邱堯 岳毅剛 邵家松 霍群 張敏
[摘要]慢性創(chuàng)面愈合過程機(jī)制復(fù)雜,涉及炎性反應(yīng)、成纖維細(xì)胞異常增殖、膠原的形成與沉積、創(chuàng)面血管化和皮膚再上皮化等過程,目前臨床缺乏理想的治療方法。近年來,干細(xì)胞的應(yīng)用在慢性創(chuàng)面的治療方面?zhèn)涫懿毮?,其主要?yōu)點(diǎn)是避免了潛在的有害的外科手術(shù)過程,避免皮膚移植或皮瓣等手術(shù)帶來的負(fù)荷等。本文就胚胎干細(xì)胞、骨髓間充質(zhì)干細(xì)胞、脂肪干細(xì)胞、誘導(dǎo)多能干細(xì)胞對(duì)慢性創(chuàng)面的治療機(jī)制及相關(guān)研究進(jìn)展作一綜述。
[關(guān)鍵詞]慢性創(chuàng)面;干細(xì)胞;血管化;再生;愈合
[中圖分類號(hào)]R622 [文獻(xiàn)標(biāo)志碼]A [文章編號(hào)]1008-6455(2018)04-0148-04
Research Progress of Stem Cells in the Treatment of Chronic Wound Healing
QIU Yao, YUE Yi-gang, SHAO Jia-song, HUO Qun, ZHANG Min
(Department of Plastic Surgery of Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China)
Abstract: The mechanism of chronic wound healing is complex, which involves inflammatory reaction, abnormal proliferation of fibroblasts, collagen formation and deposition, wound vascularization and skin re epithelialization. At present, there is no ideal treatment method in clinic. In recent years, the application of stem cells has attracted much attention in the treatment of chronic wounds. Its main advantages are avoiding potential harmful surgical procedures and avoiding skin graft or flap operation. In this paper, the treatment mechanism, advantages and disadvantages of embryonic stem cells, bone mesenchymal stem cells, adipose-derived stem cells and induced pluripotent stem cells in chronic wounds were reviewed.
Key words: chronic wound; stem cells; vascularization; regeneration; healing
慢性難愈性創(chuàng)面簡稱慢性創(chuàng)面,是指經(jīng)規(guī)范臨床治療4~8周后仍難愈合或不愈合的創(chuàng)面。在中國,伴隨著人口老齡化及生活水平的提高,糖尿病、下肢靜脈潰瘍等發(fā)病率逐年上升,慢性創(chuàng)面發(fā)生率越來越高。近年來,干細(xì)胞的應(yīng)用在慢性創(chuàng)面的治療方面?zhèn)涫懿毮?,干?xì)胞治療的主要優(yōu)點(diǎn)是可取代部分手術(shù)治療,從而避免皮膚移植或皮瓣等手術(shù)為老年患者帶來的身體負(fù)擔(dān)及并發(fā)癥。干細(xì)胞的應(yīng)用可為有效治療創(chuàng)傷性皮膚缺損和嚴(yán)重?zé)齻麑?dǎo)致的軟組織缺損以及治療如糖尿病、下肢靜脈性潰瘍等疾病導(dǎo)致的慢性創(chuàng)面提供新的治療方法。本文就近年來難愈創(chuàng)面的各種慢性創(chuàng)面的干細(xì)胞治療技術(shù),如:胚胎干細(xì)胞(Embryonic Stem Cells,ESCs)、間質(zhì)干細(xì)胞(Mesenchymal Stem Cells,MSCs)尤其骨髓間充質(zhì)干細(xì)胞(Bone Mesenchymal Stem Cells,BMSCs)、脂肪干細(xì)胞(Adipose-Derived Stem Cells,ADSCs)、誘導(dǎo)多能干細(xì)胞(Induced Pluripotent Stem Cells,IPSCs)等研究進(jìn)展作一綜述。
1 胚胎干細(xì)胞
胚胎干細(xì)胞(ESCs)是最早用于慢性創(chuàng)面愈合方面研究的干細(xì)胞,其驚人的增殖能力表明,對(duì)胚胎干細(xì)胞的研究可能會(huì)幫助人們進(jìn)一步了解再生過程并提供最佳治療。ESCs來源于受精卵發(fā)育到囊胚或胚泡時(shí)期內(nèi)細(xì)胞團(tuán),不能從患者身上獲得,直接使用將涉及到同種異體移植的所有缺點(diǎn)以及與胚胎組織有關(guān)的倫理問題。雖然ESCs本身不太適合組織移植,但它們確實(shí)提供了通過旁分泌機(jī)制增強(qiáng)生理愈合過程的潛力。例如:ESCs衍生的內(nèi)皮細(xì)胞分泌多種細(xì)胞因子促進(jìn)傷口愈合[1]。ESCs移植目前已應(yīng)用于動(dòng)物創(chuàng)面治療,可明顯加速創(chuàng)面愈合,為利用ESCs對(duì)皮膚修復(fù)的非凡再生潛力,Guenou等[2-3]將ESCs分化為全功能角質(zhì)化細(xì)胞,隨后用于表皮的再構(gòu)造。盡管有這些有希望的發(fā)現(xiàn),但由于潛在的免疫原性和致瘤性,胚胎干細(xì)胞的廣泛臨床應(yīng)用目前是難以捉摸的。與此同時(shí),倫理學(xué)的沖突及免疫排斥問題依然限制著干細(xì)胞治療的發(fā)展。
2 骨髓間充質(zhì)干細(xì)胞
骨髓間充質(zhì)干細(xì)胞(BMSCs),即最早發(fā)現(xiàn)的間充質(zhì)干細(xì)胞,是另一個(gè)很有希望的修復(fù)或替換受損組織的候選細(xì)胞。眾所周知,它們有能力分化成多個(gè)譜系,如:內(nèi)皮細(xì)胞、神經(jīng)細(xì)胞、肝細(xì)胞等。此外,Mikako等[4]研究表明,BMSCs可分化為多種類型的皮膚細(xì)胞,將有助于創(chuàng)面的修復(fù)?,F(xiàn)已證實(shí)BMSCs能夠分化為角質(zhì)化細(xì)胞、內(nèi)皮細(xì)胞、周細(xì)胞和單核細(xì)胞。
除了自身分化潛力, BMSCs還通過自分泌及旁分泌等途徑促創(chuàng)面愈合。BMSCs分泌的生長因子和細(xì)胞因子結(jié)合能成功地誘導(dǎo)血管生成,減少炎性細(xì)胞浸潤,促進(jìn)成纖維細(xì)胞遷移和膠原蛋白的產(chǎn)生,為慢性創(chuàng)面的治療提供了一種新窗口。早在2007年,Wu等[5-6]在糖尿病和非糖尿病小鼠實(shí)驗(yàn)中發(fā)現(xiàn),BMSCs釋放血管生成因子加速傷口的閉合過程,并通過其旁分泌機(jī)制釋放旁分泌因子,使CD14+單核細(xì)胞、角質(zhì)細(xì)胞和內(nèi)皮細(xì)胞聚集至傷口,從而促進(jìn)傷口愈合。各種研究已經(jīng)表明,當(dāng)MSCs受到低氧條件時(shí),會(huì)通過促進(jìn)生長、調(diào)節(jié)細(xì)胞因子和對(duì)低氧因子(HIF-1)的釋放及穩(wěn)定性,以增強(qiáng)其再生治療的能力[7]。不僅如此,其旁分泌機(jī)制還可在傷口修復(fù)過程中誘導(dǎo)細(xì)胞分化、增殖;調(diào)節(jié)免疫反應(yīng)和抑制過度的炎癥反應(yīng),使創(chuàng)面能快速愈合而不因過度纖維化形成瘢痕組織[8-9]。Arsalan等[10]證明,MSCs可通過一種劑量依賴性的方式增強(qiáng)無細(xì)胞接觸的成纖維細(xì)胞遷移,從而促進(jìn)正常和慢性創(chuàng)面成纖維細(xì)胞的生長和遷移,并在體外誘導(dǎo)血管生成。此外,MSCs通過抗菌因子的分泌配合免疫細(xì)胞的功能,在創(chuàng)面修復(fù)過程顯示殺菌特性。基于上述功能,MSCs已被證實(shí)能在多種損傷模型中加強(qiáng)組織修復(fù)和炎癥反應(yīng)的減弱及血管化的改善[11]。在另一項(xiàng)研究中,MSCs的外體被證明是傷口愈合的介質(zhì)[10]。聯(lián)合移植的MSCs和ESCs已被證實(shí)可以顯著改善糖尿病傷口愈合[12]和改善復(fù)雜骨缺損的愈合[13]。
盡管MSCs已經(jīng)證明了在各種不同的情況下提高傷口愈合率的一致能力,但其療法仍然存在一些局限性,這些局限性包括需要改善細(xì)胞的傳遞方式、細(xì)胞的存活率、MSC制劑的異質(zhì)性等。在廣泛的臨床應(yīng)用之前,需要進(jìn)一步的大型臨床試驗(yàn)來建立MSCs的安全性。因此,使用MSCs的療法應(yīng)該謹(jǐn)慎,它的許多作用和機(jī)制還有待進(jìn)一步挖掘及改善[1-2,14]。
3 脂肪干細(xì)胞
脂肪源干細(xì)胞(ADSCs)也是間充質(zhì)干細(xì)胞的一種,可分化成脂肪細(xì)胞、成骨細(xì)胞、軟骨細(xì)胞和肌原細(xì)胞等??梢哉f與BMSCs有幾乎相同的潛力,但由于它們的廣泛可用性和相對(duì)容易獲得足夠的細(xì)胞數(shù)量而更受歡迎。作為具有分化潛能的干細(xì)胞,ADSCs具有上皮分化的潛能,局部注射的ASCs可以通過分化為角質(zhì)細(xì)胞的作用加速傷口的上皮化。此外,ADSCs還被證明可以通過分化和血管生成來增強(qiáng)傷口愈合,可為臨床的慢性創(chuàng)面治療提供一種可行的治療方法[15-16]。
ADSCs同樣通過在傷口愈合過程中分泌大量生長因子和細(xì)胞因子來增加巨噬細(xì)胞招募,加快成纖維細(xì)胞和角化細(xì)胞的體外增殖[17],增強(qiáng)膠原蛋白的生成,繼而形成肉芽組織,改善血管形成,最終提高傷口愈合率。ADSCs被證明可以釋放許多強(qiáng)有力的血管生成因子,也可以通過分化為內(nèi)皮細(xì)胞重建血管[6]。另一項(xiàng)研究顯示,在缺氧條件下ASCs可顯著增加膠原的合成水平,將有助于減少創(chuàng)面面積[8]。ADSCs已經(jīng)在傷口愈合的多個(gè)臨床試驗(yàn)中進(jìn)行了測(cè)試,證明可顯著增強(qiáng)皮膚傷口愈合和增加血管的形成,在創(chuàng)面修復(fù)和組織再生方面的應(yīng)用也已經(jīng)在體外和體內(nèi)的許多實(shí)驗(yàn)?zāi)P椭械玫搅俗C實(shí)[1]。在大鼠的全厚度切除損傷模型中,ADSCs可通過VEGF-A、肝生長因子和fgf-2[18]的分泌來促進(jìn)新生血管生成,加速傷口的閉合,從而促進(jìn)角質(zhì)形成細(xì)胞或真皮成纖維細(xì)胞的后續(xù)血管生成和增殖[19]。此外,在人類和最近一期的臨床試驗(yàn)中,富含脂肪干細(xì)胞的脂肪移植物其生存率明顯升高,證實(shí)了ADSCs在治療關(guān)鍵肢體缺血時(shí)的有益作用[20]。Lee等[21]利用肌肉注射ADSCs來治療血栓閉塞性脈管炎患者和糖尿病足患者,可觀察到大多數(shù)患者的疼痛評(píng)分及步行距離都有所改善。
此外,ADSCs在臨床醫(yī)學(xué)中具有實(shí)際的優(yōu)勢(shì),因?yàn)橹窘M織是豐富易獲得且很少引起捐贈(zèng)部位的發(fā)病,也沒有與胚胎干細(xì)胞相關(guān)的倫理考慮。截至目前,在皮膚創(chuàng)面愈合過程中,ADSCs的臨床應(yīng)用尚處于早期階段,這類細(xì)胞目前確實(shí)存在一些限制,例如考慮到誘發(fā)癌癥的風(fēng)險(xiǎn)[22]。作為干細(xì)胞,ADSCs在本質(zhì)上具有多能性,不僅在移植后可能分化為脂肪細(xì)胞、骨細(xì)胞和軟骨細(xì)胞,也可能發(fā)展為不良組織[23]。上述的ADSCs通過分泌生長因子、細(xì)胞因子和化學(xué)引誘劑,增強(qiáng)血管生成,增加血液供應(yīng),這一方面可用于創(chuàng)面修復(fù),另一方面也可為腫瘤細(xì)胞提供營養(yǎng)支持。考慮到它們的血管生成和抗炎分子的分泌,人們推測(cè)某些干細(xì)胞的數(shù)量可能刺激腫瘤的生長。然而,到目前為止,尚無發(fā)現(xiàn)使用ADSCs治療的患者出現(xiàn)癌變的報(bào)道。對(duì)慢性傷口愈合過程中所涉及的生長因子、蛋白質(zhì)和治療路徑的鑒定,可使臨床治療更加安全和快速。ADSCs在治療慢性傷口愈合方面所展現(xiàn)出的潛力已經(jīng)顯示出了希望,為未來的再生醫(yī)學(xué)提供了新的發(fā)展方向[24]。
4 誘導(dǎo)多潛能干細(xì)胞
誘導(dǎo)多能干細(xì)胞(IPSCs)自問世以來,就因其易獲取、無免疫排斥性、多能分化潛能的特點(diǎn),在再生醫(yī)學(xué)領(lǐng)域受到越來越多的關(guān)注。使用IPSCs技術(shù),可以產(chǎn)生從分化的成人組織衍生出來的自體多能干細(xì)胞群而不使用胚胎細(xì)胞或卵細(xì)胞,因此,沒有倫理學(xué)的問題。此外,利用患者自體的體細(xì)胞制備的IPSCs是非免疫原性的。利用這些特點(diǎn),Itoh等[25]在體外3-D皮膚中產(chǎn)生了完全由人的IPSCs衍生的角質(zhì)形成細(xì)胞和成纖維細(xì)胞組成的皮膚,Sebastiano等[26]進(jìn)一步成功地利用了人類角質(zhì)細(xì)胞衍生的IPSCs在體外重組皮膚,以治療隱性營養(yǎng)不良表皮松解。另外,Yang等[27]成功地通過IPSCs分化為人類上皮干細(xì)胞,以及再生毛囊的所有成分。這些發(fā)現(xiàn)都展示了IPSCs在再生領(lǐng)域的巨大發(fā)展前景。
IPSCs的潛力還包括在傷口愈合過程中促血管化。研究表明,從人的IPSCs衍生的間充質(zhì)干細(xì)胞中提取的外泌體能促進(jìn)膠原合成和血管生成,從而促進(jìn)皮膚創(chuàng)面愈合。IPSCs已被證明可以分化為心肌、血管平滑肌和周細(xì)胞[9]。治療性IPSCs可以從患者體內(nèi)分離分化的細(xì)胞,重新編程到多能狀態(tài),然后分化為所需的細(xì)胞類型[11]。研究證明,來自IPSCs的間充質(zhì)干細(xì)胞(IPSC-MSCs)兼具M(jìn)SCs和IPSCs的優(yōu)點(diǎn),已成為干細(xì)胞移植治療的替代資源,PSC-MSCs可大量產(chǎn)生,具有很強(qiáng)的自我活力,并能減弱組織缺血,與成人骨髓間充質(zhì)干細(xì)胞相比,有更好的治療效果[28]。
IPSCs兼具ESCs多潛能的綜合優(yōu)勢(shì)和MSCs的可用性,但也存在很多問題:如它們?cè)谖捶只臓顟B(tài)下通過逆轉(zhuǎn)錄病毒載體會(huì)促進(jìn)癌癥風(fēng)險(xiǎn);低效率的細(xì)胞重編程使其產(chǎn)生的細(xì)胞數(shù)量較低而處理成本較高;遺傳不穩(wěn)定性和潛在的免疫原性等[2,29]。因此,隨著該領(lǐng)域研究的不斷進(jìn)步,在IPSCs進(jìn)入人體試驗(yàn)及廣泛的臨床適應(yīng)之前需要改進(jìn)和提高的技術(shù)還有很多,如:研究非病毒介導(dǎo)的重編程細(xì)胞方法。盡管存在上述擔(dān)憂,IPSCs巨大的治療前景仍然不可忽視[11]。
5 總結(jié)與展望
慢性創(chuàng)面是臨床治療難點(diǎn),機(jī)制復(fù)雜,涉及炎性反應(yīng)、成纖維細(xì)胞異常增殖、膠原的形成與沉積、創(chuàng)面血管化和皮膚再上皮化等過程,目前臨床缺乏理想的治療方法。近年來干細(xì)胞技術(shù)的應(yīng)用在慢性創(chuàng)面的治療方面取得了較大進(jìn)展。
ESCs已應(yīng)用于動(dòng)物創(chuàng)面治療,在血管化及治療慢性創(chuàng)面方面體現(xiàn)出良好效果,但倫理學(xué)的沖突及免疫排斥問題始終是限制其發(fā)展的最大障礙;BMSCs的治療潛力是很有希望的,它避免了胚胎干細(xì)胞相關(guān)的生物倫理問題以及在與患者分離時(shí)避免免疫原性的能力。此外,與相對(duì)稀少的ESCs數(shù)量來說,BMSCs及ADSCs的來源更加廣泛易得。限制MSCs臨床應(yīng)用的,是其諸多尚未明確的機(jī)制及未排除的生物和腫瘤學(xué)等安全問題。IPSCs技術(shù)是干細(xì)胞研究領(lǐng)域的一項(xiàng)重大突破,不僅同樣回避了ESCs細(xì)胞的倫理爭議及免疫排斥問題,且IPSCs兼具ESCs多潛能的綜合優(yōu)勢(shì)和MSCs的可用性,使干細(xì)胞向臨床應(yīng)用又邁進(jìn)了一大步。但同MSCs相似,IPSCs早期同樣受其產(chǎn)生機(jī)制不明、低誘導(dǎo)率及惡變風(fēng)險(xiǎn)的限制[30]。近年來,隨著誘導(dǎo)多能干細(xì)胞技術(shù)的不斷發(fā)展以及技術(shù)水平的不斷更新[31],使IPSCs安全性得到提高的同時(shí),轉(zhuǎn)化率大幅提升,已經(jīng)能夠相對(duì)安全及高效地獲得,其在再生醫(yī)學(xué)領(lǐng)域的潛力及優(yōu)勢(shì)也已日趨明顯。
[參考文獻(xiàn)]
[1]Hu MS,Leavitt T,Malhotra S,et al.Stem cell-based therapeutics to improve wound healing[J].Plast Surg Int,2015,2015:383581.
[2]Duscher D,Barrera J,Wong VW,et al. Stem cells in wound healing: the future of regenerative medicine?A mini-review[J].Gerontology,2015,62(2):216-225.
[3]Guenou H,Nissan X,Larcher F,et al. Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study[J]. Lancet, 2009, 374(9703):1745-1753.
[4]Sasaki M,Abe R,F(xiàn)ujita Y, et al. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type[J].J Immunology,2008,180(4):2581-2587.
[5]Tamama K, Kerpedjieva SS.Acceleration of wound healing by multiple growth factors and cytokines secreted from multipotential stromal cells or mesenchymal stem cells[J].Adv Wound Care,2012,1(4):177-182.
[6]Eun SC.Stem cell and research in plastic surgery[J].J Korean Med Sci,2014,29(Suppl 3):S167-169.
[7]Athanerey A,Patra PK,Kumar A.Mesenchymal stem cell in venous leg ulcer: an intoxicating therapy[J]. J Tissue Viability,2017,26(3):216-223.
[8]Kim JY,Suh W.Stem cell therapy for dermal wound healing[J]. Int J Stem Cells,2010,3(1):29-31.
[9]Bohá? M,Cs?b?nyeiová M, Kupcová I,et al. Stem cell regenerative potential for plasticand reconstructive surgery[J].Cell Tissue Bank,2016,17(4):735-744.
[10] Shabbir A,Cox A,Rodriguezmenocal L,et al. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts,andenhance angiogenesis in vitro[J].Stem Cells Dev,2015,24(14):1635-1647.
[11]King A,Balaji S,Keswani SG,et al.The role of stem cells in wound angiogenesis[J].Adv Wound Care,2014,3(10):614-625.
[12]Sukpat S,Isarasena N, Wongphoom J,et al. Vasculoprotective effects of combined endothelial progenitor cells and mesenchymal stem cells in diabetic wound care: their potential role in decreasing wound-oxidative stress[J].Biomed Res Int, 2013,2013(5):459196.
[13]Keramaris NC, Kaptanis S, Moss HL,et al. Endothelial progenitorcells (EPCs) and mesenchymal stem cells(MSCs) in bone healing[J].Curr Stem Cell Res Ther,2012, 7(4):293-301.
[14]Oterovi?as M, Falanga V. Mesenchymal stem cells in chronic wounds: the spectrum from basic to advanced therapy[J].Adv Wound Care,2016,5(4):149-163.
[15]Nie C, Yang D, Xu J, et al.Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis[J]. Cell Transplant, 2011,20(2):205-216.
[16]Hyldig K,Riis S,Pennisi CP,et al.Implications of extracellular matrix production by adipose tissue-derived stem cells for development of wound healing therapies[J].Int J Mol Sci,2017,18(6):E1167.
[17]Stessuk T,Puzzi MB,Chaim EA,et al.Platelet-rich plasma (PRP) and dipose-derived mesenchymal stem cells:stimulatory effects on proliferation and migration of fibroblasts and keratinocytes in vitro[J]. Arch Dermatol Res,2016, 308(7):511-520.
[18]Nie C,Yang D,Xu J,et al. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis[J].Cell Transplant,2011,20(2):205-216.
[19]Salgado AJ, Reis RL, Sousa NJ, et al. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine[J]. Curr Stem Cell Res Ther,2010,5(2):103-110.
[20]Bura A,Planat-Benard V,Bourin P,et al.Phase I trial: the use of autologousculturedadipose-derived stroma/stemcells to treat patients withnon-revascularizable critical limb ischemia[J].Cytotherapy,2014, 16(2): 245–257.
[21]Lee HC, An SG,Lee HW,et al.Safety and effect of adiposetissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study[J].Circ J,2012,76:1750-1760.
[22]Toyserkani NM,Christensen ML,Sheikh SP, et al. Adipose-derived stem cells: new treatment for wound healing [J] ? Ann Plast Surg,2015,75(1):117-123.
[23]Sivan U,Jayakumar K,Krishnan LK.Matrix-directed differentiation of human adipose-derived mesenchymal stem cells to dermal-like fibroblasts that produce extracellular matrix[J]. J Tissue Eng Reg Med,2016,10(10):e546-e558.
[24]Hassan WU,Greiser U,Wang W.Role of adipose-derived stem cells in wound healing[J].Wound Repair Regen,2014,22(3):313-325.
[25]Itoh M,Umegakiarao N,Guo Z,et al. Generation of 3D skin equivalentsfully reconstituted from human inducedpluripotent stem cells (iPSCs) [J].Plos One,2013,8(10):e77673.
[26]Sebastiano V,Zhen HH,Haddad B,et al.Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa[J].Sci Transl Med,2014,6:264ra163.
[27]Yang R,Zheng Y,Burrows M,et al.Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells[J].Nature Communications,2014, 5(2):3071-3095.
[28]Zhang J,Guan J,Niu X,et al.Exosomes released from human inducedpluripotent stem cells-derived MSCs facilitatecutaneous wound healing by promoting collagensynthesis and angiogenesis[J].J Transl Med,2015,13(1):49-63.
[29]Ojeh N, Pastar I,Tomic-Canic M, et.al. Stem cells in skin regeneration, wound healing, and theirclinical applications[J].Int J Mol Sci,2015,16(10):25476-25501.
[30]Nakagawa M,Takizawa N,Narita M,et al.Promotion of direct reprogramming bytransformation-deficient Myc[J]. Proc Natl Acad Sci USA,2010,107(32):14152-14157.
[31]Li Z,Rana TM.A kinase inhibitor screen identifies small-molecule enhancers of reprogramming andiPS cell generation[J].Nat Commun,2012(3):1085-1095.