田志龍 ,王玉琴 ,儲明星
(1.中國農(nóng)業(yè)科學院北京畜牧獸醫(yī)研究所,農(nóng)業(yè)部動物遺傳育種與繁殖重點實驗室,北京 100193;2.河南科技大學動物科技學院,洛陽 471003)
綿羊產(chǎn)羔數(shù)是一個極其復雜的性狀,受諸多因素的影響。截止目前,國內(nèi)外學者已對影響綿羊產(chǎn)羔數(shù)的眾多候選基因進行了深入研究,包括但不限于:骨形態(tài)發(fā)生蛋白受體1B(Bone morphogenetic protein receptor 1B,BMPR1B,F(xiàn)ecB)、骨形態(tài)發(fā)生蛋白 15(Bone morphogenetic protein 15,BMP15,F(xiàn)ecX)、生長分化因子 9基因(Growth differentiation factor-9,GDF9,F(xiàn)ecG)、糖基化酶β-1,4-N-乙酰半乳糖胺轉(zhuǎn)移酶 2(Glycosylation enzyme beta-1,4-N-acetyl-galactosaminyltransferase 2,B4GALNT2,F(xiàn)ecL)、雌激素受體(Estrogen receptor,ESR)、孕酮受體(Progesterone receptor,PGR)等,這些基因在調(diào)控綿羊產(chǎn)羔性狀方面起到至關(guān)重要的作用[1]。目前全世界僅有少量綿羊品種產(chǎn)羔率能達200%,大多數(shù)綿羊都是季節(jié)性發(fā)情、單羔品種。同時綿羊產(chǎn)羔性狀的遺傳力較低(僅為0.1左右),常規(guī)的育種技術(shù)在短期內(nèi)很難改良此性狀。本文介紹了幾個影響綿羊產(chǎn)羔數(shù)性狀的重要基因的研究進展,以期為進一步提高綿羊產(chǎn)羔數(shù)進而提高經(jīng)濟效益尋求有效途徑。
骨形態(tài)發(fā)生蛋白受體1B位于綿羊第6號染色體,是骨形態(tài)發(fā)生蛋白的膜受體,屬于轉(zhuǎn)化生長因子-β(Transforming growth factor-beta,TGF-β)超家族的成員,在動物機體各組織中廣泛存在,但主要在卵巢卵母細胞和顆粒細胞中表達。綿羊BMPR1B基因cDNA全長3 255 bp,由11個外顯子和10個內(nèi)含子組成,共編碼502 個氨基酸。1982 年,Davis等[2]對澳大利亞 Booroola羊進行研究時發(fā)現(xiàn)了一個顯著影響綿羊排卵數(shù)和產(chǎn)羔數(shù)的基因突變,在1989年時正式命名為FecB基因。Souza等[3]研究表明,F(xiàn)ecB基因位于BMPR-1B基因上,是BMPR-1B基因編碼區(qū)第746位發(fā)生A-G的突變,引起第249位氨基酸由谷氨酰胺變?yōu)榫彼幔≦249R),最終導致綿羊排卵數(shù)增加。FecB基因是第一個被發(fā)現(xiàn)的綿羊高繁殖力主效基因,與綿羊排卵數(shù)和產(chǎn)羔數(shù)的增加緊密相關(guān)[4]。一個FecB基因拷貝可以增加排卵數(shù)1.3~1.6枚,產(chǎn)羔數(shù)增加0.9~1.2只;兩個FecB基因拷貝可以增加排卵數(shù)2.73枚,產(chǎn)羔數(shù)增加1.1~1.7只[5]。繼布魯拉羊中發(fā)現(xiàn)FecB基因之后,進一步的研究發(fā)現(xiàn),在亞洲綿羊品種中FecB基因的分布較為廣泛。印度Kendrapada 綿羊[6]、Garole 綿羊和 Bonpala 綿羊[7],印度尼西亞的 Javenese 羊[8],伊朗的 Kalehkooh 綿羊[6],中國的湖羊[9]和小尾寒羊[10]等綿羊品種均存在該基因。劉秋月等[11]對中國10個地方綿羊品種、3個培育品種綿羊的FecB基因頻率進行了檢測,為多羔綿羊品種改良提供了參考數(shù)據(jù)。另外,其他學者發(fā)現(xiàn)灘羊[12]、洼地綿羊[13]、多浪羊[14]、策勒黑羊[15]、阿勒泰羊[16]、巴音布魯克羊[17]、魯西黑頭羊[11]等群體中均存在 FecB 基因。Chen 等[18]利用FecB基因效應(yīng),使用小尾寒羊和杜泊羊進行雜交培育多羔新品系,雜交后代平均產(chǎn)羔數(shù)顯著高于杜泊羊(P<0.05)。Zhang等[19]使用 CRISPR/Cas9 技術(shù)對綿羊胚胎進行體外處理,為綿羊BMPR-IB基因編碼建立了技術(shù)基礎(chǔ)。
骨形態(tài)發(fā)生蛋白15同屬于轉(zhuǎn)化生長因子β超家族成員,通過卵母細胞旁分泌途徑調(diào)節(jié)卵泡發(fā)育[20]。綿羊BMP15基因位于X染色體上,cDNA序列全長1 182 bp,由兩個外顯子和一個內(nèi)含子組成,共編碼393個氨基酸,有25個氨基酸組成的信號肽、244個氨基酸前導肽和125個氨基酸的成熟肽[20]。近些年來,BMP15基因突變位點被不斷地挖掘,綿羊 BMP15 基因突變(FecXI[21]、FecXH[21]、FecXG[22]、FecXB[23]和 FecXL[23])和 序 列 缺 失FecXR[24-25]中任意一個突變雜合的母羊都具有較高的排卵數(shù),而突變純合母羊則由于卵泡發(fā)育受阻而不育。
Galloway 等[21]研究發(fā)現(xiàn),Inverdale 綿羊 BMP15 基因FecXI點突變和Hanna綿羊BMP15基因FecXH點突變;FecXI突變是BMP15基因編碼區(qū)第92核苷酸處發(fā)生T→A顛換,使蛋白質(zhì)高保守區(qū)纈氨酸變成天冬氨酸(V31D);FecXH突變是BMP15基因編碼區(qū)67核苷酸處發(fā)生C→T轉(zhuǎn)換,導致第23號氨基酸殘基由谷氨酸變成終止密碼子(Q23Ter)。Hanrahan 等[22]在 Belclare綿羊和Cambridge綿羊BMP15基因編碼區(qū)發(fā)現(xiàn)了FecXG點突變,在Belclare綿羊BMP15基因編碼區(qū)發(fā)現(xiàn)了FecXB點突變;FecXG突變又稱B2突變,是BMP15基因編碼區(qū)第2外顯子718核苷酸處發(fā)生C→T轉(zhuǎn)換,使肽鏈編碼區(qū)239位氨基酸由谷氨酰胺變成了終止密碼子(Q239Ter);FecXB突變又稱B4突變,是BMP15基因編碼區(qū)第2外顯子1 100核苷酸處發(fā)生的G→T顛換,使成熟肽鏈99位氨基酸由絲氨酸變成了異亮氨酸(S99I)。Bodin 等[23]發(fā)現(xiàn)了 Lacaune 綿羊 BMP15 基因的FecXL點突變,該突變是BMP15基因編碼區(qū)第2外顯子第321核苷酸處發(fā)生的G→A轉(zhuǎn)換,使成熟肽鏈的第53位氨基酸由半胱氨酸變成了酪氨酸(C53Y)。FecXL基因突變雜合子排卵數(shù)比野生型增加了1.34個,突變純合個體則不育。2008 年,Monteagudo 等[24]和 Martinez-Royo等[25]幾乎同時發(fā)現(xiàn)了BMP15基因與繁殖力相關(guān)的第6個突變FecXR,即西班牙Rasa Aragonesa綿羊BMP15基因第2外顯子第525~541位缺失17個核苷酸,該突變導致終止密碼子提前出現(xiàn)和成熟肽丟失,使第2外顯子完全喪失功能;突變雜合子母羊具有高繁殖力,產(chǎn)羔數(shù)為2.66只/胎,而野生型Rasa Aragonesa綿羊平均產(chǎn)羔數(shù)為1.36只/胎,突變純合子母羊由于卵巢沒有初級卵泡而導致完全不育。Demars等[26]以不同繁殖力的法國Grivette綿羊和波蘭Olkuska綿羊群體為研究材料,采用全基因組關(guān)聯(lián)分析,分別在兩群體中鑒別出了BMP15基因的FecXGr和FecXO突變。FecXGr是法國Grivette綿羊BMP15基因編碼序列第950位發(fā)生C→G,F(xiàn)ecXO是波蘭Olkuska綿羊BMP15基因編碼序列第1 009位發(fā)生A→C突變。兩個突變位點分別導致綿羊BMP15氨基酸序列第317位的蘇氨酸轉(zhuǎn)變?yōu)楫惲涟彼幔═317I)和第337位的天冬酰胺轉(zhuǎn)變?yōu)榻M氨酸(N337H)。在法國Grivette綿羊群體中,F(xiàn)ecXGr突變純合體平均窩產(chǎn)羔數(shù)為2.50只±0.65只,顯著高于雜合體的平均窩產(chǎn)羔數(shù)1.93只±0.42只和野生型個體的平均窩產(chǎn)羔數(shù)1.83只±0.41只(P<0.05);而雜合體與野生型個體的平均窩產(chǎn)羔數(shù)差異不顯著(P>0.05)。波蘭Olkuska綿羊群體中,F(xiàn)ecXO突變純合體的排卵數(shù)為3.28枚±0.85枚,顯著高于雜合體的排卵數(shù)2.02枚±0.47枚和野生型個體的排卵數(shù) 1.52枚±0.26枚(P<0.05);而雜合體與野生型個體排卵數(shù)差異不顯著(P >0.05)。Zamani等[20]使用 PCRSSCP技術(shù)和DNA測序方法發(fā)現(xiàn)了影響Mehraban和Lori綿羊產(chǎn)羔數(shù)的BMP15基因G→A新突變,該突變位于BMP15基因第2外顯子上,突變雜合母羊產(chǎn)羔數(shù)顯著高于野生純合母羊。董新龍等[27]通過PCR-SSCP技術(shù)和DNA測序發(fā)現(xiàn),在小尾寒羊、湖羊等16個綿羊品種中不存在BMP15基因FecXGr和FecXO以及G→A突變位點。Lassoued 等[28]通過 DNA 測序,在 Tunisian Barbarine綿羊發(fā)現(xiàn)一種BMP15基因新的復合型突變并命名為FecXBar,該復合突變是Tunisian Barbarin綿羊編碼序列第301位發(fā)生G→T突變,第302位和304位發(fā)生堿基缺失(302-304delCTA),第 310位發(fā)生堿基插入(310insC),導致氨基酸第101處發(fā)生移碼突變,該突變雜合個體有較高的產(chǎn)羔數(shù),突變純合個體由于卵泡發(fā)育受阻而發(fā)生不育現(xiàn)象。
生長分化因子9屬于轉(zhuǎn)化生長因子β超家族成員。GDF9是卵泡生長過程中所必需的細胞因子,主要在卵巢卵母細胞表達[29]。綿羊GDF9基因位于5號染色體,由2個外顯子和1個內(nèi)含子組成,編碼453個氨基酸。Juengel等[30]發(fā)現(xiàn)GDF9對綿羊正常卵泡的生長發(fā)育是必需的。GDF9基因缺陷型母羊卵母細胞可發(fā)育,但停止在初級卵泡階段,并且卵泡周圍的顆粒細胞異常表達[31]。
Hanrahan等[22]在Belclare綿羊和Cambridge綿羊GDF9基因第2外顯子上發(fā)現(xiàn)8個單核苷酸多態(tài)(G1~G8)。其中有3個核苷酸改變但氨基酸沒有發(fā)生變化,分別是位于編碼區(qū)471 bp處的C→T(G2突變)、477 bp處的G→A(G3突變)和978 bp處A→G(G5突變);4個G→A突變引起了氨基酸的變化,分別是位于編碼區(qū)260 bp處的突變導致第87位由Arg變?yōu)镠is(G1突變),721 bp處的突變導致第241位由Glu變?yōu)長ys(G4突變),994 bp處的突變導致第332位由Val變?yōu)镮le(G6突變),1 111 bp處的突變導致第371位由Val變?yōu)镸e(tG7突變);另外1 184 bp處的C→T堿基突變導致第395位由Ser變?yōu)镻he(FecGH或G8突變)。FecGH突變純合子Cambridge綿羊和Belclare綿羊是不育的,但雜合子的排卵數(shù)比野生型多。McNatty等[32]認為這是因為FecGH突變破壞了GDF9蛋白與TGF-β受體1的結(jié)合。Melo 等[33]在巴西 Santa Ines(SI)綿羊 GDF9 基因上發(fā)現(xiàn)FecGSI突變,該突變是GDF9基因編碼區(qū)第2外顯子1 034 bp處T→G突變,導致GDF9成熟肽第345位由Phe改變?yōu)镃ys(F345C)。FecGSI突變純合子SI綿羊黃體數(shù)高于雜合子和野生型,但是雜合子和野生型之間無顯著差異。Nicol等[34]發(fā)現(xiàn),F(xiàn)ecI(FecTT)是由于冰島Thoka綿羊GDF9基因第2外顯子編碼區(qū)1 279位發(fā)生A→C突變(A1279C),導致編碼GDF9蛋白第109位絲氨酸改變?yōu)榫彼幔⊿109R),使得突變純合子母羊不育,雜合子母羊產(chǎn)羔數(shù)比野生型多。Silva等[35]在多羔巴西SI綿羊上同樣發(fā)現(xiàn)了該突變,命名為FecGE(Embrapa)。該突變純合子母羊可育,純合子母羊排卵數(shù)比雜合子和野生型增加 82%。Juengel等[36]報道,Thoka突變雜合子綿羊排卵數(shù)和產(chǎn)羔數(shù)增加,突變純合子不育。Mullen 等[37]研 究 認 為 ,Belclare 和 Cambridge 綿 羊 中FecGH突變可能來源于Lleyn綿羊。Vage等[38]發(fā)現(xiàn),在挪威白綿羊中G7突變與產(chǎn)羔數(shù)之間的相關(guān)性很強。Mullen 等[39]發(fā)現(xiàn),GDF9 基因 G7(FecGF)突變與芬蘭綿羊排卵數(shù)之間沒有顯著關(guān)聯(lián),但Belclare綿羊排卵數(shù)和G7 突變之間極顯著相關(guān)(P<0.01)。Souza等[40]在 Ile de France綿羊GDF9基因編碼區(qū)檢測到943 bp處發(fā)生C→T突變(FecGV),并導致GDF9蛋白第315位氨基酸由精氨酸變?yōu)榘腚装彼?。FecGV突變雜合子排卵數(shù)比野生型增加0.86個;產(chǎn)羔數(shù)比野生型增加0.32只,突變純合子母羊由于子宮和卵巢發(fā)育不全而不育。左北瑤等[41]在德國肉用美利奴羊中并未檢測到G8和FecTT突變,但是檢測到G1突變。金慧慧等[42]在我國高繁殖力綿羊品種小尾寒羊和湖羊中均未檢測到G7突變。雷夢媛等[43]在湖羊、小尾寒羊等綿羊品種中均未檢測到FecGE突變。潘章源等[29]在小尾寒羊、策勒黑羊等綿羊品種上的研究發(fā)現(xiàn),11 個綿羊品種均不含 FecGE、FecGH、FecGT、FecGF、FecGV突變,除草原型藏羊外,其余綿羊品種均有G1突變。GDF9基因G1突變可能與我國地方綿羊品種多羔性狀存在一定關(guān)系,但具體效應(yīng)需要進一步研究。
BMPR1B、BMP15和GDF9基因都屬于轉(zhuǎn)化生長因子 B(Transforming growth factor β,TGF-β)超家族。而最近鑒定出的FecL基因是唯一一個不屬于這個家族的多羔主效基因。FecL基因最初被命名為Lacaune,Lacaune對排卵數(shù)的增加與BMPR-IB基因相似,有增強效應(yīng),雜合子增加排卵1.0個,純合子增加排卵2.0個,Lacaune的突變體被命名為FecL,突變位點被命名為FecLL。Bodin等[44]通過選育構(gòu)建Lacaune綿羊家系,為多羔主效基因定位打下了堅實的基礎(chǔ),2002年,通過基因組掃描將FecLL定位在11號常染色體上。2009年Drouilhet等[45]將 FecLL定位于 BM17132和 DLX3約 1.1Mb的區(qū)間內(nèi)。2013年Drouilhet等利用高通量測序結(jié)合生物
信息學確定FecL基因為:Glycosylation Enzyme Beta-1,4-N-Acetyl-Galactosaminyltransferase 2(B4GALNT2),其中 g.36938224T>A和 g.37034573A>G兩個標記與FecLL位點完全連鎖。這兩個SNP都位于B4GALNT2基因的內(nèi)含子中,可能的機制是突變導致了B4GALNT2基因在卵泡中的異位表達,同時發(fā)現(xiàn)編碼區(qū)第803位存在A→G突變,B4GALNT2蛋白在顆粒細胞中的高表達會使卵泡中特定靶蛋白的糖基化狀態(tài)改變,進而引起了排卵數(shù)的改變[46-47]。這一發(fā)現(xiàn)揭開了除TGF-β信號通路之外調(diào)控綿羊排卵數(shù)的全新機制。
骨形態(tài)發(fā)生蛋白(Bone morphogenetic proteins,BMPs)屬于TGF-β超家族成員,在動物機體中廣泛分布。在哺乳動物的繁殖和免疫中起著至關(guān)重要的作用。Davis等[48]報道,Booroola 和 Inverdale 突變的雙雜合個體排卵數(shù)比單基因突變多,暗示它們共用信號通路。Moore等[49]報道BMPRⅡ在抑制BMP15對FSH誘導的孕酮產(chǎn)量和顆粒細胞生物活性方面最有效。Chu等[50]研究發(fā)現(xiàn),BMPR-IB基因和BMP15基因?qū)π∥埠虻漠a(chǎn)羔數(shù)存在協(xié)同效應(yīng)。
Liao等[51]發(fā)現(xiàn),BMP15 和 GDF9 可以形成同源和異源二聚體,引起綿羊排卵數(shù)變化,從而共同影響綿羊繁殖性能。Hanrahan 等[22]發(fā)現(xiàn),同時具有 BMP15(B2 或 B4)和GDF9(G8)突變的雜合子Belclare母羊和Cambridge母羊排卵數(shù)顯著增加(P<0.05)。首次發(fā)現(xiàn)GDF9和BMP15基因突變均存在的綿羊具有更高的排卵數(shù),表明BMP15突變和GDF9突變對綿羊排卵數(shù)具有加性效應(yīng)。表1列出了同時含有2個高繁殖力主效基因的綿羊品種。
表1 同時攜帶2個高繁殖力主效基因的綿羊品種
雌激素受體和孕激素受體都屬于類固醇核受體超家族[55]。雌激素是一類主要在動物卵巢內(nèi)合成的甾體類激素,作用于動物生殖系統(tǒng)[56]和中樞神經(jīng)系統(tǒng)[57]。雌激素通過雌激素受體行使生理功能[58]。雌激素受體α(ERα)也稱為NR3A1,是雌激素受體的兩種主要類型之一。綿羊ERα由基因ESR1編碼,具有調(diào)控轉(zhuǎn)錄蛋白質(zhì)的功能[59]。ESRα與雌激素結(jié)合后,對胚胎、乳腺和雌性繁殖周期中卵泡的生長發(fā)育都發(fā)揮著重要作用[60]。畢曉丹等[61]對ESR基因外顯子1的研究結(jié)果表明,小尾寒羊ESR基因突變型(AB和BB)比野生型(AA)分別多產(chǎn)羔0.51只和0.70只(P<0.05),推測ESR基因是控制小尾寒羊多羔性狀的主效基因。狄冉等[62]對6個綿羊品種的ESR基因外顯子4進行PCR-SSCP檢測,發(fā)現(xiàn)該部分序列比較保守,推測該區(qū)域可能不是影響綿羊高繁殖力的功能結(jié)構(gòu)域。董文艷[63]對湖羊ESR基因進行檢測,結(jié)果發(fā)現(xiàn)ESR基因第1外顯子363位發(fā)生C→G突變;產(chǎn)羔數(shù)統(tǒng)計發(fā)現(xiàn)突變雜合子和突變純合子湖羊產(chǎn)羔數(shù)比野生型湖羊分別多0.98只和1.47只(P<0.01)。郭海燕等[64]利用PCR-SSCP技術(shù)結(jié)合基因測序?qū)駿SR基因進行多態(tài)性檢測及產(chǎn)羔數(shù)關(guān)聯(lián)分析,發(fā)現(xiàn)ESR基因多態(tài)對湖羊產(chǎn)羔數(shù)沒有影響。
孕激素主要在雌性動物卵巢中產(chǎn)生,在促進子宮發(fā)育、抑制子宮肌層收縮、卵母細胞成熟、釋放以及受精卵植入子宮和妊娠維持的過程中發(fā)揮著重要作用[65]。孕激素受體(PGR)也稱為NR3C3,其與孕激素結(jié)合后發(fā)揮生理功能[66]。孕激素受體是類固醇激素核受體家族成員,通過與DNA特定序列結(jié)合,從而調(diào)節(jié)雌性動物生殖生理過程[67]。綿羊PGR基因位于15號染色體,基因全長140 kb左右,由8個外顯子和7個內(nèi)含子組成,在動物的發(fā)育、生殖、內(nèi)環(huán)境穩(wěn)態(tài)中起著十分重要的作用[68]。張利平[69]以小尾寒羊為試驗對象,對其PGR基因外顯子4的多態(tài)性進行了檢測,其AA、AB和BB基因型頻率分別為0.57、0.32和0.11。查麗莎[70]對小尾寒羊的PGR基因研究發(fā)現(xiàn),其GG型和AG型產(chǎn)羔數(shù)均值分別比 AA 型的多 0.97只(P<0.05)和 0.64只(P<0.05),GG型和 AG 型產(chǎn)羔數(shù)差異不顯著(P >0.05)。俞理輝[71]使用SSCP-PCR技術(shù)對7個綿羊品種PGR基因外顯子4進行檢測,結(jié)果發(fā)現(xiàn)PGR基因第4外顯子擴增序列的第227 bp處發(fā)生了C→T的堿基突變,該突變在小尾寒羊中存在3種基因型,但屬于低度多態(tài),選擇的潛力較小。
目前對綿羊多羔性狀候選基因的研究多集中在TGF-β家族和BMP信號通路或與之相關(guān)的信號通路。除此之外,應(yīng)適當關(guān)注與BMP信號通路無關(guān)的基因,如Drouilhet團隊關(guān)注的FecL基因、儲明星團隊研究的KiSS1/GPR54/IGF1基因等與小尾寒羊產(chǎn)羔數(shù)的關(guān)系。綿羊產(chǎn)羔數(shù)是涉及多基因的復雜數(shù)量性狀,因此下一步進行多基因或位點聯(lián)合分析是很有必要的。現(xiàn)在綿羊多羔候選基因的結(jié)構(gòu)、功能和調(diào)控機制尚不明確,在基因與基因、基因與環(huán)境之間的相互作用,以及基因遺傳效應(yīng)分析方面同樣進展甚微。因此,需要使用新技術(shù)來識別并確定不同品種或群體中主效基因或與之相關(guān)的基因突變對綿羊繁殖性能的影響。使用諸如SNP芯片、GWAS、全基因組重測序和全轉(zhuǎn)錄組圖譜、單細胞測序等技術(shù)來挖掘新的與綿羊繁殖性狀相關(guān)的基因、突變或信號通路。
[1]Pramod R,Sharma S,Rohit K,et al.Genetics of ovulation rate in farm animals[J].Veterinary World,2013,6(11):833-838.
[2]Davis G H,Galloway S M,Ross I K,et al.DNA tests in prolific sheep from eight countries provide new evidence on origin of the Booroola(FecB)mutation[J].Biology of Reproduction,2002,66(6):1869-1874.
[3]Souza C,Macdougall C,Campbell B,et al.The Booroola(FecB)phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B(BMPR1B)gene[J].Journal of Endocrinology,2001,169(2):R1-R6.
[4]Mulsant P,Lecerf F,F(xiàn)abre S,et al.Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes[J].Proceedings of the National Academy of Sciences USA,2001,98(9):5104-5109.
[5]Davis G,Balakrishnan L,Ross I,et al.Investigation of the Booroola(FecB)and Inverdale(FecX I) mutations in 21 prolific breeds and strains of sheep sampled in 13 countries[J].Animal Reproduction Science,2006,92(1):87-96.
[6]Mahdavi M,Nanekarani S,Hosseini S D.Mutation in BMPR-IB gene is associated with litter size in Iranian Kalehkoohi Sheep[J].Animal Reproduction Science,2014,147(3):93-98.
[7]Roy J,Polley S,De S,et al.Polymorphism of fecundity genes(FecB,F(xiàn)ecX,and FecG)in the Indian Bonpala sheep[J].Animal Biotechnology,2011,22(3):151-162.
[8]Kumar S,Mishra A,Kolte A,et al.Screening for Booroola(FecB)and Galway(FecXG)mutations in Indian sheep[J].Small Ruminant Research,2008,80(1):57-61.
[9]Guan F,Liu S R,Shi G Q,et al.Polymorphism of FecB gene in nine sheep breeds or strains and its effects on litter size,lamb growth and development[J].Animal Reproduction Science,2007,99(1):44-52.
[10]Yue J Y,Yang B H,Xia L,et al.Simultaneous identification of FecB and FecXGmutations in Chinese sheep using high resolution melting analysis [J].Journal of Applied Animal Research,2011,39(2):164-168.
[11]劉秋月,胡文萍,賀小云,等.綿羊多羔主效基因FecB高通量檢測方法的建立及應(yīng)用[J].畜牧獸醫(yī)學報,2017,48(1):44-56.
[12]謝秀蘭,馬麗娜,岳彩娟,等.灘羊多胎品系選育中的FecB基因的檢測及利用[J].中國畜牧獸醫(yī)文摘,2016(6):63-64.
[13]任艷玲,沈志強,李敏,等.洼地綿羊FecB基因多態(tài)性與其產(chǎn)羔數(shù)關(guān)系的研究[J].中國畜牧獸醫(yī),2011,38(7):159-162.
[14]史洪才,高志英,牛志剛,等.新疆多浪羊FecB突變檢測及與產(chǎn)羔數(shù)的關(guān)系[J].農(nóng)業(yè)生物技術(shù)學報,2011,19(2):330-334.
[15]史洪才,牛志剛,白杰,等.BMPR-IB基因突變對策勒黑羊產(chǎn)羔數(shù)的影響及其遺傳規(guī)律的研究[J].中國畜牧雜志,2012(3):14-17.
[16]李達,孫偉,倪榮,等.綿羊FecB基因遺傳多樣性及其產(chǎn)羔數(shù)的關(guān)聯(lián)分析[J].畜牧獸醫(yī)雜志,2012,31(2):1-5.
[17]Zuo B,Qian H,Wang Z,et al.A study on BMPR-IB genes of Bayanbulak sheep [J].Asian-Australasian Journal of Animal Sciences,2013,26(1):36-42.
[18]Chen X,Sun H,Tian S,et al.Increasing litter size in a sheep breed by marker-assisted selection of BMPR1B A746G mutation[J].Journal of Genetics,2015,94(1):1-4.
[19]Zhang X,Li W,Wu Y,et al.Disruption of the sheep BMPR-IB gene by CRISPR/Cas9 in in vitro-produced embryos[J].Theriogenology,2017,91(2):163-172.
[20]Zamani P,Nadri S,Saffaripour R,et al.A new mutation in exon 2 of the bone morphogenetic protein 15 gene is associated with increase in prolificacy of Mehraban and Lori sheep [J].Tropical Animal Health and Production,2015,47(5):855-860.
[21]Galloway S M,Mcnatty K P,Cambridge L M,et al.Mutations in an oocyte-derived growth factor gene(BMP15)cause increased ovulation rate and infertility in a dosage-sensitive manner[J].Nature Genetics,2000,25(3):279-283.
[22]Hanrahan J P,Gregan S M,Mulsant P,et al.Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries)[J].Biology of Reproduction,2004,70(4):900-909.
[23]Bodin L,Di Pasquale E,F(xiàn)abre S,et al.A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep[J].Endocrinology,2007,148(1):393-400.
[24]Monteagudo L V,Ponz R,Tejedor M T,et al.A 17 bp deletion in the bone morphogenetic protein 15(BMP15) gene is associated to increased prolificacy in the Rasa Aragonesa sheep breed [J].Animal Reproduction Science,2009,110(1):139-146.
[25]Martinez Royo A,Jurado J,Smulders J,et al.A deletion in the bone morphogenetic protein 15 gene causes sterility and increased prolificacy in Rasa Aragonesa sheep [J].Animal Genetics,2008,39(3):294-297.
[26]Demars J,F(xiàn)abre S,Sarry J,et al.Genome-wide association studies identify two novel BMP15 mutations responsible for an atypical hyperprolificacy phenotype in sheep[J].PLoS Genetics,2013,9(4):e1003482.
[27]董新龍,胡文萍,賀小云,等.綿羊BMP15組織表達特征及FecXGr、FecXO和G971A突變的檢測[J].農(nóng)業(yè)生物技術(shù)學報,2016,24(12):1810-1819.
[28]Lassoued N,Benkhlil Z,Woloszyn F,et al.FecXBara novel BMP15 mutation responsible for prolificacy and female sterility in Tunisian Barbarine Sheep[J].BMC Genetics,2017,18(1):43-53.
[29]潘章源,賀小云,劉秋月,等.綿羊GDF9基因mRNA、DNA和調(diào)控區(qū)序列克隆及其在11個品種中遺傳多態(tài)性檢測[J].畜牧獸醫(yī)學報,2016,47(8):1555-1564.
[30]Juengel J L,Hudson N L,Heath D A,et al.Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep [J].Biology of Reproduction,2002,67(6):1777-1789.
[31]李碧俠,儲明星.生長分化因子9基因的研究進展[J].中國畜牧獸醫(yī),2002,29(6):33-36.
[32]McNatty K P,Smith P,Moore L G,et al.Oocyte-expressed genes affecting ovulation rate [J].Molecular and Cellular Endocrinology,2005,234(1):57-66.
[33]Melo E O,Silva B D M,Castro E A,et al.A novel mutation in the growth and differentiation factor 9(GDF9)gene is associated,in homozygosis,with increased ovulation rate in santa ines sheep [J].Biology of Reproduction,2008,78(S1):141-141.
[34]Linda N,Bishop S C,Ricardo P W,et al.Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep[J].Reproduction,2009,138(6):921-933.
[35]Silva B D,Castro E A,Souza C J,et al.A new polymorphism in the growth and differentiation factor 9(GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep[J].Animal Genetics,2011,42(1):89-92.
[36]Juengel J L,Davis G H,Mcnatty K P.Using sheep lines with mutations in single genes to better understand ovarian function [J].Reproduction,2013,146(4):R111-R123.
[37]Mullen M P,Hanrahan J P,Howard D J,et al.Investigation of prolific sheep from UK and Ireland for evidence on origin of the mutations in BMP15(FecXG,F(xiàn)ecXB)and GDF9(FecGH)in Belclare and Cambridge sheep[J].PLoS One,2013,8(1):e53172.
[38]V?ge D I,Husdal M,Kent M P,et al.A missense mutation in growth differentiation factor 9(GDF9)is strongly associated with litter size in sheep[J].BMC Genetics,2013,14(1):1-8.
[39]Mullen M P,Hanrahan J P.Direct evidence on the contribution of a missense mutation in GDF9 to variation in ovulation rate of Finn sheep[J].PLoS One,2014,9(4):e95251.
[40]Souza C,Mcneilly A,Benavides M,et al.Mutation in the protease cleavage site of GDF9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes[J].Animal Genetics,2014,45(5):732-739.
[41]左北瑤,錢宏光,劉佳森.德國肉用美利奴羊BMPRIB,BMP15和GDF9基因10個突變位點的多態(tài)性檢測分析[J].南京農(nóng)業(yè)大學學報,2012,35(3):114-120.
[42]金慧慧,儲明星,潘章源,等.16種山羊和6種綿羊GDF9基因G7 和 FecGV突變檢測 [J].安徽農(nóng)業(yè)大學學報,2015,42(1):104-109.
[43]雷夢媛,潘章源,狄冉,等.山羊和綿羊GDF9基因FecGE突變檢測[J].揚州大學學報(農(nóng)業(yè)與生命科學版),2015(1):38-41.
[44]Bodin L,Sancristobal M,Lecerf F,et al.Segregation of a major gene influencing ovulation in progeny of Lacaune meat sheep[J].Genetics Selection Evolution,2002,34(4):1-18.
[45]Drouilhet L,Lecerf F,Bodin L,et al.Fine mapping of the FecL locus influencing prolificacy in Lacaune sheep [J].Animal Genetics,2009,40(6):804-812.
[46]Drouilhet L,Taragnat C,F(xiàn)ontaine J,et al.Endocrine characterization of the reproductive axis in highly prolific Lacaune sheep homozygous for the FecLL mutation [J].Biology of Reproduction,2010,82(5):815-824.
[47]Drouilhet L,Mansanet C,Sarry J,et al.The highly prolific phenotype of Lacaune sheep is associated with an ectopic expression of the B4GALNT2 gene within the ovary[J].PLoS Genetics,2013,9(9):e1003809.
[48]Davis G H,Dodds K G,Bruce G D.Combined effect of the Inverdale and Booroola prolificacy genes on ovulation rate in sheep[C]//Proceedings of the Thirteenth Conference Association for the Advancement of Animal Breeding and Genetics.1999,13:74-77.
[49]Moore R K,Otsuka F,Shimasaki S.Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells[J].Journal of Biological Chemistry,2003,278(1):304-310.
[50]Chu M X,Liu Z H,Jiao C L,et al.Mutations in BMPR-IB and BMP15 genes are associated with litter size in Small Tailed Han sheep(Ovis aries)[J].Journal of Animal Science,2007,85(3):598-603.
[51]Liao W X,Moore R K,Otsuka F,et al.Effect of intracellular interactions on the processing and secretion of bone morphogenetic protein-15(BMP-15)and growth and differentiation factor-9 implication of the aberrant ovarian phenotype of BMP-15 mutant sheep[J].Journal of Biological Chemistry,2003,278(6):3713-3719.
[52]Polley S,De S,Brahma B,et al.Polymorphism of BMPR1B,BMP15 and GDF9 fecundity genes in prolific Garole sheep[J].Tropical Animal Health and Production,2010,42(5):985-993.
[53]Barzegari A,Atashpaz S,Ghabili K,et al.Polymorphisms in GDF9 and BMP15 associated with fertility and ovulation rate in Moghani and Ghezel sheep in Iran [J].Reproduction in Domestic Animals,2010,45(4):666-669.
[54]Javanmard A,Azadzadeh N,Esmailizadeh A K.Mutations in bone morphogenetic protein 15 and growth differentiation factor 9 genes are associated with increased litter size in fat-tailed sheep breeds[J].Veterinary Research Communications,2011,35(3):157-167.
[55]Osz J,Brélivet Y,Peluso-Iltis C,et al.Structural basis for a molecular allosteric control mechanism of cofactor binding to nuclear receptors[J].Proceedings of the National Academy of Sciences USA,2012,109(10):E588-E594.
[56]Swedenborg E,Power K A,Cai W,et al.Regulation of estrogen receptor beta activity and implications in health and disease[J].Cellular and Molecular Life Sciences,2009,66(24):3873-3894.
[57]Acharya K D,F(xiàn)inkelstein S D,Bless E P,et al.Estradiol preferentially induces progestin receptor-A (PR-A)over PR-B in cells expressing nuclear receptor coactivators in the female mouse hypothalamus[J].eNeuro,2015,2(4):12-15.
[58]Tetel M J,Pfaff D W.Contributions of estrogen receptor-α and estrogen receptor-β to the regulation of behavior[J].Biochimica et Biophysica Acta(BBA)-General Subjects,2010,1800(10):1084-1089.
[59]Paterni I,Granchi C,Katzenellenbogen J A,et al.Estrogen receptors alpha(ERα)and beta(ERβ):subtype-selective ligands and clinical potential[J].Steroids,2014,90:13-29.
[60]Li X,Li H,Jia L,et al.Oestrogen action and male fertility:experimental and clinical findings [J].Cellular and Molecular Life Sciences,2015,72(20):3915-3930.
[61]畢曉丹,儲明星,金海國,等.小尾寒羊高繁殖力候選基因ESR的研究[J].畜牧獸醫(yī)學報,2005,32(10):1060-1065.
[62]狄冉,賈立華,儲明星,等.綿羊雌激素受體基因外顯子4多態(tài)性分析[J].中國畜牧獸醫(yī),2008,35(12):89-92.
[63]董文艷.湖羊ESR基因的檢測及基因型與多胎性能的關(guān)系[D].杭州:浙江大學,2009.
[64]郭海燕,金銀,李擁軍,等.ESR基因多態(tài)性與湖羊產(chǎn)羔性能的關(guān)系[J].江蘇農(nóng)業(yè)科學,2017,45(13):126-128.
[65]Reynolds L,Haring J,Johnson M,et al.Placental development during early pregnancy in sheep:estrogen and progesterone receptor messenger RNA expression in pregnancies derived from in vivo produced and in vitro produced embryos [J].Domestic Animal Endocrinology,2015,53:60-69.
[66]Arck P,Hansen P J,Mulac Jericevic B,et al.Progesterone during pregnancy:endocrine immune cross talk in mammalian species and the role of stress[J].American Journal of Reproductive Immunology,2007,58(3):268-279.
[67]Tsai M,O'malley B W.Molecular mechanisms of action of steroid/thyroid receptor superfamily members [J].Annual Review of Biochemistry,1994,63(1):451-486.
[68]Spencer T E,F(xiàn)orde N,Lonergan P.The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants [J].Journal of Dairy Science,2016,99 (7):5941-5950.
[69]張利平.BMPR-IB基因和PGR基因作為小尾寒羊多胎候選基因的研究[D].蘭州:甘肅農(nóng)業(yè)大學,2005.
[70]查麗莎.孕酮受體基因、類固醇21羥化酶基因多態(tài)性及其與綿羊產(chǎn)羔數(shù)關(guān)系[D].合肥:安徽農(nóng)業(yè)大學,2010.
[71]俞理輝.綿羊PGR基因和TTF-1基因多態(tài)性研究[D].蘭州:甘肅農(nóng)業(yè)大學,2012.