劉 維,李祎君,何 亮,宋迎波
?
基于SPI判定的東北春玉米生長(zhǎng)季干旱對(duì)產(chǎn)量的影響
劉 維,李祎君,何 亮,宋迎波※
(國(guó)家氣象中心,北京 100081)
為了研究東北地區(qū)干旱對(duì)春玉米產(chǎn)量變化的影響機(jī)制,選用標(biāo)準(zhǔn)化降水指數(shù)(standardized precipitation index,SPI)作為干旱的判斷標(biāo)準(zhǔn),利用東北地區(qū)春玉米歷史產(chǎn)量資料構(gòu)建相對(duì)氣象產(chǎn)量殘差(standardized yield residuals series,SYRS),結(jié)合春玉米干旱受災(zāi)率,分析了東北地區(qū)春玉米全生育期干旱和產(chǎn)量變化特征,以及干旱對(duì)春玉米產(chǎn)量影響的變化規(guī)律。結(jié)果表明:1)年際間降水量的波動(dòng)導(dǎo)致東北地區(qū)玉米單產(chǎn)不穩(wěn)定,遼寧和內(nèi)蒙古東部受旱的程度及年數(shù)均遠(yuǎn)高于黑龍江和吉林,玉米成災(zāi)率和生長(zhǎng)季降水距平百分率呈現(xiàn)明顯負(fù)相關(guān)。2)20世紀(jì)80至90年代中期出現(xiàn)干旱的年份較少;而從90年代后期至2015年干旱年變多。3)2000年之前,黑龍江、吉林和內(nèi)蒙古東部3省區(qū)相對(duì)氣象產(chǎn)量殘差SYRS從負(fù)值向正值波動(dòng)提升,在90年代中后期達(dá)到歷史最高,進(jìn)入2010年以后,SYRS普遍處于正常水平;遼寧省SYRS呈現(xiàn)年際間波動(dòng)大的特征。4)東北四省區(qū)SPI6與SYRS滿足向下的拋物線趨勢(shì),當(dāng)降水量處于正常略偏多的情形下,東北4省區(qū)產(chǎn)量能達(dá)到高產(chǎn)的水平;當(dāng)SPI6處于干旱或者過(guò)濕的情況下,將處于低產(chǎn)量水平。
干旱;作物;春玉米;東北地區(qū);標(biāo)準(zhǔn)化降水指數(shù);產(chǎn)量
在全球變暖背景下,中國(guó)極端干旱事件頻繁發(fā)生[1],尤其是東北地區(qū)干旱有所發(fā)展[2],特別是20世紀(jì)90年代中期以后,東北氣候呈現(xiàn)明顯的干燥化趨勢(shì)[3-5];而東北地區(qū)又是中國(guó)重要的商品糧基地和優(yōu)質(zhì)玉米生產(chǎn)出口基地,在全國(guó)糧食安全生產(chǎn)中占有十分重要的比例[6]。東北地區(qū)干旱增多加強(qiáng)的趨勢(shì)勢(shì)必會(huì)對(duì)中國(guó)糧食安全造成嚴(yán)重的危害。揭示干旱與產(chǎn)量波動(dòng)的關(guān)系,對(duì)防旱抗旱、提高糧食產(chǎn)量,保障糧食安全有重要意義。作為一種氣象干旱的評(píng)價(jià)指標(biāo),標(biāo)準(zhǔn)化降水指數(shù)(standardized precipitation index,SPI)計(jì)算簡(jiǎn)單,降水資料容易獲取,而且計(jì)算結(jié)果與指數(shù)有極好的一致性[7],在不同地區(qū)和時(shí)間段都能有效地反映旱澇狀況。眾多學(xué)者也利用標(biāo)準(zhǔn)化降水指數(shù)SPI對(duì)中國(guó)不同地區(qū)干旱進(jìn)行了系統(tǒng)的研究,從干旱強(qiáng)度發(fā)生頻率、時(shí)空分布特征、干旱風(fēng)險(xiǎn)區(qū)劃、干旱預(yù)測(cè)等方面取得眾多的研究成果[8-15]。吳晶等[16]利用隨機(jī)森林模型結(jié)合SPI干旱指標(biāo)進(jìn)行月度干旱預(yù)測(cè),且準(zhǔn)確率高于氣候模式。馬建勇等[17]基于SPI與相對(duì)濕潤(rùn)度指數(shù)研究了東北地區(qū)5-9月的干旱趨勢(shì)分析,發(fā)現(xiàn)極端干旱發(fā)生頻率增加幅度明顯高于一般干旱;但是由于東北地區(qū)玉米一般在4月中旬至5月上旬播種[18],4月份的降水對(duì)也玉米播種尤為重要。劉彥平等[19]利用SPI作為干旱評(píng)判指標(biāo),分析了涇惠渠灌區(qū)干旱的變化特征,及其對(duì)冬小麥氣候產(chǎn)量的變化。明博等[20-21]利用分析了SPI的時(shí)空演變特征,并研究了干旱特征變化及其對(duì)作物產(chǎn)量的不同影響。上述研究都表明SPI在一定程度上能夠同作物減產(chǎn)率建立相應(yīng)的定量關(guān)系。但目前研究的作物主要集中在夏玉米和冬小麥上,利用SPI研究東北春玉米干旱與產(chǎn)量的研究仍較少。綜合來(lái)看,利用標(biāo)準(zhǔn)化降水指數(shù)能夠反映東北地區(qū)干旱的特征,但多數(shù)是從氣候角度和多尺度的角度來(lái)研究,或者結(jié)合單一的受旱面積、受災(zāi)站次比等;同時(shí)結(jié)合東北地區(qū)春玉米4-9月完整生長(zhǎng)季、春玉米產(chǎn)量波動(dòng)和玉米受災(zāi)程度變化的研究還較少;加之干旱與產(chǎn)量波動(dòng)相互關(guān)系仍然不明確。因此本文擬利用東北地區(qū)9月份的SPI來(lái)評(píng)價(jià)4至9月春玉米生長(zhǎng)季的干旱程度,同時(shí)研究SPI與玉米受旱程度、玉米產(chǎn)量波動(dòng)的變化規(guī)律,以期得到利用SPI來(lái)評(píng)價(jià)干旱對(duì)玉米產(chǎn)量的影響。
東北地區(qū)包括黑龍江、吉林、遼寧3省以及內(nèi)蒙古東北部的赤峰市、通遼市、興安盟和呼倫貝爾市。該區(qū)屬于溫帶大陸性季風(fēng)氣候,冬天時(shí)間長(zhǎng)溫度低,夏季時(shí)間短氣候濕潤(rùn),東部地區(qū)年降水為400~700 mm,西部為250~400 mm,年平均溫度為?4~12 ℃。該區(qū)域種植制度為一年一熟,4月至9月是玉米、一季稻、大豆等作物的適宜生長(zhǎng)季。
1.2.1 標(biāo)準(zhǔn)化降水指數(shù)
標(biāo)準(zhǔn)化降水指數(shù)(SPI)是用來(lái)表征某時(shí)段降水量出現(xiàn)的概率多少的指標(biāo),是國(guó)際上最常用的干旱指數(shù)之一,它可以反映多時(shí)間尺度的干旱;如1、3、6、12、24個(gè)月等,分別用SPI1、SPI3、SPI6、SPI12、SPI24等來(lái)表示。SPI1 可以監(jiān)測(cè)每月水分變化,SPI3和SPI6可用于監(jiān)測(cè)季度水分變化,SPI12、SPI24可監(jiān)測(cè)年尺度的水分虧缺狀況。該方法采用Gamma函數(shù)擬合降雨時(shí)間序列,然后再經(jīng)標(biāo)準(zhǔn)化求得SPI[18,22-24],最終采用標(biāo)準(zhǔn)化降水累積頻率分布來(lái)劃分干旱等級(jí)(表1)。
SPI計(jì)算公式為
()為給定降水時(shí)段概率密度,由不完全分布概率密度函數(shù)積分求得,計(jì)算公式為
式中為形狀參數(shù),為尺度參數(shù),兩者采用極大似然估計(jì)方法求得。由于東北地區(qū)春玉米生長(zhǎng)季在4月至9月,因此采用9月份的SPI6作為生長(zhǎng)季時(shí)間尺度進(jìn)行分析。本研究利用站點(diǎn)的降水量按照算術(shù)平均計(jì)算地區(qū)的降水量,其后用于計(jì)算各省區(qū)的SPI。
表1 SPI干旱等級(jí)
1.2.2 玉米產(chǎn)量
一般來(lái)說(shuō)作物產(chǎn)量受到作物品種改良、科技水平提升、種植制度改變、氣候變化等因素的影響,近年來(lái)作物產(chǎn)量?jī)A向于一個(gè)增加的趨勢(shì)[25]。為了預(yù)測(cè)作物產(chǎn)量,國(guó)內(nèi)許多研究者在建立農(nóng)業(yè)產(chǎn)量預(yù)報(bào)模型時(shí),大多將隨機(jī)“噪聲”略去,將作物統(tǒng)計(jì)產(chǎn)量簡(jiǎn)化為趨勢(shì)產(chǎn)量與氣象產(chǎn)量之和,而實(shí)際中經(jīng)常用相對(duì)氣象產(chǎn)量來(lái)表征氣象條件對(duì)作物單產(chǎn)的影響[26-29]
Y=Y+Y(3)
式中Y為統(tǒng)計(jì)產(chǎn)量,kg/ hm2;Y為氣象產(chǎn)量,kg/hm2;Y為趨勢(shì)產(chǎn)量,kg/hm2;Y由實(shí)際產(chǎn)量與年份擬合的方程得出,Y表示相對(duì)氣象產(chǎn)量。由于SPI指數(shù)為無(wú)量綱指數(shù),因此利用Y的殘差作為比較的對(duì)象[30]。
式中SYRS(standardized yield residuals series)為相對(duì)氣象產(chǎn)量殘差,SYRS值越大,表明氣象產(chǎn)量越高;反之,表明氣象產(chǎn)量低[25];本研究中當(dāng)SYRS大于0.5時(shí)為高產(chǎn),小于?0.5時(shí)為低產(chǎn),兩者之間為正常年份。為相對(duì)氣象產(chǎn)量的平均值,為相對(duì)氣象產(chǎn)量的標(biāo)準(zhǔn)差,其中和越小,表示實(shí)際產(chǎn)量與年份擬合的方程效果越好,本文中遼寧和黑龍江為線性擬合,吉林和內(nèi)蒙古東部為二次曲線擬合。
1.2.3 干旱成災(zāi)率
由于沒(méi)有春玉米受旱面積,因此利用農(nóng)業(yè)部種植業(yè)管理司分省糧食作物干旱成災(zāi)面積與糧食播種面積的百分比表示作物受旱程度,用成災(zāi)率Dr來(lái)表示干旱程度,由于東北地區(qū)旱地糧食作物主要為玉米和大豆,可用成災(zāi)率Dr表示干旱對(duì)單一作物的影響。
式中Dr為玉米成災(zāi)率,%;DDr為糧食作物成災(zāi)面積,hm2;SD為糧食作物播種面積,hm2。
氣象資料為1981-2015年黑龍江、吉林、遼寧、內(nèi)蒙古東部(東四盟)共計(jì)77個(gè)農(nóng)業(yè)氣象觀測(cè)站(圖1)的日值數(shù)據(jù),包括日降水量、日平均氣溫等常規(guī)氣象要素?cái)?shù)據(jù),該資料來(lái)源于國(guó)家氣象中心農(nóng)業(yè)氣象中心。春玉米種植面積、單位產(chǎn)量以及干旱成災(zāi)面積等來(lái)源于農(nóng)業(yè)部種植業(yè)管理司,該數(shù)據(jù)資料統(tǒng)計(jì)時(shí)段為1981-2015年。
圖1 東北地區(qū)春玉米觀測(cè)站點(diǎn)分布
1981年以來(lái),隨著品種更新、農(nóng)業(yè)種植水平的提高,東北地區(qū)春玉米單產(chǎn)呈現(xiàn)穩(wěn)步上升的態(tài)勢(shì)。但是由于東北地區(qū)氣候特點(diǎn),農(nóng)作物生產(chǎn)以雨養(yǎng)農(nóng)業(yè)為主,4月至9月春玉米基本依靠自然降水滿足其正常的生長(zhǎng)發(fā)育,年際間降水量的波動(dòng)導(dǎo)致玉米單產(chǎn)不穩(wěn)定,降水量少的年份單產(chǎn)明顯下降。通過(guò)產(chǎn)量分離后得出的氣象產(chǎn)量,能在一定程度上反映當(dāng)年春玉米生長(zhǎng)季中氣象條件的優(yōu)劣。從表2可知,遼寧省決定系數(shù)2明顯低于其他3省,主要是由于該省年際間產(chǎn)量波動(dòng)明顯,相隔年份單產(chǎn)最大差值達(dá)到2 500 kg/hm2,而從和來(lái)看,產(chǎn)量分離擬合的效果較好。分析玉米成災(zāi)率和生長(zhǎng)季降水距平百分率來(lái)看,兩者呈現(xiàn)明顯的負(fù)相關(guān),絕對(duì)值都在0.5以上,尤其是遼寧省為0.76。遼寧和內(nèi)蒙古東部35 a中分別有14 a和18 a玉米Dr≥20%,而黑龍江和吉林分別只有6 a和8 a。值得注意的是21世紀(jì)頭10年4省玉米r≥20%的年份明顯高于其他年代,這同圖2中降水的變化趨勢(shì)基本類似,表明降水的減少給玉米生長(zhǎng)帶來(lái)了明顯的不利影響。
表2 東北地區(qū)玉米產(chǎn)量分離結(jié)果及成災(zāi)率≥20%的年份
注:為相對(duì)氣象產(chǎn)量的平均值;為相對(duì)氣象產(chǎn)量的標(biāo)準(zhǔn)差;為降水距平百分率與成災(zāi)率的相關(guān)系數(shù)。
Note:means the average of relative meteorological yield;means the standard deviationof relative meteorological yield;means the correlation coefficient between the percentage of precipitation departure and suffering disaster rate (Dr).
1981年以來(lái),東北4省區(qū)4月至9月春玉米生長(zhǎng)季降水量年際間波動(dòng)大,但總體上呈現(xiàn)緩慢減少的態(tài)勢(shì)[31-32],尤其是內(nèi)蒙古東部春玉米產(chǎn)區(qū)降水量減少趨勢(shì)明顯,遼寧省減小趨勢(shì)最小。分析SIP6的年代變化特征可以看出(圖2),20世紀(jì)80至90年代中期SPI6以正值為主,出現(xiàn)干旱的年份較少,僅1982和1989年為典型的干旱年型,4省區(qū)SPI6值都處于輕旱標(biāo)準(zhǔn)以上;而從90年代后期至今,SPI6以負(fù)值為主,尤其是1999?2004年這5年,各省區(qū)的SPI6平均值都處于中旱標(biāo)準(zhǔn)以上,處于明顯的干旱時(shí)段,這也同降水距平百分率的變化一致,且4省區(qū)相關(guān)系數(shù)都在0.99以上。
圖2 1981?2015年各省區(qū)SPI6年代變化特征和 4-9月降水量距平百分率
分析4省區(qū)的相對(duì)氣象產(chǎn)量殘差SYRS可以看出(圖3),整體上各省區(qū)年際間波動(dòng)差異較大。2000年之前,黑龍江、吉林、內(nèi)蒙古東部3省區(qū)相對(duì)氣象產(chǎn)量殘差SYRS呈現(xiàn)從負(fù)值向正值波動(dòng)提升的特點(diǎn),在90年代中后期達(dá)到歷史最高;而2000年以后3省區(qū)SYRS普遍處于正常年份到偏低年份的態(tài)勢(shì);進(jìn)入2010年以后,SYRS普遍處于正常水平。遼寧省SYRS則呈現(xiàn)波動(dòng)幅度較大的特點(diǎn),同產(chǎn)量的變化趨勢(shì)基本保持一致(圖4),總體上以正常到偏高的變化為主。
圖3 1981?2015年?yáng)|北地區(qū)相對(duì)氣象產(chǎn)量殘差SYRS變化特征
圖4 遼寧省歷史產(chǎn)量和相對(duì)氣象產(chǎn)量殘差SYRS頻率分布規(guī)律
對(duì)SPI6和玉米成災(zāi)率分析后發(fā)現(xiàn)(圖5),成災(zāi)率Dr隨著SPI的變大而變小,在SPI大于1時(shí),成災(zāi)率普遍小于10%。但在內(nèi)蒙古東部當(dāng)SPI值偏大時(shí),有3 a的成災(zāi)率也在30%以上,說(shuō)明過(guò)濕也會(huì)導(dǎo)致玉米成災(zāi)。而當(dāng)只考慮在干旱等級(jí)標(biāo)準(zhǔn)下時(shí),東北4省區(qū)的成災(zāi)率2的斜率明顯高于1。黑龍江省干旱成災(zāi)率程度明顯低于其他3省區(qū),最大的成災(zāi)率在30%左右,而遼寧和吉林最大的超過(guò)60%。
注:y1表示全部成災(zāi)率擬合,y2表示干旱條件下成災(zāi)率擬合(SPI6≤-0.5.)。
從SPI6與各省區(qū)的殘差SYRS的關(guān)系可以看出(圖6),4省區(qū)基本上滿足向下的拋物線趨勢(shì),隨著SPI從低到高,作物的SYRS也是從低值到最高值再下降的趨勢(shì),且各省的拋物線最高值對(duì)應(yīng)的SPI基本上在0.5左右擺動(dòng),表明當(dāng)降水量處于正常略偏多的情形下,此時(shí)的東北4省區(qū)產(chǎn)量能達(dá)到高產(chǎn)的水平。除了黑龍江擬合效果一般外,其余3省區(qū)擬合效果均較好。當(dāng)SPI處于正常偏旱或干旱的情況下,作物處于一個(gè)低產(chǎn)的水平,且隨著SPI的減小產(chǎn)量降低。
由圖6可知,當(dāng)SPI處于過(guò)濕的情況下,產(chǎn)量水平也將下降,但下降的水平?jīng)]有干旱的嚴(yán)重,這主要是由于降水量變多,相應(yīng)的氣溫和日照時(shí)數(shù)會(huì)下降,東北地區(qū)玉米除了受降雨影響外,氣溫也對(duì)產(chǎn)量有一定的影響,嚴(yán)重的情形下會(huì)出現(xiàn)低溫冷害災(zāi)害,不利于玉米產(chǎn)量的形成。分析SPI后發(fā)現(xiàn),4省區(qū)總共有29 a出現(xiàn)SPI大于1的年份,其中殘差小于?0.5即低產(chǎn)的年份有8 a,這8 a中降水距平百分率偏高都在17%以上,有7年≥10 ℃積溫低于常年值,偏低在?38至?185(℃·d)之間,僅一年積溫偏高(表3),這也表明了降水偏多、積溫偏少也會(huì)導(dǎo)致產(chǎn)量下降。
圖6 東北地區(qū)SPI6與SYRS的關(guān)系
表3 東北地區(qū)SYRS<?0.5下降水距平百分率和≥10 ℃積溫距平特征
目前干旱的劃分主要有氣象干旱、農(nóng)業(yè)干旱、水文干旱和社會(huì)經(jīng)濟(jì)干旱[31],且各類干旱之間密切相關(guān),同時(shí)差異顯著。玉米受災(zāi)導(dǎo)致產(chǎn)量下降應(yīng)該歸結(jié)為農(nóng)業(yè)干旱,但是降水量的虧缺造成最先出現(xiàn)氣象干旱,隨后導(dǎo)致農(nóng)田土壤濕度下降,而當(dāng)正好處于作物生育期內(nèi),就容易造成作物減產(chǎn)從而產(chǎn)生農(nóng)業(yè)干旱,因此從本質(zhì)上說(shuō)農(nóng)業(yè)干旱是由氣象干旱持續(xù)一段時(shí)間而引發(fā)的。而由于評(píng)價(jià)農(nóng)業(yè)干旱的指標(biāo)往往是由農(nóng)田土壤含水量、作物發(fā)育期、降水量、遙感監(jiān)測(cè)等多尺度多方法的集成,運(yùn)算量大、資料獲取難度較高。而作為一種簡(jiǎn)單常用的氣象干旱指標(biāo),SPI僅需要降水資料就能計(jì)算使用,方便運(yùn)算;但SPI只考慮了單一的降水因子,沒(méi)有考慮作物等下墊面的影響,尤其是作物不同生育期對(duì)水分的需求也是不同的。因此本文利用4-9月全生育期的6個(gè)月降水量來(lái)分析SPI與產(chǎn)量的關(guān)系,一定程度上規(guī)避了SPI對(duì)農(nóng)業(yè)干旱評(píng)價(jià)的不精確。
由于受降水年際間波動(dòng)大的影響,東北各省區(qū)糧食單產(chǎn)波動(dòng)較大,產(chǎn)量分離的時(shí)候有一定的不確定性,因此利用相對(duì)氣象產(chǎn)量和相對(duì)氣象產(chǎn)量殘差SYRS能夠有效減小誤差,從而更好的揭示SPI6對(duì)產(chǎn)量的影響。當(dāng)然,東北地區(qū)年際間產(chǎn)量波動(dòng)除了受降水影響以外,其他氣象條件,比如霜凍、低溫冷害等也是造成產(chǎn)量下降的原因,但是由于受全球變暖趨勢(shì)影響,東北地區(qū)生長(zhǎng)季熱量資源增加,水資源減少趨勢(shì),霜凍害、低溫冷害、寒潮等農(nóng)業(yè)氣象災(zāi)害減少,但仍然對(duì)玉米、水稻等作物產(chǎn)量形成影響較大[32-35]。但需要注意的是,由于缺少各省玉米實(shí)際的受災(zāi)程度統(tǒng)計(jì),利用糧食作物受旱程度來(lái)反推玉米受旱程度,有一定的誤差。
本文利用SPI較為準(zhǔn)確的描述東北地區(qū)年際和年內(nèi)的波動(dòng)變化,再結(jié)合玉米受旱程度和產(chǎn)量變化趨勢(shì),能夠較好的反應(yīng)出干旱對(duì)玉米生長(zhǎng)的不利影響,一定程度上揭示玉米生育期降水量對(duì)產(chǎn)量的影響,對(duì)農(nóng)業(yè)氣象業(yè)務(wù)中產(chǎn)量預(yù)報(bào)、災(zāi)害評(píng)估提供方法。
1)東北地區(qū)玉米成災(zāi)率和生長(zhǎng)季內(nèi)的降水距平百分率呈現(xiàn)明顯的負(fù)相關(guān),遼寧和內(nèi)蒙古東部受旱的程度和年份遠(yuǎn)大于黑龍江和吉林。東北地區(qū)SPI6年際間波動(dòng)顯著,20世紀(jì)90年代中期之前干旱的年份較少;90年代中后期開(kāi)始,遼寧、黑龍江、內(nèi)蒙古東部生長(zhǎng)季內(nèi)降水量明顯偏少,干旱年份增多。
2)玉米成災(zāi)率隨著SPI6的變大而變小,黑龍江成災(zāi)率程度明顯低于其他3省區(qū)。東北4省區(qū)SPI6與SYRS滿足向下的拋物線趨勢(shì),相對(duì)氣象產(chǎn)量殘差(SYRS)隨著SPI6從低到高呈現(xiàn)先升高再下降的趨勢(shì),且拋物線的最高值對(duì)應(yīng)的SPI6基本上在0.5左右擺動(dòng)。而當(dāng)SPI6處于過(guò)濕的情況下,降水量和降雨日數(shù)增多導(dǎo)致積溫下降,也會(huì)對(duì)產(chǎn)量有一定的影響。
[1] 李憶平,李耀輝. 氣象干旱指數(shù)在中國(guó)的適應(yīng)性研究進(jìn)展[J]. 干旱氣象,2017,35(5):709-723.
Li Yiping, Li Yaohui. Advances in adaptability of meteorological drought indices in China [J]. Journal of Arid Meteorology, 2017, 35(5): 709-723. (in Chinese with English abstract)
[2] 李寶林,周成虎. 東北平原西部沙地的氣候變異與土地荒漠化[J]. 自然資源學(xué)報(bào),2001,16(3):234-239. Li Baolin, Zhou Chenghu. Climatic variation and desertification in west sandy land of Northeast China Plain[J]. Journal of Natural Resources, 2001, 16(3): 234-239. (in Chinese with English abstract)
[3] 孫力,沈柏竹,安剛. 中國(guó)東北地區(qū)地表干濕狀況的變化及趨勢(shì)分析[J]. 應(yīng)用氣象學(xué)報(bào),2003,14(5):542-552.
Sun Li, Shen Baizhu, An Gang. A study of the variation and the tendency of surface dry and wet state of Northeast area in China[J]. Journal of Applied Meteorological Science, 2003, 14(5): 542-552. (in Chinese with English abstract)
[4] 謝安,孫永罡,白人海.中國(guó)東北近50年干旱發(fā)展及對(duì)全球氣候變暖的響應(yīng)[J]. 地理學(xué)報(bào),2003,58(增刊):75-82.
Xie An, Sun Yonggang, Bai Renhai. Arid climate trend over Northeastern China and its response to global warming[J]. Acta Geographica Sinica, 2003, 58(Suppl.): 75-82. (in Chinese with English abstract)
[5] 馬柱國(guó),任小波. 1951-2006年中國(guó)區(qū)域干旱化特征[J].氣候變化研究進(jìn)展,2007,3(4):195-201.
Ma Zhuguo, Ren Xiaobo. Drying trend over China from 1951 to 2006[J]. Advances in Climate Change Research, 2007, 3(4): 195-201. (in Chinese with English abstract)
[6] 劉維,侯英雨,吳門(mén)新,等. WOFOST模型在東北春玉米產(chǎn)區(qū)的驗(yàn)證與適應(yīng)性評(píng)價(jià)[J].氣象與環(huán)境科學(xué),2017,40(3):7-13.
Liu Wei, Hou Yingyu, Wu Menxin, et al. Validation and adaptability evaluation of WOFOST model in spring maize area of northeast[J]. Meteorological and Environmental Sciences, 2017, 40(3): 7-13. (in Chinese with English abstract)
[7] 韓海濤,胡文超,陳學(xué)君,等. 三種氣象干旱指標(biāo)的應(yīng)用比較研究[J]. 干旱地區(qū)農(nóng)業(yè)研究,2009,27(1):237-241,247.
Han Haitao, Hu Wenchao, Chen Xuejun, et al. Application and comparison of three meteorological drought indices[J]. Agricultural Research in the Arid Areas, 2009, 27(1): 237-241, 247. (in Chinese with English abstract)
[8] 黃晚華,楊曉光,李茂松,等.基于標(biāo)準(zhǔn)化降水指數(shù)的中國(guó)南方季節(jié)性干旱近58 a演變特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(7):50-59.
Huang Wanhua, Yang Xiaoguang, Li Maosong, et al. Evolution characteristics of seasonal drought in the south of China during the past 58 years based on standardized precipitation index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(7): 50-59. (in Chinese with English abstract)
[9] 高西寧,徐慶喆,叢俊霞,等. 基于標(biāo)準(zhǔn)化降水指數(shù)的遼寧省近54年干旱時(shí)空規(guī)律分析[J]. 生態(tài)環(huán)境學(xué)報(bào),2015,24(11):1851-1857.
Gao Xining, Xu Qingzhe, Cong Junxia, et al. Temporal and spatial patterns of droughts based on standard precipitation index (SPI) in Liaoning Province in Recent 54 a[J]. Ecology and Environmental Sciences, 2015, 24(11): 1851-1857. (in Chinese with English abstract)
[10] 陳永志,李傲,周祥. 基于多尺度SPI指數(shù)的哈巴河地區(qū)近53 a的干旱分析[J]. 長(zhǎng)江科學(xué)院院報(bào),2017,34(6):12-16,23.
Chen Yongzhi, Li Ao, Zhou Xiang. Drought analysis based on multi-timescale standardized precipitation index in Habahe region from 1962 to 2014[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(6): 12-16, 23. (in Chinese with English abstract)
[11] 李斌,解建倉(cāng),胡彥華,等.基于標(biāo)準(zhǔn)化降水指數(shù)的陜西省干旱時(shí)空變化特征分析[J].農(nóng)業(yè)工程學(xué)報(bào),2017,33(17):113-119.
Li Bin, Xie Jiancang, Hu Yanhua, et al. Analysis on spatiotemporal variability characteristics of drought in Shaanxi Province using standardized precipitation index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(17): 113-119. (in Chinese with English abstract)
[12] 劉蕊娟,王旭紅,趙會(huì)娟. 渭河流域多尺度干旱時(shí)空特征分析[J]. 干旱地區(qū)農(nóng)業(yè)研究,2017,35(3):99-106,252.
Liu Ruijuan, Wang Xuhong, Zhao Huijuan. Analysis of spatial-temporal characteristics of drought by multiple scales in Weihe River Basin[J]. Agricultural Research in the Arid Areas, 2017, 35(3): 99-106, 252. (in Chinese with English abstract)
[13] 岳元,申雙和,王琪. 基于標(biāo)準(zhǔn)化降水指數(shù)的近45年吉林省干旱特征分析[J]. 中國(guó)農(nóng)村水利水電,2017(7):166-172.
Yue Yuan, Shen Shuanghe, Wang Qi. Drought characteristics analysis of Jilin province based on the standardized precipitation index in recent 45 years[J]. China Rural Water and Hydropower, 2017(7): 166-172. (in Chinese with English abstract)
[14] Seiler R A, Hayes M, Bressan L. Using the standardized precipitation index for flood risk monitoring [J]. International Journal of Climatology, 2002, 22: 1365-1376.
[15] 孫濱峰,趙紅,王效科. 基于標(biāo)準(zhǔn)化降水蒸發(fā)指數(shù)(SPEI)的東北干旱時(shí)空特征[J]. 生態(tài)環(huán)境學(xué)報(bào),2015,24(1):22-28.
Sun Binfeng, Zhao Hong, Wang Xiaoke. Spatiotemporal characteristics of drought in northeast China based on SPEI[J]. Ecology and Environmental Sciences, 2015, 24(1): 22-28. (in Chinese with English abstract)
[16] 吳晶,陳元芳,余勝男. 基于隨機(jī)森林模型的干旱預(yù)測(cè)研究[J]. 中國(guó)農(nóng)村水利水電,2016(11):17-22.
Wu Jing, Chen Yuanfang, Yu Shengnan. Research on drought prediction based on random forest model[J]. China Rural Water and Hydropower, 2016(11): 17-22. (in Chinese with English abstract)
[17] 馬建勇,許吟隆,潘婕. 基于SPI與相對(duì)濕潤(rùn)度指數(shù)的1961-2009年?yáng)|北地區(qū)5-9月干旱趨勢(shì)分析[J]. 氣象與環(huán)境學(xué)報(bào),2012,28(3):90-95.
Ma Jianyong, Xu Yinlong, Pan Jie. Drought tendency based on standardized precipitation index (SPI) and relative moisture index over Northeast China from May to September during 1961-2009[J]. Journal of Meteorology and Environment, 2012, 28(3): 90-95. (in Chinese with English abstract)
[18] 張淑杰,張玉書(shū),孫龍彧,等. 東北地區(qū)玉米生育期干旱分布特征及其成因分析[J]. 中國(guó)農(nóng)業(yè)氣象,2013,34(3):
350-357.
Zhang Shujie, Zhang Yushu, Sun Longyu, et al. Analysis of distributional characteristics and primary causes of maize drought in Northeast China[J]. Chinese Journal of Agrometeorology, 2013, 34(3): 350-357. (in Chinese with English abstract)
[19] 劉彥平,蔡煥杰. 基于標(biāo)準(zhǔn)化降水指數(shù)SPI的涇惠渠灌區(qū)干旱演變對(duì)冬小麥氣候產(chǎn)量的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2015,33(3):267-272.
Liu Yanping, Cai Huanjie. Effect of drought evolution on climatic yield of winter wheat based on SPI in Jinghuiqu Irrigation District[J]. Agricultural Research in the Arid Areas, 2015, 33(3): 267-272.
[20] 明博,陶洪斌,王璞. 基于標(biāo)準(zhǔn)化降水蒸散指數(shù)研究干旱對(duì)北京地區(qū)作物產(chǎn)量的影響[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,18(5):28-36.
Ming Bo, Tao Hongbin, Wang Pu. Impact of drought on grain yield in Beijing investigated by SPEI-based methods[J]. Journal of China Agricultural University, 2013, 18(5): 28-36. (in Chinese with English abstract)
[21] 王連喜,邊超鈞,李琪,等. 陜西省干旱變化特征及其對(duì)玉米產(chǎn)量的影響[J]. 自然災(zāi)害學(xué)報(bào),2014,23(6):193-199.
Wang Lianxi, Bian Chaojun, Li Qi, et al. Characteristics of drought change in Shaanxi Province and their influence on corn yield[J]. Journal of Natural Disasters, 2014, 23(6): 193-199. (in Chinese with English abstract)
[22] McKee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[C]// American Meteorological Society Boston, Proceedings of the 8th Conference on Applied Climatology, 1993: 179-183.
[23] Kumar M N, Murthy C S, Sesha Sai M VR, et al. On the use of standardized precipitation index (SPI) for drought intensity assessment[J]. Meteorol Appl, 2009, 16(3): 381-389.
[24] World Meteorological Organization. Standardized Precipitation Index User Guide[M]. WMO-No.1090, 2012.
[25] Potopov?a V, Boroneant? C, Boincean B, et al. Impact of agricultural drought on main crop yields in the Republic of Moldova[J]. Int J Climatol, 2015, 36(4): 2063-2082.
[26] 宋迎波,王建林,陳暉,等. 中國(guó)油菜產(chǎn)量動(dòng)態(tài)預(yù)報(bào)方法研究[J]. 氣象,2008,34(3):93-99.
Song Yingbo, Wang Jianlin, Chen Hui, et al. Methodology on dynamical prediction of rape yield in China[J]. Meteorological Monthly, 2008, 34(3): 93-99. (in Chinese with English abstract)
[27] David B Lobell, Wolfram Schlenker, Justin Costa-Roberts. Climate trends and global crop production since 1980[J]. Scinece, 2011, 333: 616-620.
[28] 宋迎波,王建林,李昊宇,等.冬小麥氣候適宜診斷指標(biāo)確定方法探討[J]. 氣象,2013,39(6):768-773.
Song Yingbo, Wang Jianlin, Li Haoyu, et al. Exploration to the method for determining diagnostic indicators of suitable climate for winter wheat[J]. Meteorological Monthly, 2013, 39(6): 768-773.
[29] 邱美娟,宋迎波,王建林,等. 農(nóng)業(yè)氣象產(chǎn)量預(yù)報(bào)方法中權(quán)重系數(shù)的確定[J]. 氣象與環(huán)境學(xué)報(bào),2016,32(2):106-111.
Qiu Meijuan, Song Yingbo, Wang Jianlin, et al. Determination of weight coefficient in agro-meteorological yield prediction[J]. Journal of Meteorology and Environment, 2016, 32(2): 106-111. (in Chinese with English abstract)
[30] Tian Liyan, Yuan Shanshui, Quiring S M. Evaluation of six indices for monitoring agricultural drought in the south central United States[J]. Agricultural and Forest Meteorology, 2018, 249: 107-119.
[31] American M S. Meteorological Drought:Policy statement[J]. Bulletion of American Meteorological Society, 1997, 78: 847-849.
[32] 趙秀蘭. 近50年中國(guó)東北地區(qū)氣候變化對(duì)農(nóng)業(yè)的影響[J].東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2010,41(9):144-149.
Zhao Xiulan. Influence of climate change on agriculture in Northeast China in recent 50 years[J]. Journal of Northeast Agricultural University, 2010, 41(9): 144-149. (in Chinese with English abstract)
[33] 陳群,耿婷,侯雯嘉,等. 近20年?yáng)|北氣候變暖對(duì)春玉米生長(zhǎng)發(fā)育及產(chǎn)量的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2014,47(10):1904-1916.
Chen Qun, Geng Ting, Hou Wenjia, et al. Impacts of climate warming on growth and yield of spring maize in recent 20 years in Northeast China[J]. Scientia Agricultura Sinica, 2014, 47(10): 1904-1916. (in Chinese with English abstract)
[34] 王艷華,任傳友,韓亞?wèn)|,等. 東北地區(qū)活動(dòng)積溫和極端持續(xù)低溫的時(shí)空分布特征及其對(duì)糧食產(chǎn)量的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2011,30(9):1742-1748.
Wang Yanhua, Ren Chuanyou, Han Yadong, et al. The tempo-spatial patterns of active accumulated and consecutive extreme low temperature and their impacts on grain crop yield in Northeast China[J]. Journal of Agro-Environment Science, 2011, 30(9): 1742-1748. (in Chinese with English abstract)
[35] 高曉容,王春乙,張繼權(quán). 氣候變暖對(duì)東北玉米低溫冷害分布規(guī)律的影響[J]. 生態(tài)學(xué)報(bào),2012,32(7):2110-2118.
Gao Xiaorong, Wang Chunyi, Zhang Jiquan. The impacts of global climatic change on chilling damage distributions of maize in Northeast China[J]. Acta Ecological Sinica, 2012, 32(7): 2110-2118. (in Chinese with English abstract)
Effect of growing season drought on spring maize yields in Northeast China based on standardized precipitation index
Liu Wei, Li Yijun, He Liang, Song Yingbo※
(,100081,)
In order to study the influence mechanism of drought change on spring maize yields in Northeast China, the standard precipitation index (SPI) was selected as the drought evaluation index. The relative meteorological standardized yield residuals series (SYRS) was computed by using the series of spring maize yields in Northeast China and combined with drought disaster rate of spring maize to analyze the variation characteristics of drought and the yields, and the variation characteristics of the effect of growing season drought on spring maize yields. The research showed that: 1) The fluctuation of yields was caused by the fluctuation of precipitation in the interannual changes. The spring maize output per unit area was separated into trend yield and meteorological yield, and the separation efficiency was in a high level.The average of relative meteorological yieldwas less than 0.0028 and the standard deviation of relative meteorological yieldwas less than 0.16. Degree of drought and the years of drought in Liaoning and Inner Mongolia province were more than that in Heilongjiang and Jilin province. There was a negative correlation coefficient between the percentages of precipitation departure and suffering disaster rate by drought. The suffering disaster rate by drought during 2000 to 2010 were much heavy than any other periods in the four province. 2) There were few drought years from the 1980s to the mid 1990s while the more drought years from the late 1990s to 2015, and the variation trend of SPI6 was the same as the percentage of precipitation departure from April to September. The correlation coefficient between SPI and the percentage of precipitation was larger than 0.99 in the five years during 1999 to 2004. 3) The relative meteorological standardized yield residuals series from low values (less than -2.0) to high values (larger than 2.0) in Heilongjiang, Jilin and Inner Mongolia before 2000, which was high in the middle and later 1990s. And the SYRS was in a normal to higher level from 2010 to 2015 in Northeast China. The variation amplitude of SYRS in Liaoning was larger than that of other three provinces. 4) The correlation coefficient between SPI and the suffering disaster rate by drought was negative. Especially, the slope fitting by SPI less than or equal to -0.5 was much high than that fitting by all SPI6. The SPI6 and relative meteorological standardized yield residuals series were conformed to the downward quadratic parabola trend in the Northeast China. The largest suffering disaster rate by drought in Heilongjiang province was approximately 30%, which was much less than other three provinces, while the suffering disaster rate by drought was exceed 60% in Jilin and Liaoning. When there was normal or more precipitation, the yield would reach a high level; while the SPI6 was drought or wet, the yield would reach a low level. There was eight years of standardized yield residuals series less than -0.5, and the percentage of precipitation departure was 17% more than normal in all these eight years. Meanwhile, ≥10℃ accumulated temperature departure was -38 to -185 (℃·d) less than normal in seven years. It means more precipitation and less accumulated temperature would decrease yield loss.
drought; crops; spring maize; Northeast China; standardized precipitation index; yield
劉 維,李祎君,何 亮,宋迎波. 基于SPI判定的東北春玉米生長(zhǎng)季干旱對(duì)產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(22):121-127. doi:10.11975/j.issn.1002-6819.2018.22.015 http://www.tcsae.org
Liu Wei, Li Yijun, He Liang, Song Yingbo. Effect of growing season drought on spring maize yields in Northeast China based on standardized precipitation index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 121-127. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.22.015 http://www.tcsae.org
2018-04-20
2018-09-25
公益性行業(yè)(氣象)科研專項(xiàng)(GYHY201506001),國(guó)家氣象中心作物模型業(yè)務(wù)應(yīng)用創(chuàng)新團(tuán)隊(duì)
劉 維,工程師,研究方向?yàn)樽魑锬P团c干旱。 Email:rainvswindvs@163.com
宋迎波,研究員,主要從事作物產(chǎn)量預(yù)報(bào)。 Email:songyb@cma.gov.cn
10.11975/j.issn.1002-6819.2018.22.015
S161
A
1002-6819(2018)-22-0121-07