高瑞灝 王有森 劉德美
[摘要] 目的 了解嗜麥芽窄食單胞菌臨床分離株在三氯生誘導(dǎo)下耐藥性和外排泵SmeDEF表達的變化。 方法 選取2017年3~6月濰坊市人民醫(yī)院細菌室培養(yǎng)的嗜麥芽窄食單胞菌分離株10株,比較三氯生誘導(dǎo)前后嗜麥芽窄食單胞菌的最小抑菌濃度(MIC)。監(jiān)測三氯生誘導(dǎo)前后菌株外排泵smeD基因RT-PCR擴增后的表達水平。 結(jié)果 對抗生素敏感的10株菌泵抑制呈陽性或者陰性表現(xiàn)。其中6株菌經(jīng)三氯生誘導(dǎo)后對左氧氟沙星的MIC值比誘導(dǎo)前高3~5個稀釋度,加用泵抑制CCCP后,6株誘導(dǎo)后的菌株MIC值均有所降低。泵抑制劑陽性菌株抗生素過夜組和對數(shù)生長期添加組均明顯高于無抗生素組的smeD的表達。 結(jié)論 嗜麥芽窄食單胞菌臨床分離株在三氯生誘導(dǎo)下對部分抗生素的耐藥性有所提高,這與外排泵SmeDEF的表達有關(guān)。
[關(guān)鍵詞] 三氯生;嗜麥芽窄食單胞菌;抗生素耐藥性;外排泵;誘導(dǎo)
[中圖分類號] R378 [文獻標(biāo)識碼] A [文章編號] 1673-7210(2018)08(b)-0113-04
[Abstract] Objective To investigate the changes of Antibiotic resistance of Stenotrophomonas maltophilia and the expression of efflux pump SmeDEF in the induction of Triclosan. Methods From March to June in 2017, 10 strains of Stenotrophomonas maltophilia isolated from bacterial lab cultured in Weifang People′s Hospital were selected. The MIC of Stenotrophomonas maltophilia before and after the induction of Triclosan was compared and the repression level of the mRNA of efflux pump smeD was monitored by RT-PCR. Results The inhibition of 10 strains of bacteria pump sensitive to antibiotics was positive or negative. The levofloxacin MIC of 6 strains was 3-5 dilution higher than that before induction, and the MIC of 6 strains was reduced when the efflux pump inhibitor CCCP was used. The repression level of smeD of both pump inhibitor positive strains antibiotic overnight group and logarithmic growth addition group was significantly higher the no antibiotic group. Conclusion The resistance to antibiotics of Stenotrophomonas maltophilia clinical isolates induced by triclosan has increased, which is related to the expression of efflux pump SmeDEF.
[Key words] Tricolsan; Stenotrophomonas maltophilia; Antibiotic resistance; Efflux pump; Induction
三氯生,化學(xué)名稱:2,4,4′-三氯-2′-羥基二苯基醚,一種非離子性的氯化苯酸化合物,廣泛應(yīng)用于牙膏、香皂、家庭清潔用品、表面清潔劑以及添加在不同材料中(無菌建筑中應(yīng)用的紡織物和混凝土)[1-5]。三氯生是廣泛應(yīng)用的殺菌劑中的一種,在較低濃度下三氯生就可通過損害細胞膜殺死微生物,表現(xiàn)出抑菌性[6]。三氯生具有廣譜抗菌性,但對革蘭陰性菌和銅綠假單胞菌的抑菌活性低。殺菌劑用來防止微生物的定植在物體表面,但同時也可對周圍環(huán)境中細菌的繁殖產(chǎn)生意料之外的影響[7-9]。嗜麥芽窄食單胞菌是廣泛分布于環(huán)境中的一種專性需氧的非發(fā)酵革蘭陰性桿菌,適于生存在潮濕的條件下,如:水、植物的根部、土壤。嗜麥芽窄食單胞菌為條件致病菌,可以定植于醫(yī)用器材的表面,如:血液透析裝置、呼吸機管道、導(dǎo)尿管、中心靜脈置管等。隨著抗生素的廣泛使用以及介入治療的開展,嗜麥芽窄食單胞菌感染越來越普遍,成為越來越重要的醫(yī)院內(nèi)感染病原體。嗜麥芽窄食單胞菌具有多種天然耐藥機制,其中多重耐藥(MDR)外排泵機制為最主要的一種,介導(dǎo)對多種抗生素的耐藥,并且外排泵的表達受抗生素的誘導(dǎo)。不同的實驗研究顯示三氯生的耐藥性也與MDR外排泵的表達有關(guān)[10-13]。
1 材料與方法
1.1 材料試劑與儀器
菌株來源:嗜麥芽窄食單胞菌臨床分離株,數(shù)量10株,來自濰坊市人民醫(yī)院細菌室,分離自痰液、尿液。銅綠假單胞菌ATCC27853作藥敏試驗質(zhì)控菌。
藥品與試劑:左氧氟沙星購自濰坊市人民醫(yī)院;三氯生、泵抑制劑CCCP,美國SIGMA公司生產(chǎn)。LB肉湯培養(yǎng)基、MH瓊脂,上海生工公司產(chǎn)品。UNIQ-10柱式Trizol總RNA抽提試劑盒,上海生工公司。
儀器:RT-PCR系統(tǒng),Marker(DL-2000),上海生工公司。
1.2 方法[14]
1.2.1 MIC值檢測 取MH瓊脂平皿上過夜生長的單菌落,接種于LB肉湯培養(yǎng)基中,稀釋,加入含有LB肉湯和左氧氟沙星的試管中,讀取MIC,采用肉湯稀釋法檢測左氧氟沙星的MIC值。
1.2.2 三氯生誘導(dǎo)外排泵后左氧氟沙星MIC值檢測 三氯生誘導(dǎo)外排泵后左氧氟沙星的MIC值同上法。取于LB肉湯中過夜增殖的菌液100 μL,傾倒于含有64 μg/mL三氯生的MH瓊脂平皿上,35℃過夜孵育,挑取菌落接種于LB肉湯培養(yǎng)基中,讀取MIC。
1.2.3 檢測誘導(dǎo)前后smeD的表達 選取泵抑制劑陽性的菌株進行以下3組實驗:第1組在LB肉湯中,35℃孵育;第2組LB肉湯中加入64 μg/mL三氯生后35℃孵育;第3組在對數(shù)生長期時向菌液中加入同樣濃度的三氯生繼續(xù)培養(yǎng)1 h,35℃孵育;3組均培養(yǎng)20 h。提取細菌總RNA,定量后取兩個稀釋度(0.5、0.05 μg/μL)的RNA溶液進行RT-PCR,擴增smeD基因5′端的395 bp片段。
反應(yīng)上游:D1 5′-CATGTTGCTGAGCCGAATCC-3′;反應(yīng)下游:D2 5′-CAAGAGCCTTTCCGTCAT-3′。
2 結(jié)果
2.1 實驗菌株的耐藥特性
所選嗜麥芽臨床分離株經(jīng)紙片法檢測耐藥表型和一般特性均對左旋氧氟沙星、米諾環(huán)素、復(fù)方新諾明敏感。
2.2 左氧氟沙星誘導(dǎo)前后MIC值
4株對左氧氟沙星的MIC值比誘導(dǎo)前的MIC值高1~2個稀釋度,其余6株對左氧氟沙星的MIC值比誘導(dǎo)前高3~5個稀釋度。加用泵抑制劑CCCP后,MIC變化明顯的6株嗜麥芽窄食單胞菌對左氧氟沙星的MIC值均有所降低,其余4 株無明顯變化。見表1。
2.3 三氯生誘導(dǎo)前后smeD的RT-PCR結(jié)果
泵抑制劑陽性菌株在低濃度三氯生誘導(dǎo)后,smeD的mRNA水平增高,在兩個RNA濃度下均見抗生素添加組比對照組的RT-PCR條帶亮度高。作為內(nèi)參的bala2 mRNA水平誘導(dǎo)前后無明顯變化。泵抑制劑陽性菌株smeD的RT-PCR瓊脂糖電泳結(jié)果見圖1,泵抑制劑陽性菌株bala2的RT-PCR電泳結(jié)果見圖2。
3 討論
日趨廣泛應(yīng)用的殺菌劑可能造成抗生素的耐藥性,將嚴重影響感染性疾病治愈的成功率。雖然目前沒有確切的證據(jù)證明在自然環(huán)境中,殺菌劑可以選擇耐抗生素的突變菌株,但是體外實驗顯示細菌種群可以暴露于某種殺菌劑中,例如三氯生。大多數(shù)研究已經(jīng)對耐藥性的分子基礎(chǔ)有所探究[15]。
染色體編碼MDR外排泵的表達受特殊轉(zhuǎn)錄調(diào)節(jié)子嚴密控制,多為阻遏子。在實驗室正常生長條件下,MDR外排泵表達水平很低。然而,外排泵的表達可以被綁定在阻遏子上的效應(yīng)器啟動,并抑制阻遏子和操縱子的綁定[16]。雖然大部分關(guān)于細菌外排泵的研究都關(guān)注在對細菌耐藥性影響的方面,但是抗生素并不是外排泵表達天然的誘導(dǎo)因素[17]。雖然外排泵可以外排多種底物,但是只有很少一部分配體可以作為效應(yīng)器觸發(fā)編碼外排泵的操縱子的轉(zhuǎn)錄。
此次研究目的主要是探求消毒劑三氯生能否激活MDR外排泵的表達。SmeDEF屬于耐藥結(jié)節(jié)化細胞分化家族,并有三種蛋白構(gòu)成:內(nèi)膜蛋白,轉(zhuǎn)運蛋白SmeE;外膜蛋白SmeF;以及膜融合蛋白SmeD。嗜麥芽窄食單胞菌是條件致病菌,表現(xiàn)出對多種抗生素低敏感性[18],并與高死亡率的各種感染有關(guān)[19]。嗜麥芽窄食單胞菌感染包括菌血癥、心內(nèi)膜炎、腫瘤患者感染、支氣管感染等[20-21]。這種病原體基因組潛藏大量抗生素耐藥性決定簇[22],包括:抗生素鈍化酶、qnr決定簇、多種MDR外排泵(如:SmeABC、SmeDEF、SmeJKL、SmeYZ,其中SmeDEF是嗜麥芽窄食單胞菌耐藥性中最重要的MDR外排泵)。SmeDEF的表達受SmeT的調(diào)控,SmeT是轉(zhuǎn)錄抑制因子,其編碼基因位于smeDEF基因片段互補鏈的上游[23-24]。SmeT屬于轉(zhuǎn)錄抑制因子TetR家族。這個家族成員在有關(guān)二聚作用和效應(yīng)器綁定有關(guān)的氨基末端和羧基端基因序列表現(xiàn)出特征性的螺旋-轉(zhuǎn)角-螺旋DNA-綁定基序[25]。SmeT結(jié)構(gòu)分析顯示它與TetR轉(zhuǎn)錄抑制因子家族中的TetR、QacR、TtgR結(jié)構(gòu)相似度高[26],與CprB[27]、EthR[28]、CmeR[29]、AcrR[30]、ActR[31]、IcaR[32]結(jié)構(gòu)相似度低。然而,不同于其他轉(zhuǎn)錄抑制因子,SmeT末端延長,可能調(diào)節(jié)其與DNA、特性以及效應(yīng)器綁定口袋的大小的相互作用。當(dāng)效應(yīng)器綁定口袋未與效應(yīng)器綁定時,它是TetR家族成員中最小的。SmeT綁定在smeDEF啟動子序列中的一個28 bp長的假回文結(jié)構(gòu)上。SmeT與操縱序列的綁定,同時抑制smeDEF和smeT的轉(zhuǎn)錄,通過在空間上阻礙RNA聚合酶和DNA的結(jié)合來實現(xiàn)。過度表達smeDEF發(fā)生在三氯生或抗生素誘導(dǎo)的突變株中,SmeT表現(xiàn)出阻礙抑制因子與操縱子結(jié)合。
因為染色體編碼的MDR外排泵的表達受局部阻抑蛋白的降調(diào)節(jié)[33],并且它們的表達可以被特殊的效應(yīng)器觸發(fā),所以目前研究探索作為MDR外排泵SmeDEF作用底物的三氯生可能誘導(dǎo)這種抗生素耐藥性決定因素的表達,因此表現(xiàn)出不易察覺的誘導(dǎo)抗生素耐藥性的表型[34]。體外實驗數(shù)據(jù)與體內(nèi)三氯生誘導(dǎo)smeDEF表達相關(guān)聯(lián),提示三氯生是很好的MDR外排泵smeDEF表達的誘導(dǎo)劑,smeDEF表達的增加可以縮小MIC值。研究結(jié)果顯示暴露于三氯生中的嗜麥芽窄食單胞菌可以出現(xiàn)過度表達SmeDEF的突變菌株,所以三氯生可以誘導(dǎo)抗生素耐藥表型。
體外實驗數(shù)據(jù)與體內(nèi)試劑作用情況具有一定的差異,有兩個假說可以解釋這個差異。第一,體內(nèi)和體外出現(xiàn)和增殖耐藥細菌種群的概率不同。第二,耐多藥的突變菌株在環(huán)境中的增殖能力可能被削弱。在這種情況下,即使這些突變株被選擇出來,它們也可能被不耐抗生素的耐三氯生的菌株取代。在體外研究中,在將來推測有機體耐藥能力方面有很大用處。目前已完成的關(guān)于抗生素耐藥性和應(yīng)用家庭清潔劑相關(guān)性的研究很少[35]。然而,在家中和臨床設(shè)施上使用不必要的三氯生和其他殺菌劑仍存在讓人像擔(dān)憂的問題。更多的研究要求了解三氯生選擇的抗生素耐藥突變菌株在自然環(huán)境中的行為,以便推測將來三氯生和抗生素耐藥性相關(guān)性的發(fā)展趨勢。
[參考文獻]
[1] Aiello AE,Larson EL,Levy SB. Consumer antibacterial so-aps:effective or just risky [J]. Clin Infect Dis,2007,45:S137-147.
[2] Muynck WD,Belie ND,Verstraete W. Antimicrobial mortar surfaces for the improvement of hygienic conditions [J]. J Appl Microbiol,2010,108(1):62-72.
[3] Moretro T,Sonerud T,Mangelrod E,et al. Evaluation of the antibacterial effect of a triclosan-containing floor used in the food industry [J]. J Food Prot,2006,69(3):627-633.
[4] Jones RD,Jampani HB,Newman JL,et al. Triclosan:a review of effectiveness and safety in health care settings [J]. Am J Infect Control,2000,28(2):184-196.
[5] Sjoblom M,Ainamo A,Ainamo J. Antimicrobial effect of four different toothpastes [J]. Scand J Dent Res,1979,84(6):377-380.
[6] Bhargava HN,Leonard PA. Triclosan:applications and safety [J]. Am J Infect Control,1996,24(3):209-218.
[7] Meyer B,Cookson B. Does microbial resistance or adaptation to biocides create a hazard in infection prevention and control [J]. J Hosp Infect,2010,76(3):200-205.
[8] Aiello AE,Larson E. Antibacterial cleaning and hygiene products as an emerging risk factor for antibiotic resistance in the community [J]. Lancet Infect Dis,2003,3(8):501-506.
[9] Levy SB. Antibacterial household products:cause for concern [J]. Emerg Infect Dis,2001,7:512-515.
[10] Levy SB. Active efflux,a common mechanism for biocide and antibiotic resistance [J]. Symp Ser Soc Appl Microbiol,2002(31):65S-71S.
[11] Sanchez P,Moreno E,Martinez JL. The biocide triclosan selects Stenotrophomonas maltophilia mutants that overproduce the SmeDEF multidrug efflux pump [J]. Antimicrob Agents Chemother,2005,49(2):781-782.
[12] Chuanchuen R,Beinlich K,Hoang TT,et al. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps:exposure of a susceptible mutant strain to triclosan selectsnfxB mutants overexpressing MexCD-OprJ [J]. Antimicrob Agents Chemother,2001,45(2):428-432.
[13] McMurry LM,Oethinger M,Levy SB. Overexpression of marA,soxS,or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli [J]. FEMS Microbiol Lett,1998,166(2):305-309.
[14] 岳瑋,譚薇,李曉明.抗生素誘導(dǎo)嗜麥芽窄食單胞菌臨床株外排泵SmeDEF表達的研究[J].濰坊醫(yī)學(xué)院學(xué)報,2013,35(2):100-103.
[15] Pumbwe L,Chang A,Smith RL,et al. Clinical significance of overexpression of multiple RND-family efflux pumps inBacteroides fragilis isolates [J]. J Antimicrob Chemother,2006,58(3):543-548.
[16] Cottell A,Denyer SP,Hanlon GW,et al. Triclosan tolerant bacteria:changes in susceptibility to antibiotics [J]. J Hosp Infect,2009,72(1):71-76.
[17] Martinez JL,Sanchez MB,Martinez-Solano L,et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems [J]. FEMS Microbiol Rev,2009, 33(2):430-449.
[18] Looney WJ,Narita M,Muhlemann K. Stenotrophomonas maltophilia:an emerging opportunist human pathogen [J]. Lancet Infect Dis,2009,9(5):312-323.
[19] Cho SY,Lee DG3,Choi SM,et al. Stenotrophomonas maltophilia bloodstream infection in patients with hematologic malignancies: a retrospective study and in vitro activities of antimicrobial combinations [J]. BMC Infect Dis,2015,18(15):69.
[20] Subhani S,Patnaik AN,Barik R,et al. Infective endocarditis caused by Stenotrophomonas maltophilia:a report of two cases and review of literature [J]. Indian Heart J,2016,68(2):S267-S270.
[21] Turrientes MC,Baquero MR,Sanchez MB,et al. Polymorphic mutation frequencies of clinical and environmental Stenotrophomonas maltophilia populations [J]. Appl Environ Microbiol,2010,76(6):1746-1758.
[22] Ryan RP,Monchy S,Cardinale M,et al. The versatility and adaptation of bacteria from the genus Stenotrophom-onas [J]. NatRev Micro,2009,7(7):514-525.
[23] Hernandez A,Mate MJ,Sanchez-Diaz PC,et al. Structural and Functional Analysis of SmeT,the Repressor of the Stenotrophomonas maltophilia Multidrug Efflux Pump SmeDEF [J]. J Biol Chem,2009,284(21):14 428-14 438.
[24] Sanchez P,Alonso A,Martinez JL. Cloning and characterization of SmeT,a repressor of the Stenotrophomonas maltophilia multidrug efflux pump SmeDEF [J]. Antimicrob Agents Chemother,2002,46(11):3386-3393.
[25] Ramos JL,Martinez-Bueno M,Molina-Henares AJ,et al. The TetR family of transcriptional repressors [J]. Microbiol Mol Biol Rev,2005,69(2):326-356.
[26] Natsume R,Ohnishi Y,Senda T,et al. Crystal structure of a gamma-butyrolactone autoregulator receptor protein in Streptomyces coelicolor A3(2) [J]. J Mol Biol,2004,13, 336(2):409-419.
[27] Dover LG,Corsino PE,Daniels IR,et al. Crystal structure of the TetR/CamR family repressor Mycobacterium tuberculosis EthR implicated in ethionamide resistance [J]. J Mol Biol,2004,340(5):1095-1105.
[28] Gu R,Su CC,Shi F,et al. Crystal structure of the transcriptional regulator CmeR from Campylobacter jejuni [J]. J Mol Biol,2007,372(3):583-593.
[29] Li M,Gu R,Su CC,et al. Crystal structure of the transcriptional regulator AcrR from Escherichia coli [J]. J Mol Biol,2007,374(3):591-603.
[30] Willems AR,Tahlan K,Taguchi T,et al. Crystal structures of the Streptomyces coelicolor TetR-like protein ActR alone and in complex with actinorhodin or the actinorhodin biosynthetic precursor(S)-DNPA [J]. J Mol Biol,2008,376(5):1377-1387.
[31] Jeng WY,Ko TP,Liu CI,et al. Crystal structure of IcaR,a repressor of the TetR family implicated in biofilm formation in Staphylococcus epidermidis [J]. Nucleic Acids Res,2008,36(5):1567-1577.
[32] Grkovic S,Brown MH,Skurray RA. Regulation of bacterial drug export systems [J]. Microbiol Mol Biol Rev,2002, 66(4):671-701.
[33] Bailey AM,Constantinidou C,Ivens A,et al. Exposure of Escherichia coliand Salmonella enterica serovar Typhimurium to triclosan induces a species-specific response,including drug detoxification [J]. J Antimicrob Chemother,2009,64(5):973-985.
[34] Sánchez P,Linares JF,Ruiz-Díez B.et al. Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants [J]. J Antimicrob Chemother,2002,50(5):657-664.
[35] Cole EC,Addison RM,Rubino JR,et al. Investigation of antibiotic and antibacterial agent cross-resistance in target bacteria from homes of antibacterial product users and nonusers [J]. J Appl Microbiol,2003,95(4):664-676.
(收稿日期:2018-05-11 本文編輯:李岳澤)