域,酶解后提高了相對結(jié)晶度[28-29]。
表2 3種薯類淀粉顆粒有限酶解前后的起始糊化溫度和糊化焓
注:同列不同小寫字母表示在0.05水平差異顯著,下同。
Note: Different letters in the same column indicate significant difference at the 0.05 level, the same below.
薯類淀粉顆粒經(jīng)-淀粉酶及與其他淀粉酶復(fù)合后,與原淀粉顆粒相比,其相對結(jié)晶度略有增大;-淀粉酶和普魯蘭酶以及二者復(fù)合處理的淀粉顆粒與原淀粉顆粒相比,相對結(jié)晶度無顯著差異(表3),這與上述酶解率的測定結(jié)果一致,-淀粉酶對淀粉的酶解能力強(qiáng)于-淀粉酶和普魯蘭酶。酶解過程中,-淀粉酶酶解淀粉顆粒無定形區(qū)的能力強(qiáng),導(dǎo)致結(jié)晶區(qū)比例增大,相對結(jié)晶度升高。研究發(fā)現(xiàn),用-淀粉酶處理大麥淀粉、-淀粉酶與糖化酶復(fù)合處理紅薯和木薯淀粉顆粒,淀粉的相對結(jié)晶度均會略微增大[30-31]。
表3 3種薯類淀粉顆粒有限酶解前后的相對結(jié)晶度
3種薯類淀粉經(jīng)有限酶解后的顆粒的小體和殼層觀察結(jié)果見表4。經(jīng)-淀粉酶單一或與其他淀粉酶復(fù)合作用后,馬鈴薯、紅薯、木薯淀粉顆粒表面均顯露小體結(jié)構(gòu);馬鈴薯淀粉顆??捎^察到殼層結(jié)構(gòu),紅薯同時出現(xiàn)殼層和外殼結(jié)構(gòu),木薯則只顯示外殼結(jié)構(gòu)。-淀粉酶、-淀粉酶與普魯蘭酶復(fù)合酶解的3種薯類淀粉出現(xiàn)較大尺寸的小體,普魯蘭酶作用則未出現(xiàn)小體結(jié)構(gòu);經(jīng)-淀粉酶、普魯蘭酶及二者復(fù)合酶解后的薯類淀粉顆粒未出現(xiàn)殼層和外殼結(jié)構(gòu)。-淀粉酶的酶解作用效果最明顯,-淀粉酶其次,普魯蘭酶最弱。用-淀粉酶和-淀粉酶分別對紅薯顆粒進(jìn)行酶解,對比研究發(fā)現(xiàn)在同樣條件下,-淀粉酶的酶解能力較弱[24]。
表4 3種薯類淀粉經(jīng)有限酶解后顆粒的表面小體和殼層
注:√,存在;-,不存在。
Note: √, existence; -, non-existence.
前期試驗(yàn)對3種薯類原淀粉顆粒進(jìn)行掃描電子顯微鏡觀察,發(fā)現(xiàn)馬鈴薯淀粉顆粒呈橢球形,紅薯和木薯淀粉顆粒則是一側(cè)為球形,另外一側(cè)為扁平形,且表面都很光滑,沒有孔洞、裂縫或者裂紋;顆粒表面無法觀察到球形突起的小體結(jié)構(gòu)。在室溫下,用蛋白酶對3種薯類淀粉作用后,酶解顆粒的形態(tài)與原淀粉顆粒的相近,顆粒表面光滑且未出現(xiàn)小體結(jié)構(gòu)。3種薯類淀粉經(jīng)-淀粉酶單一或與其他酶復(fù)合作用,-淀粉酶或-淀粉酶與普魯蘭酶復(fù)合作用后都可觀察到顆粒表面小體結(jié)構(gòu)(表4),說明淀粉顆粒表面存在膜結(jié)構(gòu),其化學(xué)本質(zhì)為淀粉,而不是蛋白質(zhì)。淀粉中蛋白質(zhì)含量很低,總量小于0.4%[32]。Han等[33]通過使用蛋白質(zhì)特異性染料(3-(4-羧基苯甲?;┼?2-甲醛)揭示馬鈴薯、玉米和小麥淀粉顆粒中蛋白質(zhì)的不同位置,共聚焦激光掃描顯微鏡顯示,顆粒中蛋白質(zhì)主要集中在內(nèi)部,呈球狀。薯類淀粉中脂肪含量極少,僅占0.1%左右[34]。Debet等[35]通過SDS(十二烷基硫酸鈉)對馬鈴薯淀粉顆粒表面進(jìn)行化學(xué)處理,除去顆粒表面脂肪,采用光學(xué)顯微鏡觀察處理后的淀粉顆粒,發(fā)現(xiàn)其表面形貌與原淀粉基本無差異。
經(jīng)-淀粉酶單一有限酶解后,3種薯類(馬鈴薯、紅薯、木薯)淀粉顆粒表面均可觀察到近球形的小體,排列規(guī)則,直徑分別為29~58、34~56和34~73 nm(圖3a、3b、3c)。馬鈴薯淀粉顆粒表面的小體堆積緊密;紅薯淀粉顆粒表面小體排列較松散,有孔洞;木薯淀粉顆粒表面小體間結(jié)合力較弱,有塌陷和裂縫。這與上述酶解率的測定結(jié)果一致:馬鈴薯淀粉的酶解率遠(yuǎn)低于其他2種淀粉的,對酶的抵抗能力較強(qiáng),說明顆粒表面小體結(jié)構(gòu)決定了淀粉的酶解特性。
馬鈴薯淀粉顆粒中心形成空腔結(jié)構(gòu),外圍結(jié)構(gòu)厚度大約為6~7m,呈現(xiàn)有序且致密的同心殼層結(jié)構(gòu),單個殼層厚度為300~400 nm(圖3d)。紅薯淀粉顆粒呈現(xiàn)出更明顯的同心殼層結(jié)構(gòu),單個殼層厚度為150~250 nm,但殼層結(jié)構(gòu)比較疏松(圖3e)。木薯淀粉顆粒出現(xiàn)空洞,外圍結(jié)構(gòu)厚度約為3~4m(圖3f)。與紅薯和木薯淀粉殼層結(jié)構(gòu)相比,馬鈴薯淀粉的殼層結(jié)構(gòu)比較致密有序。這與峰值黏度的測定結(jié)果一致:前期試驗(yàn)用快速黏度分析儀對3種薯類原淀粉(質(zhì)量分?jǐn)?shù)5%)進(jìn)行黏度特性測定,馬鈴薯淀粉峰值黏度(2 216 mPa·s)明顯大于紅薯和木薯淀粉的(593和740 mPa·s),即馬鈴薯淀粉顆粒的膨脹能力較強(qiáng),說明殼層結(jié)構(gòu)決定了淀粉的膨脹特性。
空腔結(jié)構(gòu)說明3種薯類淀粉顆粒的內(nèi)部更容易被酶解。有研究報道薯類顆粒結(jié)構(gòu)緊密度不均勻,臍點(diǎn)附近結(jié)構(gòu)相對疏松,易受到-淀粉酶的攻擊[36-37]。馬鈴薯淀粉顆粒表面有劃痕和圓斑(圖3g);紅薯淀粉顆粒外殼的表面出現(xiàn)了隨機(jī)排列的孔洞和裂縫(圖3h);木薯淀粉顆粒外殼的表面出現(xiàn)了裂縫(圖3i),與紅薯淀粉外殼結(jié)構(gòu)相比,木薯淀粉外殼的均勻度較差。經(jīng)酶解的顆粒表面出現(xiàn)的劃痕和凹陷并未在原淀粉顆粒中發(fā)現(xiàn),說明這些痕跡是由酶解導(dǎo)致的。有研究者在45 ℃下用-淀粉酶對馬鈴薯淀粉顆粒作用,發(fā)現(xiàn)酶解從顆粒表面開始,導(dǎo)致顆粒表面腐蝕[38]。
與-淀粉酶單一有限酶解的效果相似,經(jīng)-淀粉酶和-淀粉酶復(fù)合酶解后的馬鈴薯、紅薯和木薯淀粉顆粒表面都出現(xiàn)了近球形小體,尺寸分別為36~65、32~61、32~52 nm;馬鈴薯和紅薯淀粉顯示出殼層結(jié)構(gòu)(厚度分別為300~400和100~150 nm);紅薯淀粉還出現(xiàn)了外殼結(jié)構(gòu)(厚度100~150 nm);木薯淀粉呈現(xiàn)的外殼厚度約100~200 nm。經(jīng)-淀粉酶和普魯蘭酶復(fù)合酶解的效果,與-淀粉酶和-淀粉酶復(fù)合酶解以及-淀粉酶單一酶解的效果相近。
經(jīng)-淀粉酶或普魯蘭酶單一有限酶解后,3種薯類淀粉都未發(fā)現(xiàn)破裂的顆粒。經(jīng)-淀粉酶作用后,顆粒表面有被酶侵蝕的痕跡,3種薯類淀粉顆粒表面都出現(xiàn)了尺寸為45~250 nm的小體結(jié)構(gòu)。Tang等[39]用淀粉酶對大麥等谷物淀粉顆粒進(jìn)行酶解,經(jīng)過掃描電鏡觀察,顆粒表面僅出現(xiàn)輕微腐蝕。而普魯蘭酶作用后,顆粒表面無明顯變化。與上述單一酶解的酶解率結(jié)果一致(酶解率為-淀粉酶>-淀粉酶>普魯蘭酶)。經(jīng)-淀粉酶和普魯蘭酶復(fù)合作用后的效果,與單一-淀粉酶酶解的效果相近,都未出現(xiàn)殼層和外殼結(jié)構(gòu),這與-淀粉酶和普魯蘭酶復(fù)合時的酶解率極低的結(jié)果一致。
注:圖中數(shù)值為淀粉顆粒表面小體、殼層、外殼尺寸。
通過有限酶解法制備3種薯類淀粉的酶解顆粒,對酶解淀粉顆粒的研究結(jié)果表明:-淀粉酶單一、與-淀粉酶或普魯蘭酶復(fù)合作用后,熱學(xué)性質(zhì)及結(jié)晶性質(zhì)與原淀粉的相關(guān)性質(zhì)略有不同;-淀粉酶、普魯蘭酶單一作用或二者復(fù)合作用后,以上性質(zhì)無明顯變化。3種薯類淀粉經(jīng)-淀粉酶單一或與其他酶復(fù)合作用,-淀粉酶或-淀粉酶與普魯蘭酶復(fù)合作用后都可觀察到顆粒表面小體結(jié)構(gòu)。經(jīng)-淀粉酶單一或與其他2種酶復(fù)合作用后,馬鈴薯淀粉顆粒顯示殼層結(jié)構(gòu),紅薯淀粉顆粒同時出現(xiàn)殼層和外殼結(jié)構(gòu),木薯淀粉顆粒則只顯露外殼結(jié)構(gòu)。因此,適合于同時研究淀粉顆粒表面小體與殼層結(jié)構(gòu)的方法為,-淀粉酶有限酶解法,酶解條件為:酶濃度80 U/mL,室溫下酶解12 h。
[1] Huang J, Wei M, Ren R, et al. Morphological changes of blocklets during the gelatinization process of tapioca starch[J]. Carbohydrate Polymers, 2017, 163: 324-329.
[2] Kong B, Niu H, Sun F, et al. Regulatory effect of porcine plasma protein hydrolysates on pasting and gelatinization action of corn starch[J]. International Journal of Biological Macromolecules, 2016, 82(3): 37-44.
[3] Salerno M, ?ukowska A, Thorat S, et al. High resolution imaging of native wheat and potato starch granules based on local mechanical contrast[J]. Journal of Food Engineering, 2014, 128: 96-102.
[4] Waduge R N, Xu S, Bertoft E, et al. Exploring the surface morphology of developing wheat starch granules by using atomic force microscopy[J]. Starch-St?rke, 2013, 65(5/6): 398-409.
[5] Peroniokita F H, Gunning A P, Kirby A, et al. Visualization of internal structure of banana starch granule through AFM[J]. Carbohydrate Polymers, 2015, 128: 32-40.
[6] Jiranuntakul W, Sugiyama S, Tsukamoto K, et al. Nano-structure of heat-moisture treated waxy and normal starches[J]. Carbohydrate Polymers, 2013, 97(1): 1-8.
[7] Szymońska J, Krok F. Potato starch granule nanostructure studied by high resolution non-contact AFM[J]. International Journal of Biological Macromolecules, 2003, 33(1/2/3): 1-7.
[8] Sujka M, Jamroz J.-amylolysis of native potato and corn starches-SEM, AFM, nitrogen and iodine sorption investigations[J]. LWT-Food Science and Technology, 2009, 42(7): 1219-1224.
[9] 趙凱. 食品淀粉的結(jié)構(gòu)、功能及應(yīng)用[M]. 北京:中國輕工業(yè)出版社,2009.
[10] Malumba P, Doran L, Zanmenou W, et al. Morphological, structural and functional properties of starch granules extracted from the tubers and seeds of[J]. Carbohydrate Polymers, 2017, 178: 286-294.
[11] Huang J R, Chen Z H, Xu Y L, et al. Comparison of waxy and normal potato starch remaining granules after chemical surface gelatinization: Pasting behavior and surface morphology[J]. Carbohydrate Polymers, 2014, 102(1): 1001-1007.
[12] French D. Starch chemistry and technology[J]. Quarterly Review of Biology, 2009, 2(4): 57-60.
[13] 陳曉偉,周小柳,唐忠鋒. 木薯微孔淀粉的成孔機(jī)理研究[J]. 糧油加工,2009(2):95-98.
[14] Pilling E, Smith A M. Growth ring formation in the starch granules of potato tubers[J]. Plant Physiology, 2003, 132(1): 365-371.
[15] Atkin N J, Abeysekera R M, Robards A W. The events leading to the formation of ghost remnants from the starch granule surface and the contribution of the granule surface to the gelatinization endotherm[J]. Carbohydrate Polymers, 1998, 36(2/3): 193-204.
[16] Min W H, Zhou L, Jiang H Y, et al. Optimization of technology for production of maize slowly digestible starch by enzymatic method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(6): 296-300.
[17] Foresti M L, Williams M P, Martínez-García R, et al. Analysis of a preferential action of-amylase fromtowards amorphous regions of waxy maize starch[J]. Carbohydrate Polymers, 2014, 102(1): 80-87.
[18] Barrera G N, Calderón-Domínguez G, Chanona-Pérez J, et al.
Evaluation of the mechanical damage on wheat starch granules by SEM, ESEM, AFM and texture image analysis[J]. Carbohydrate Polymers, 2013, 98(2): 1449-1457.
[19] Kim J Y, Park D J, Lim S T. Fragmentation of waxy rice starch granules by enzymatic hydrolysis[J]. Cereal Chemistry, 2008, 85(2): 182-187.
[20] Lecorre D, Vahanian E, Dufresne A, et al. Enzymatic pretreatment for preparing starch nanocrystals[J]. Biomacromolecules, 2012, 13(1): 132-137.
[21] Dhital S, Shrestha A K, Gidley M J. Relationship between granule size and in vitro digestibility of maize and potato starches[J]. Carbohydrate Polymers, 2010, 82(2): 480-488.
[22] Gomand S V, Lamberts L, Derde L J, et al. Structural properties and gelatinisation characteristics of potato and cassava starches and mutants thereof[J]. Food Hydrocolloids, 2010, 24(4): 307-317.
[23] 詹錦玲,孫冰華,謝雅蕓,等. 馬鈴薯淀粉顆粒的粒度與酶解特性相關(guān)性研究[J]. 食品與機(jī)械,2017,33(10):39-42.
Zhan Jinling, Sun Binghua, Xie Yayun, et al. Relationship of potato starch granule and its enzymatic hydrolysis properties[J]. Food and Mechinery, 2017, 33(10): 39-42. (in Chinese with English abstract)
[24] Sarikaya E, Higasa T, Adachi M, et al. Comparison of degradation abilities of-and-amylases on raw starch granules[J]. Process Biochemistry, 2000, 35(7): 711-715.
[25] 黃峻榕,付良紳. 淀粉顆粒結(jié)構(gòu)的研究方法[J]. 食品與機(jī)械,2010,26(6):5-9.
Huang Junrong, Fu Liangshen. Tools for understanding granular structure of starch[J]. Food and Mechinery, 2010, 26(6): 5-9. (in Chinese with English abstract)
[26] 胡麗花,柴松敏,劉建軍,等. 淀粉顆粒結(jié)構(gòu)體系[J]. 糧食與油脂,2011(3):1-3.
Hu Lihua, Chai Songmin, Liu Jianjun, et al. The Scheme of starch granule structures[J]. Cereals and oils, 2011(3): 1-3. (in Chinese with English abstract)
[27] Atia K S, Ismail S A, El-Arnaouty M B, et al. Use of co-immobilized-amylase and pullulanase in reduction of saccharification time of starch and increase in maltose yield[J]. Biotechnology Progress, 2003, 19(3): 853-857.
[28] Dura A, B?aszczak W, Rosella C M. Functionality of porous starch obtained by amylase or amyloglucosidase treatments[J]. Carbohydrate Polymers, 2014, 101(2): 837-845.
[29] You S, Izydorczyk M S. Comparison of the physicochemical properties of barley starches after partial-amylolysis and acid/alcohol hydrolysis[J]. Carbohydrate Polymers, 2007, 69(3): 489-502.
[30] Shariffa Y N, Karim A A, Fazilah A, et al. Enzymatic hydrolysis of granular native and mildly heat-treated tapioca and sweet potato starches at sub-gelatinization temperature[J]. Food Hydrocolloids, 2009, 23(2): 434-440.
[31] Blazek J, Copeland L. Amylolysis of wheat starches II degradation patterns of native starch granules with varying functional properties[J]. Journal of Cereal Science, 2010, 52(2): 295-302.
[32] Tester R F, Yousuf R, Kettlitz B, et al. Use of commercial protease preparations to reduce protein and lipid content of maize starch[J]. Food Chemistry, 2007, 105(3): 926-931.
[33] Han X Z, Hamaker B R. Location of starch granule-associated proteins revealed by confocal laser scanning microscopy[J]. Journal of Cereal Science, 2002, 35(1): 109-116.
[34] Becker A, Hill S E, Mitchell J R. Relevance of amylase-lipid complexes to the behaviour of thermally processed starches[J]. Starch-St?rke, 2015, 53(3/4): 121-130.
[35] Debet M R, Gidley M J. Why do gelatinized starch granules not dissolve completely? Roles for amylose, protein, and lipid in granule “ghost” integrity[J]. Journal of Agricultural and Food Chemistry, 2007, 55(12): 47-52.
[36] 繆銘,江波,張濤,等. 慢消化淀粉的研究與分析[J]. 食品與發(fā)酵工業(yè),2007,33(3):85-90.
Miao Ming, Jiang Bo, Zhang Tao, et al. A review of research and analysis of slowly digestible starch[J]. Food and Fermentation Industries, 2007, 33(3): 85-90. (in Chinese with English abstract)
[37] Chang R P, Schwartz S J. Characterization of the action ofalpha-amylase on sweet potato starch, amylose and amylopectin[J]. Journal of Food Biochemistry, 2010, 12(3): 191-204.
[38] 劉延奇,李素云,楊留枝,等. 酶催化水解對馬鈴薯淀粉結(jié)構(gòu)的影響[J]. 糧油食品科技,2007,15(2):47-49.
Liu Yanqi, Li Suyun, Yang Liuzhi, et al. The effect of enzymic hydrolyzation on the structure of potato starch[J]. Science and Technology of Cereals, Oils and Foods, 2007, 15(2): 47-49. (in Chinese with English abstract)
[39] Tang H, Watanabe K, Mitsunaga T. Characterization of storage starches from quinoa, barley and adzuki seeds[J]. Carbohydrate Polymers, 2002, 49(1): 13-22.
Amylases enzymolysis of tuber starch granules for surface and internal structure observation under scanning electron microscopy
Fang Chenlu, Huang Junrong※, Ren Ruizhen, Yang Qi, Pu Huayin, Liu Shuxing
( of Food and Biological Engineering, Shaanxi University of Science and Technology, Xian710021,)
Research on starch structure can provide a theoretical basis for the modification reaction and application of starch. The surface blocklets and shell structure of starch granules determine their enzymolysis and swelling characteristics. At room temperature, three kinds of amylase (-amylase,amylase and pullulanase) were used alone or in compound for three tuber starch (potato, sweet potato and cassava starch) hydrolysis respectively. The enzymolysis rate of starch granules was calculated, gelatinization enthalpy and relative crystallinity of three tuber starch granules before and after limited enzymolysis were calculated by differential scanning calorimetry and X-rays diffraction, respectively. The surface blocklets and shell structure of the enzymolyzed starch granules was observed by scanning electron microscopy. The results showed that the enzymolysis rate of-amylase was higher than-amylase and pullulanase. The non-reducing end and-1,6 glucoside bond located mainly inside, while-1,4 glucosidic bond located mainly in surface of starch granules. The gelatinization enthalpy and relative crystallinity of the enzymolyzed starch granules increased slightly, these physicochemical properties were close to those of the native starches. The results indicated that the structure of starch granules after enzymolysis was similar to that of native starch granules. Potato starch showed much lower enzymolysis rate (1.1%) than the other two starches (14.1%, 16.3%), and it had the strongest resistance to enzymolysis.In the reaction of single amylase,-amylase could make the surface of three tuber starch granules appear scratches and cracks, and expose surface blocklets (diameter 29-73 nm) and inner shell structure (thickness 150-400 nm). The surface blocklets of potato starch granules were tightly packed; while those of sweet potato starch granules were loosely arranged with holes, and those of cassava starch granules showed collapses and cracks. The enzymolysis rate of potato starch was much lower than that of the other two starches. Potato starch had strong resistance to enzymes. The results indicated that structure of surface blocklets determined the enzymolysis characteristics of starch granules. Compared with sweet potato and cassava starches, the shell structure of potato starch was dense and orderly. This was consistent with the results of peak viscosity measurement. The pasting properties of three tuber starches (5%, w/w) were measured by using rapid viscosity analyzer (RVA), and the peak viscosity of potato starch (2216 mPa·s) was significantly higher than those of sweet potato and cassava starches (593 and 740 mPa·s). Potato starch granules swelled to a larger degree, indicating that the shell structure determines the expansion characteristics of starch.After-amylase hydrolysis, only surface bolcklets of granules was observed. After pullulanase treatment, there was no obvious change for granules and no surface blocklets or shell were observed. When hydrolyzed with mixed amylase, the composite reaction of-amylase was similar to that of single reaction. For example, after hydrolysis with combination of-amylase and-amylase, surface blocklets with sizes of 36-65, 32-61 and 32-52 nm appeared on the surface of potato, sweet potato and cassava starches, respectively. Potato and sweet potato starch showed shell structure (thickness 300-400 nm and 100-150 nm, respectively). Sweet potato and cassava starch appeared hollow shell structure (thickness 100-150 nm and 100-200 nm, respectively). Treatment with-amylase or pullulanase, alone or mixed, could not show shell or outer shell structure for three tuber starch granules. Therefore, the single amylase hydrolysis of-amylase (80 U/mL, room temperature, 12 h) could be used as a method to study surface blocklets and shell structure of starch granules simultaneously.
starch; enzyme; hydrolysis; granule; structure
方晨璐,黃峻榕,任瑞珍,楊 麒,蒲華寅,劉樹興. 酶解薯類淀粉適用于電鏡觀察其顆粒表面及內(nèi)部結(jié)構(gòu)[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(22):306-312. doi:10.11975/j.issn.1002-6819.2018.22.038 http://www.tcsae.org
Fang Chenlu, Huang Junrong, Ren Ruizhen, Yang Qi, Pu Huayin, Liu Shuxing. Amylases enzymolysis of tuber starch granules for surface and internal structure observation under scanning electron microscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 306-312. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.22.038 http://www.tcsae.org
2018-06-20
2018-10-19
國家自然科學(xué)基金項目(31772012;31601509)資助
方晨璐,博士生,主要從事淀粉利用研究。 Email:15029949633@163.com
黃峻榕,教授,博士,博士生導(dǎo)師,主要從事淀粉資源的開發(fā)與利用研究。Email:huangjunrong@sust.edu.cn
10.11975/j.issn.1002-6819.2018.22.038
TS231
A
1002-6819(2018)-22-0306-07