亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        響應(yīng)曲面法優(yōu)化茶油超臨界CO2萃取工藝研究

        2018-05-25 08:13:05林樹真林樹紅吳雪輝謝潔梅
        農(nóng)產(chǎn)品加工 2018年9期
        關(guān)鍵詞:浸出法茶油超臨界

        林樹真,林樹紅,龍 婷,吳雪輝,謝潔梅

        (1.廣州市金妮寶食用油有限公司,廣東廣州 511475;2.廣東金妮寶科技發(fā)展有限公司,廣東廣州 511475;3.華南農(nóng)業(yè)大學(xué)食品學(xué)院,廣東省油茶工程技術(shù)研究中心,廣東廣州 510642)

        茶油是我國特有的木本油脂,其脂肪酸組成與世界公認最好的橄欖油相似,有“東方的橄欖油”之稱[1]。據(jù)《本草綱目》記載:茶油性偏涼,有涼血、止血、清熱、解毒之功效,主治肝血虧損、益腸胃、明目,長期食用能增強血管彈性和韌性、延緩動脈粥樣硬化、增加腸胃吸收功能、促進內(nèi)分泌腺體激素分泌、防治神經(jīng)功能下降、提高人體免疫力[2-4]。目前,茶油的提取方法主要有壓榨法和溶劑浸出法,其中壓榨法提油率較低,浸出法存在著溶劑殘留,需要較復(fù)雜的后處理過程,操作復(fù)雜,易造成環(huán)境污染[5]。

        超臨界CO2流體萃?。⊿upercritical fluid extraction,SCFE) 技術(shù)是20世紀80年代發(fā)展起來的一種獨特、高效、清潔的新型分離精制的高新技術(shù)[6],廣泛應(yīng)用于食品、醫(yī)藥、化工、環(huán)保等領(lǐng)域,成為獲得高質(zhì)量產(chǎn)品最有效的方法之一[7-9]。采用超臨界萃取法應(yīng)用于茶油的萃取,可簡化精煉工序、提高茶油質(zhì)量。同時,由于超臨界萃取過程不產(chǎn)生污染,提油后的茶粕具有較高的營養(yǎng)價值和綜合利用價值[10-13]。響應(yīng)曲面分析法 (Response surface methodology,RSM)是評價指標和因素間的非線性關(guān)系的一種試驗設(shè)計方法,具有采用較少的試驗次數(shù)和較短的時間全面研究所選的試驗參數(shù),得出正確結(jié)論的優(yōu)越性[14-16]。因此,試驗以油茶籽為原料,茶油提取率為指標,采用SFEC技術(shù)和RSM試驗設(shè)計方法,對影響超臨界CO2萃取茶油的主要工藝參數(shù)進行優(yōu)化設(shè)計試驗,為超臨界CO2流體萃取技術(shù)應(yīng)用于茶油工業(yè)化生產(chǎn)提供科學(xué)依據(jù)。

        1 材料與方法

        1.1 材料與儀器

        油茶籽(脂肪含量為21.3%),廣東金妮寶科技發(fā)展有限公司提供;瓶裝CO2(純度99.9%),廣州氣體廠提供。

        SFE-1L型超臨界CO2萃取設(shè)備,貴州航天烏江機電設(shè)備有限責任公司產(chǎn)品;DF-15型中藥粉碎機,溫嶺市大德中藥機械有限公司產(chǎn)品;DGG-9420A型電熱恒溫鼓風干燥箱,上海森信實驗儀器有限公司產(chǎn)品;JA2003A型電子天平,上海精密科學(xué)儀器有限公司產(chǎn)品;氣相色譜-質(zhì)譜聯(lián)用儀,F(xiàn)innigan公司產(chǎn)品;1100LC型液相色譜儀,百捷倫公司產(chǎn)品。

        1.2 茶油提取方法

        稱取一定量經(jīng)預(yù)處理好的茶籽粉末裝于萃取釜中,在設(shè)置的萃取條件下進行萃取,溶有茶籽油的超臨界CO2經(jīng)減壓、升溫后與茶籽分離,萃取結(jié)束后,精確稱取萃取物質(zhì)量(輔以萃取后物料差值),并按下式計算茶油提取率。

        其中:G1——油茶籽的質(zhì)量,g;

        G2——萃取出的油脂的質(zhì)量,g;

        X1——油茶籽中油脂含量,%。

        1.3 響應(yīng)曲面(RSM)設(shè)計試驗茶油提取方法

        在單因素試驗基礎(chǔ)上[17],選取萃取壓力、萃取溫度、萃取時間對茶油提取率影響較大的3個因素作為自變量,分別以X1,X2,X3表示,其余條件為物料顆粒度40~80目,CO2流量10 L/h,萃取壓力6 MPa,萃取溫度50℃。以茶油提取率為因變量,超臨界CO2萃取茶油的提取率Y為響應(yīng)值,進行試驗。

        試驗因素與水平設(shè)計見表1。

        表1 試驗因素與水平設(shè)計

        2 結(jié)果與分析

        2.1 茶油提取率工藝模型建立及顯著性檢驗

        利用Design Expert軟件建立試驗。

        RSM試驗設(shè)計與結(jié)果見表2。

        表2 RSM試驗設(shè)計與結(jié)果

        運用Design Expert軟件對表2的試驗數(shù)據(jù)進行回歸分析,得到茶油提取率的二次多元回歸模型為:

        對模型進行方差分析。

        回歸模型方差分析見表3。

        表3 回歸模型方差分析

        由表3提取率回歸模型方差分析(ANOVA)可以看出,F(xiàn)回歸=5.806 253>(F0.01(9,10)=4.94),p值=0.005 543<0.01,表明模型極其顯著。提取率F失擬=0.4<(F0.05(9,5)=4.77),失擬項p=0.83>0.05,表明失擬不顯著。

        回歸方程系數(shù)顯著性檢驗見表4。

        從表4回歸方程系數(shù)顯著性檢驗可知,p<0.05說明模型顯著;p<0.01,說明模型極顯著。各因素對茶油提取率影響的大小順序為萃取時間(X3)>萃取壓力(X1)>萃取溫度(X2)。提取率模型中一次項萃取壓力 X1(p<0.01),萃取時間 X3(p<0.01) 極顯著;二次項(p<0.05),(p<0.05) 顯著,其余項均不顯著。為簡化回歸方程,去掉不顯著項,得到簡化后的回歸模型為:

        表4 回歸方程系數(shù)顯著性檢驗

        2.2 超臨界CO2萃取茶油的響應(yīng)面分析和優(yōu)化

        萃取壓力和萃取溫度對提取率影響的等高線和響應(yīng)曲面見圖1。

        圖1 萃取壓力和萃取溫度對提取率影響的等高線和響應(yīng)曲面(X3=2 h)

        從圖1可以看出,萃取溫度不變,隨著萃取壓力的增大,茶油提取率呈現(xiàn)增加趨勢,萃取壓力為30.5 MPa時,茶油提取率達到最大,繼續(xù)增大萃取壓力,提取率開始下降;當萃取壓力恒定時,萃取溫度在32~48℃內(nèi)變化,首先隨著萃取溫度的升高,茶油提取率逐漸增大;萃取溫度為40℃,茶油提取率達到最大,隨后茶油提取率隨萃取溫度的升高呈現(xiàn)下降趨勢。因為萃取溫度對茶油提取率的影響較為復(fù)雜,一方面隨著溫度升高,萃取物的蒸汽壓增大,其擴散系數(shù)和傳質(zhì)系數(shù)增大,提取率增加;另一方面萃取溫度升高,超臨界CO2的密度降低,導(dǎo)致流體的溶劑化效應(yīng)下降,使萃取物在溶劑中的溶解度下降,提取率降低。萃取過程中到底是流體溶解能力降低還是萃取物擴散系數(shù)和傳質(zhì)系數(shù)增加起主導(dǎo)作用,取決于萃取壓力。

        萃取壓力和萃取時間對茶油提取率影響的等高線和響應(yīng)曲面見圖2。

        圖2 萃取壓力和萃取時間對茶油提取率影響的等高線和響應(yīng)曲面(X2=40℃)

        由圖2可知,萃取時間不變,隨著萃取壓力的增大,茶油提取率呈現(xiàn)增加趨勢。萃取壓力達到一定值后,茶油提取率變化平緩,繼續(xù)增加萃取壓力提取率有所降低;萃取壓力恒定時,萃取時間在1.16~2.84 h內(nèi)變化,開始時隨萃取時間的增加茶油提取率升高,但到達一定值后,萃取時間延長,茶油的提取率影響較小。

        萃取溫度和萃取時間對茶油提取率影響的等高線和響應(yīng)曲面見圖3。

        圖3 萃取溫度和萃取時間對茶油提取率影響的等高線和響應(yīng)曲面(X1=28 MPa)

        由圖3可知,萃取時間不變,升高萃取溫度,茶油提取率呈現(xiàn)增加的趨勢,不過萃取溫度較低時對提油率的影響不大,達到一定萃取溫度后,提取率最大,繼續(xù)增加萃取溫度,茶油提取率開始下降;萃取溫度恒定時,萃取時間在1.20~2.80 h內(nèi),延長萃取時間有利于提高茶油的提取率。

        對三維非線性回歸模型(1)進行求一階偏導(dǎo),并令其為零,得出茶油提取率較高的條件:X1=0.627,X2=-0.313,X3=1.148,此時Y=96.48;轉(zhuǎn)化為實際參數(shù),即在萃取壓力31 MPa,萃取溫度38℃,萃取時間2.60 h下,提油率高達96.48%。在該條件下,試驗值為96.58%,兩者相對偏差小于5%。

        2.3 模型的檢驗

        由回歸模型(1) 來預(yù)測茶油提取率的最優(yōu)條件,利用統(tǒng)計軟件Design-Expert分析,優(yōu)選出10組參數(shù)來驗證。

        模型的驗證結(jié)果見表5。

        由表5可知,采用Design-Expert軟件中Box-Behnken法優(yōu)選的10組工藝參數(shù)進行超臨界CO2萃取茶油試驗,結(jié)果平均相對誤差為3.36%,小于5%,證明該模型能較好地評價超臨界CO2萃取茶油的作用效果。

        2.4 超臨界CO2萃取的茶油主要成分及品質(zhì)分析

        2.4.1 脂肪酸組成

        表5 模型的驗證結(jié)果

        不同方法提取的茶油脂肪酸組成見表6,茶油脂肪酸組成氣相色譜圖見圖4。

        表6不同方法提取的茶油脂肪酸組成/%

        由表6可見,3種方法提取的茶油脂肪酸組成沒有顯著差別,其飽和脂肪酸與不飽和脂肪酸的分別基本相同,說明超臨界CO2萃取法不改變茶油組成。

        2.4.2 不同方法提取的茶油品質(zhì)指標測定

        測定超臨界CO2萃取茶油的品質(zhì)指標,并與壓榨法和浸出法提取的毛茶油進行對比。

        不同方法提取的茶油品質(zhì)指標見表7。

        從表7可以看出,超臨界法提取的茶油各項指標明顯優(yōu)于壓榨法和浸出法,說明超臨界CO2具有較好的選擇性,萃取的雜質(zhì)少、顏色淺,皂化價、不溶性雜質(zhì)、水分及揮發(fā)物含量均小于壓榨和浸出毛油。而且,超臨界法提取溫度低,不會引起油脂的高溫氧化和酸敗,所以酸價和過氧化值也較低。

        3 結(jié)論

        (1) 用RSM建立了超臨界CO2萃取茶油提取率的數(shù)學(xué)模型。從模型直觀圖能獲得工藝參數(shù)大概的取值范圍,有利于工藝參數(shù)選擇和優(yōu)化。

        (2) RSM獲得超臨界CO2萃取茶油的最優(yōu)工藝參數(shù)為萃取壓力31 MPa,萃取溫度38℃,萃取時間2.60 h,該條件下茶油提取率為96.48%。經(jīng)檢驗證明該萃取茶油工藝參數(shù)合理可靠。

        圖4 茶油脂肪酸組成氣相色譜圖

        表7 不同方法提取的茶油品質(zhì)指標

        (3) 超臨界CO2萃取的茶油在脂肪酸組成上與常規(guī)的壓榨、浸出法差異不大,VE等活性成分的含量明顯提高,各項品質(zhì)指標均優(yōu)于壓榨和浸出法。說明超臨界CO2萃取不改變茶油主要組成,但可提高活性成分含量和品質(zhì),提高茶油的營養(yǎng)價值和保健功能,減少后面的精煉工序,縮短生產(chǎn)周期,降低精煉成本。

        參考文獻:

        [1]莊瑞林.中國油茶 [M].第2版.北京:中國林業(yè)出版社,2008:25-30.

        [2]Hisako T,Tameichi O.Studies of camellia oil as edible oil and its antioxidative activity[J].Food Preservation Science,2005,31 (5):253-260.

        [3]Zhong H Y,Bedgood D R,Bishop A G,et al.Endogenousbiophenol,fatty acid and volatile profiles of selected oils[J].Food Chemistry,2007(4):1 544-1 551.

        [4]Lee P,Yen G C.Antioxidant activity and bioactive compounds of tea seed(Camellia oleifera Abel).oil[J].Journal of Agricultural Food Chemistry,2006,54 (3):779-784.

        [5]龍婷,吳雪輝,容歐,等.油茶籽預(yù)熱處理方法對茶油品質(zhì)的影響研究 [J].中國糧油學(xué)報,2017,32(7):79-83.

        [6]Pranabendu M,Hosahalli S.R,Kyu S C.Pumpkin(Cucurbita maxima)seed oil extraction using supercritical carbon dioxide and physicochemical properties of the oil[J].Journal of Food Engineering,2009(1):208-213.

        [7]Yolanda Sánchez-Vicente,Albertina Caba?as,Juan A.R.Renuncio,et al.Supercritical fluid extraction of peach(Prunus persica)seed oil using carbon dioxide and ethanol[J].The Journal of Supercritical Fluids,2009 (2):167-173.

        [8]華梅,馬惠芬,陳中華,等.不同夾帶劑條件下超臨界CO2流體萃取油用牡丹及成分分析 [J].西南林業(yè)大學(xué)學(xué)報,2017,37(5):125-130.

        [9]石珂心,趙武奇,谷如祥,等.超臨界CO2萃取櫻桃仁油及GC-MS分析 [J].中國糧油學(xué)報,2016,31(1):60-64.

        [10]Harrison L N L,Yuen M C,Cheng H,et al.Characterization and supericritical carbon dioxide extraction of Plam oil[J].Journal of Food Lipids,2006(13): 210-221.

        [11]Yib J Z,Wang A Q,Wwei W,et al.Analysis of the operation conditions for supercritical fluid extraction of seed oil[J].Separation and Purification Technology,2005(2):163-167.

        [12]Paramita Bhattacharjee,Rekha S Singhal,Sudha R Tiwari.Supercritical carbon dioxide extraction of cottonseed oil[J].Journal of Food Engineering,2007(3):892-898.

        [13]Salgin U.Extraction of jojoba seed oil using supercritical CO2and ethanol mixture in green and high-tech separatio process[J].Supercritical Fluids,2007 (5):330-337.

        [14]Liu Shucheng,Yang Feng,Zhang Chaohua,et al.Optimization of process parameters for supercritical carbon dioxide extraction of Passiflora seed oil by response surface methodology[J].The Journal of Supercritical Fluids,2009 (1):9-14.

        [15]吳曉宗,郝莉花,趙光遠,等.響應(yīng)面法優(yōu)化超臨界CO2萃取金花葵籽油工藝 [J].中國油脂,2017,42(7):15-18.

        [16]Zkal S G,Yener M E,Bayindirli L.Response surfaces of apricotkernel oil yield in supercritical carbon dioxide[J].Food Science and Technology,2005(6):611-616.

        [17]吳雪輝,陳北光,黃永芳,等.超臨界CO2萃取茶油的工藝條件研究 [J].食品科技,2007(2):139-141◇

        猜你喜歡
        浸出法茶油超臨界
        濕法冶金工藝處理含鐵含鋅除塵灰的技術(shù)發(fā)展現(xiàn)狀
        超臨界CO2在頁巖氣開發(fā)中的應(yīng)用研究進展
        云南化工(2021年5期)2021-12-21 07:41:20
        從燒結(jié)電除塵灰中氯化浸出鉛
        濕法冶金(2021年5期)2021-10-14 11:19:58
        林安娜 茶油飄香 綠色扶貧
        海峽姐妹(2020年9期)2021-01-04 01:35:30
        壓榨、浸出利弊談
        食品與健康(2019年7期)2019-07-18 01:40:55
        茶油飄香
        海峽姐妹(2019年2期)2019-03-23 02:56:14
        山里茶油郎
        嶺南音樂(2016年5期)2017-01-17 07:44:56
        茶油總DNA提取技術(shù)及擴增適用性
        600MW超臨界機組熱經(jīng)濟性定量分析
        1200MW等級超超臨界機組可行性研究
        一区二区三区视频在线观看免费| 欧美精品久久久久久三级| 能看的网站中文字幕不卡av| 日韩精品乱码中文字幕| 把女的下面扒开添视频| 国产第19页精品| 国产在线观看免费一级| 超碰Av一区=区三区| 东京道一本热码加勒比小泽| 色婷婷精品久久二区二区蜜臀av| 黑森林福利视频导航| 午夜国产在线| 97中文字幕一区二区| 黄片视频免费观看蜜桃| 亚洲av高清在线一区二区三区| 免费人成黄页网站在线观看国产| 蜜桃视频高清在线观看| 我和丰满妇女激情视频| 人人澡人人澡人人看添av| 久久精品亚洲中文无东京热| 亚洲国产精品av麻豆一区| 亚洲欧美日韩综合一区二区| 亚洲∧v久久久无码精品| 欧美亚洲另类自拍偷在线拍| 全部亚洲国产一区二区| 中文无码一区二区三区在线观看| 国产成人免费a在线视频| 中文字幕一区二区三区.| 亚洲悠悠色综合中文字幕| 幻女bbwxxxx在线视频| 国产精品原创av片国产日韩| 日本免费一区二区久久久| 性饥渴的农村熟妇| 亚洲欧美成人a∨| 日本女优中文字幕四季视频网站 | 亚洲伊人免费综合网站| 亚洲国产综合性感三级自拍| 麻豆91蜜桃传媒在线观看| 人妻少妇中文字幕,久久精品| 精品九九人人做人人爱| 999久久久精品国产消防器材|