亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        流體二次噴射推力矢量控制技術(shù)研究進(jìn)展①

        2018-05-11 09:12:05呂江彥劉元敏汪海濱
        固體火箭技術(shù) 2018年2期
        關(guān)鍵詞:喉部激波渦流

        趙 康,張 飛,呂江彥,劉元敏,汪海濱,李 耿

        (西安航天動(dòng)力技術(shù)研究所,西安 710025)

        0 引言

        固體火箭發(fā)動(dòng)機(jī)因具有可靠性高、維護(hù)方便、體積緊湊和啟動(dòng)迅速等特點(diǎn),而廣泛用于戰(zhàn)略、戰(zhàn)術(shù)導(dǎo)彈武器的核心推進(jìn)系統(tǒng)[1],同時(shí),也日益成為航天器運(yùn)載工具、多級(jí)間分離、飛行姿態(tài)軌道控制和動(dòng)能攔截器(KKV)等動(dòng)力系統(tǒng)的重要組成部分。然而,固體火箭發(fā)動(dòng)機(jī)工作過(guò)程控制調(diào)節(jié)能力較差,其成為制約固體推進(jìn)進(jìn)一步發(fā)展的技術(shù)瓶頸之一。因此,如何有效改善固體火箭發(fā)動(dòng)機(jī)實(shí)時(shí)調(diào)控能力,已成為國(guó)內(nèi)外研究人員長(zhǎng)期高度關(guān)注和致力突破的重要課題。

        隨著固體推進(jìn)技術(shù)應(yīng)用領(lǐng)域逐步拓寬及導(dǎo)彈武器系統(tǒng)攻擊精度、機(jī)動(dòng)性和敏捷性需求不斷提高,導(dǎo)彈飛行過(guò)程中快速有效的俯仰、偏航和滾轉(zhuǎn)控制顯得尤為重要,其控制方法主要有空氣動(dòng)力控制(Aerodynamic Lift Control,ATC)和推力矢量控制(Thrust Vector Control,TVC)??諝鈩?dòng)力控制通過(guò)舵翼偏轉(zhuǎn)產(chǎn)生氣動(dòng)升力作為離心力而控制姿態(tài),采用這種方法具有高空推力效率低下和低速飛行回轉(zhuǎn)能力降低等難以克服的缺陷,難以滿足作戰(zhàn)需求,工程實(shí)際應(yīng)用較少。因此,科研人員將工作重點(diǎn)轉(zhuǎn)向推力矢量控制。經(jīng)過(guò)多年不懈努力和技術(shù)積累,探索出多種技術(shù)途徑和設(shè)計(jì)方案,使推力矢量控制技術(shù)獲得長(zhǎng)足發(fā)展,按工作原理一般分為機(jī)械式和流體二次噴射[2]。機(jī)械式推力矢量控制技術(shù)主要有燃?xì)舛鎇3-8]、擾流片[9]、喉栓(或針?biāo)?[10-17]和擺動(dòng)噴管[18-37]等。其中,燃?xì)舛嬖诘谒拇冗M(jìn)近距格斗空空導(dǎo)彈上有所應(yīng)用,如美國(guó)AIM-9X、法國(guó)MICA和北約AIM-132等[38];俄羅斯R-73導(dǎo)彈采用擾流片作為推力矢量控制技術(shù)[9];喉栓控制技術(shù)從20世紀(jì)60年代就開(kāi)始進(jìn)行原理驗(yàn)證研究,并于2002年試驗(yàn)飛行成功[10,12,39];美國(guó)的TSRM(SM-3 III級(jí))[40]、美國(guó)的STAR 12GV(Terrier LEAP III級(jí))[41]和歐洲的Aster15/30[42]等青睞于柔性噴管控制推力矢量。綜合而言,機(jī)械式推力矢量控制技術(shù)因其原理簡(jiǎn)單和實(shí)現(xiàn)相對(duì)容易而應(yīng)用較廣泛,不同類型控制技術(shù)均有各自的優(yōu)缺點(diǎn)。比如,燃?xì)舛娲嬖陧憫?yīng)慢,易受兩相燃?xì)鉀_刷和燒蝕等缺點(diǎn),喉栓方式的主要缺點(diǎn)是燒蝕非常嚴(yán)重,傳動(dòng)伺服機(jī)構(gòu)尺寸和質(zhì)量較大。同時(shí),機(jī)械式推力矢量控制技術(shù)均存在不同程度的軸向推力損失。例如,推力偏轉(zhuǎn)角5°時(shí)燃?xì)舛婧蛿_流片引起的推力損失分別為10%和10%~15%[43],這對(duì)導(dǎo)彈射程造成不可逆影響。與傳統(tǒng)的機(jī)械式控制方法相比,流體二次噴射推力矢量控制技術(shù)具有可靠性高、響應(yīng)迅速、成本低、主動(dòng)熱防護(hù)和推力損失小等特點(diǎn)[2,44-45],促進(jìn)其成為各軍事強(qiáng)國(guó)競(jìng)相作為技術(shù)儲(chǔ)備來(lái)研究發(fā)展的熱點(diǎn)[46],具備很大的發(fā)展?jié)摿蛷V闊的應(yīng)用前景。然而,由于其尚處于研究階段,且涉及激波耦合干擾、氣粒兩相流動(dòng)和推力調(diào)控工作模式等多方面問(wèn)題。為此,各國(guó)學(xué)者先后幾十年在流體二次噴射推力矢量控制領(lǐng)域開(kāi)展了一系列的研究工作,并取得了一定的研究成果。

        本文主要針對(duì)有望應(yīng)用于固體火箭發(fā)動(dòng)機(jī)推力矢量控制的流體二次噴射技術(shù)發(fā)展進(jìn)行了歸納和分析,探討了該技術(shù)在固體推進(jìn)領(lǐng)域的發(fā)展趨勢(shì)和建議,以期為后續(xù)研究工作提供一定的借鑒和參考。

        1 流體二次噴射推力矢量原理

        流體二次噴射技術(shù)最早可追溯到20世紀(jì)50年代末美國(guó)NASA和空軍共同開(kāi)展的“噴射注入噴管技術(shù)(FLINT)”研究計(jì)劃,主要研究及應(yīng)用對(duì)象為航空發(fā)動(dòng)機(jī)和火箭發(fā)動(dòng)機(jī)[47-49],該技術(shù)的成功應(yīng)用和技術(shù)驗(yàn)證,促進(jìn)了其在固體火箭發(fā)動(dòng)機(jī)上的發(fā)展。

        流體二次噴射物理過(guò)程和流場(chǎng)特征[50]如圖1所示。流體二次噴射推力矢量的基本原理是當(dāng)氣體或液體蒸氣通過(guò)外部噴射進(jìn)入超音速主流時(shí),次流迅速膨脹并轉(zhuǎn)折成為附著壁面流動(dòng),對(duì)靠近噴射入口上游的主流產(chǎn)生干擾作用,從而形成弓形激波。造成射流前的區(qū)域壓強(qiáng)升高,附面層分離,進(jìn)而在上游區(qū)域形成分離激波,并在射流區(qū)域上下游形成回流區(qū)。二次噴射流體與主流相互作用,經(jīng)過(guò)激波后主流流動(dòng)方向會(huì)發(fā)生偏轉(zhuǎn),壁面壓強(qiáng)分布發(fā)生變化,造成噴管排氣流以一定偏轉(zhuǎn)角離開(kāi)噴管,使得出口推力偏斜。在噴管不同位置噴射,即可實(shí)現(xiàn)推力矢量的控制。

        圖1 流體二次噴射物理過(guò)程和流場(chǎng)特征Fig.1 Diagram of the physical process and flow characteristicsof fluid secondary injection

        2 流體二次噴射推力矢量控制技術(shù)研究進(jìn)展

        為利用流體噴射原理進(jìn)行發(fā)動(dòng)機(jī)的推力矢量控制,目前主要提出了渦流閥、激波誘導(dǎo)和喉部噴射等控制技術(shù)。

        2.1 渦流閥

        渦流閥控制技術(shù)通過(guò)切向噴射的控制角動(dòng)量誘導(dǎo)燃?xì)庵髁鳟a(chǎn)生具有壓強(qiáng)梯度的旋轉(zhuǎn),增加主流的流動(dòng)阻力,減小流通面積,從而實(shí)現(xiàn)推力控制。

        該控制技術(shù)最早在20世紀(jì)60年代末,由美國(guó)洛克希德推進(jìn)公司的Nelson等[51]提出,其對(duì)2英寸的難熔金屬渦流閥進(jìn)行了縮比試驗(yàn),并利用10英寸的高密度石墨渦流閥進(jìn)行嚴(yán)酷的燒蝕實(shí)驗(yàn),驗(yàn)證了渦流閥控制技術(shù)的可行性。后來(lái),美國(guó)Bendix研究實(shí)驗(yàn)室的Kasselmann[52]和Blatter[53]研制了大容量的內(nèi)置燃?xì)獍l(fā)生器式串聯(lián)渦流閥(圖2),利用質(zhì)量流量為0.9 kg/s和溫度為815 ℃的燃?xì)忾_(kāi)展了實(shí)驗(yàn)研究,獲得了200∶1的流動(dòng)增益。近年來(lái),美國(guó)威斯康星州立大學(xué)和加拿大肯高迪亞大學(xué)開(kāi)始嘗試?yán)脺u流閥進(jìn)行推力矢量控制,且均開(kāi)展了數(shù)值模擬和實(shí)驗(yàn)研究工作[54-55]。

        文獻(xiàn)[54]在燃燒室切向布置8個(gè)內(nèi)徑25.4 mm和長(zhǎng)度60.3 mm的通道,噴射壓縮氮?dú)獾馁|(zhì)量流量為0.081 kg/s,模擬結(jié)果表明,在噴射速度164 m/s時(shí),旋轉(zhuǎn)噴射壓降為55 kPa,達(dá)到燃燒室壓強(qiáng)的20%。同時(shí),利用PIV測(cè)量手段,獲得了圖3所示的持續(xù)噴射30 s后渦流室流線和不同粒子密度在1.75 s時(shí)刻的圖像。

        圖2 內(nèi)置燃?xì)獍l(fā)生器式串聯(lián)渦流閥裝置Fig.2 Equipment of the staged vortex valve withintegral gas generators

        (a)流線

        (b)粒子圖像圖3 切向噴射渦流室流線和粒子圖像Fig.3 A photo of the pathlines and particular imagesfor tangential injections

        文獻(xiàn)[55]通過(guò)質(zhì)量和能量守恒積分方程及最小壓力準(zhǔn)則,比較分析了兩種不同幾何參數(shù)的渦流室模型和雷諾數(shù)對(duì)流場(chǎng)的影響。結(jié)果表明,壓降系數(shù)隨著面積比和雷諾數(shù)的增大而增大。此外,提出了確定渦流室內(nèi)切向速度和徑向壓力分布的新方法。

        國(guó)內(nèi),西北工業(yè)大學(xué)的魏祥庚等在渦流閥幾何參數(shù)和控制流參數(shù)對(duì)調(diào)節(jié)性能以及推力計(jì)算方法等方面開(kāi)展了大量的研究工作[56-62]。其中,文獻(xiàn)[60]設(shè)計(jì)了長(zhǎng)尾管和環(huán)形燃?xì)獍l(fā)生器集成的渦流閥式變推力原理樣機(jī)(圖4),可實(shí)現(xiàn)推力調(diào)節(jié)比大于壓強(qiáng)調(diào)節(jié)比的工作特性,試驗(yàn)考核推力調(diào)節(jié)比達(dá)9∶1。

        圖4 集成原理樣機(jī)示意圖Fig.4 Scheme of integrated prototype

        2.2 激波誘導(dǎo)

        激波誘導(dǎo)控制技術(shù)是在噴管擴(kuò)張段引入二次射流,誘導(dǎo)燃?xì)庵髁鳟a(chǎn)生斜激波,改變主流方向,從而實(shí)現(xiàn)一定的矢量角偏轉(zhuǎn)。

        1963年,美國(guó)海軍軍械試驗(yàn)站的Green采用水、氟利昂-12、全氟乙烯、四氧化二氮和溴這5種液態(tài)工質(zhì)在擴(kuò)張段不同位置進(jìn)行二次噴射實(shí)驗(yàn),比較分析了側(cè)向力、軸向噴射位置和噴射流量及壓力間的關(guān)系,指出理想噴射工質(zhì)應(yīng)具有低比熱容、低汽化潛熱和高密度等熱物理性質(zhì)[63]。美國(guó)Magna公司的Zeamer選用氟利昂114-B2、四氧化二氮和62%的過(guò)氯酸鍶水溶液作為噴射工質(zhì)。結(jié)果表明,四氧化二氮可獲得最大的側(cè)向比沖(3924 N·s/kg),氟利昂114-B2產(chǎn)生680~1570 N·s/kg的側(cè)向比沖[64]。近期澳大利亞新南威爾士大學(xué)的Neely[65]等設(shè)計(jì)了最大喉部面積20 mm2和擴(kuò)張角13°的噴管,實(shí)現(xiàn)了近5°的矢量角,通過(guò)數(shù)值模擬及實(shí)驗(yàn)研究了流動(dòng)狀態(tài)(圖5)和側(cè)向推力等特性。結(jié)果發(fā)現(xiàn),數(shù)值模擬比實(shí)驗(yàn)獲得的最佳質(zhì)量流率偏高。韓國(guó)安東國(guó)立大學(xué)的Deng等建立理論分析模型,對(duì)從燃燒室引流噴射方式的流動(dòng)特性進(jìn)行研究。結(jié)果發(fā)現(xiàn),隨著噴射位置向上游移動(dòng)流動(dòng)分離點(diǎn)和噴射位置間距逐漸縮小;同時(shí),隨著引射流率增大,邊界層分離點(diǎn)向上游移動(dòng),系統(tǒng)推力比和比沖減小[66]。

        近年來(lái),北京航空航天大學(xué)、國(guó)防科技大學(xué)和西北工業(yè)大學(xué)等國(guó)內(nèi)科研單位通過(guò)對(duì)激波誘導(dǎo)流動(dòng)特性有關(guān)的射流縫、噴射位置、噴嘴幾何結(jié)構(gòu)等參數(shù)進(jìn)行了數(shù)值模擬和實(shí)驗(yàn)研究[67-76]。文獻(xiàn)[70]采用數(shù)值計(jì)算,比較分析了燃?xì)庖龊腿細(xì)舛螄娚鋵?duì)燃燒室穩(wěn)定性和噴管內(nèi)流場(chǎng)的影響。結(jié)果發(fā)現(xiàn),二次噴射工作過(guò)程中燃燒室壓強(qiáng)波動(dòng)很大,燃?xì)馑俣却嬖谝欢ǔ潭鹊拿}動(dòng)。文獻(xiàn)[71-72]選取變量周向角、射流縫距出口截面軸向距離和軸向角,研究了其對(duì)流場(chǎng)性能的影響。落壓比為9及流量比為5%工況下不同周向角噴射的流線分布如圖6所示。

        圖5 不同次流壓強(qiáng)下的實(shí)驗(yàn)紋影圖Fig.5 Experimental schlieren images at differentsecondary total pressures

        圖6 不同周向角下的流線圖Fig.6 Streamline patterns with different circumferential angle

        隨著周向角增大,回流區(qū)、射流角渦和分離渦均逐漸減小,周向角45°能夠?qū)崿F(xiàn)最大的氣動(dòng)矢量角,獲得較好的綜合效果。文獻(xiàn)[74]的研究表明,隨著主流總壓升高,出口激波鏈強(qiáng)度逐漸增強(qiáng),分叉激波鏈結(jié)構(gòu)逐漸拉長(zhǎng)且間距加大,在二次流噴射壓力逐漸增大的情況下,激波誘導(dǎo)分離點(diǎn)逐漸前移,且上壁面分離點(diǎn)后壓力也逐漸增大(圖7)??哲姽こ檀髮W(xué)的宋亞飛等對(duì)擴(kuò)張比為4.713的噴管采用顆粒軌道模型,比較分析了不同粒徑的運(yùn)動(dòng)軌跡和內(nèi)流場(chǎng)參數(shù)分布特征。結(jié)果顯示,粒子直徑越大,二次流中的粒子與擴(kuò)張段的碰撞和流動(dòng)參數(shù)不對(duì)稱性加劇[75]。此外,吳雄等[76]設(shè)計(jì)了燃?xì)舛螄娚涔腆w發(fā)動(dòng)機(jī)試驗(yàn)系統(tǒng),利用臥式六分力試車臺(tái)系統(tǒng)取得試驗(yàn)成功(圖8),獲得了7°矢量角及2366 N·s/kg側(cè)向比沖。

        2.3 喉部噴射

        喉部噴射技術(shù)是指在喉部附近噴射二次流體,通過(guò)二次流的擠壓和增加流動(dòng)阻力形成比幾何喉部減小的氣動(dòng)喉部,如圖9所示。通過(guò)調(diào)控二次流的流量、壓強(qiáng)、工作脈寬等參數(shù),改變主流喉道面積大小及喉部形狀從而實(shí)現(xiàn)推力矢量控制。

        圖7 主流壓力和次流壓力變化時(shí)噴管出口紋影圖Fig.7 Schlieren images of nozzle outflow at various mainstream pressure and secondary injection pressure

        圖8 燃?xì)舛螄娚浒l(fā)動(dòng)機(jī)點(diǎn)火試驗(yàn)Fig.8 Fire test of the hot gas secondary injection motor

        圖9 喉部噴射流場(chǎng)示意圖Fig.9 Diagram of flow field with throat injection

        早在1956年英國(guó)布里斯托爾飛機(jī)公司的Martin[47]就提出了“氣動(dòng)可變噴管”概念,采用“渦片”模型描述噴射流體和主流間的滲流,并假設(shè)“混合”過(guò)程流體成分一致,分析比較了喉部噴射兩股流體的相互作用,能初步確定部分特征設(shè)計(jì)參數(shù),但與實(shí)驗(yàn)結(jié)果存在較大偏差。

        在喉部脈沖噴射方面,美國(guó)洛克希德·馬丁航空公司的Miller等牽頭開(kāi)展了探索性研究[77,78-82]。文獻(xiàn)[78]利用數(shù)值方法,分析了脈沖噴射頻率、馬赫數(shù)和幾何噴射角度等參數(shù)對(duì)噴管扼流性能的影響。研究表明,相比定常噴射脈沖時(shí)均馬赫數(shù)增大,逆流45°噴射能夠獲得最好的扼流性能。文獻(xiàn)[77]在不同噴射工況下,對(duì)喉部附近逆流45°脈沖及穩(wěn)態(tài)噴射進(jìn)行數(shù)值模擬,得到了如圖10所示的激波分布圖,二次噴射形成的壓力脈沖使得下游流場(chǎng)形成一系列渦串,增強(qiáng)了二次流與主流的相互作用,提高了扼流能力。同時(shí),建立了預(yù)估流量系數(shù)的通量函數(shù)模型,分析討論了脈沖噴射對(duì)出口推力的影響。文獻(xiàn)[80]的研究表明,在噴射馬赫數(shù)為2和質(zhì)量流量為10%主流流量時(shí),45°噴射角比30°噴射角獲得的氣動(dòng)喉部面積更小,扼流能力有一定程度提高(圖11),當(dāng)引入18%主流流量的二次流,氣動(dòng)喉部相比幾何喉部可縮小50%。如圖12所示,噴射位置是影響流量系數(shù)和扼流能力的重要因素。文獻(xiàn)[81]利用諧振管方法,將二次脈沖噴射頻率提高到10~40 kHz。

        圖11 不同噴射角的渦流分布圖Fig.11 Vorticity distributions at different injection angle

        圖12 不同噴射位置的馬赫數(shù)分布圖Fig.12 Mach number distribution with differentlocation of injection

        美國(guó)國(guó)家航空航天局蘭利研究中心、韓國(guó)安東國(guó)立大學(xué)和北京航空航天大學(xué)等科研機(jī)構(gòu),在喉部定常噴射方面開(kāi)展了大量的基礎(chǔ)性研究工作[83-96]。文獻(xiàn)[83-84]分別利用理論和實(shí)驗(yàn)手段對(duì)雙喉道在不同落壓比工況下的噴射特性進(jìn)行了研究,在噴管落壓比為4時(shí),推力矢量效率為6.1,推力比達(dá)到0.968,通過(guò)實(shí)驗(yàn)獲得了雙喉道噴管的紋影圖(圖13)。文獻(xiàn)[87]建立了雙喉道噴管二次噴射性能測(cè)試實(shí)驗(yàn)系統(tǒng)(圖14),分析比較了影響噴射性能的周向角、噴射角和空腔長(zhǎng)度等因素。減小空腔長(zhǎng)度,有助于提高推力比和流量系數(shù),但會(huì)使推力矢量效率降低。

        圖13 雙喉道噴管實(shí)驗(yàn)紋影圖Fig.13 Experimental shadowgraph of dual throat nozzle

        圖14 雙喉道噴管二次噴射性能測(cè)試實(shí)驗(yàn)裝置Fig.14 Experimental facility of performance for dual throatnozzle with secondary injection

        文獻(xiàn)[95]搭建了如圖15所示的氣動(dòng)喉部噴管冷流實(shí)驗(yàn)系統(tǒng),以氮?dú)庾鳛閲娚涔べ|(zhì),對(duì)噴嘴面積及數(shù)量的扼流性能和空腔容積與壓強(qiáng)調(diào)節(jié)時(shí)間進(jìn)行了冷流實(shí)驗(yàn),掌握了有效氣動(dòng)喉部面積隨流量比變化的規(guī)律。結(jié)果顯示,氣動(dòng)喉部面積隨二次流與主流流量比增大而減小,流量比不超過(guò)0.4時(shí)具有較好的扼流性能;同時(shí),空腔體積越小,達(dá)到新平衡的壓強(qiáng)調(diào)節(jié)時(shí)間越短。文獻(xiàn)[96]設(shè)計(jì)了主流壓強(qiáng)2 MPa,喉徑9.6 mm,擴(kuò)張比3.17的實(shí)驗(yàn)發(fā)動(dòng)機(jī)和精度1%以內(nèi)的六分力測(cè)試臺(tái)(見(jiàn)圖16),以空氣與水為二次流工質(zhì),分析了不同工質(zhì)、噴射方式及流量下的推力響應(yīng)時(shí)間、扼流性能及推力效率。研究表明,氣體二次噴射的推力性能優(yōu)于液體噴射,但在相同流量比的前提下,液體二次流所需壓比小,且流量比的調(diào)節(jié)范圍更大。同時(shí),喉部和擴(kuò)張段處噴嘴存在相位差時(shí),推力損失較小。

        圖15 氣動(dòng)喉部噴管冷流實(shí)驗(yàn)系統(tǒng)Fig.15 The cold-flow test system for aerodynamicthroat nozzle

        圖16 實(shí)驗(yàn)發(fā)動(dòng)機(jī)和六分力測(cè)試臺(tái)Fig.16 Experimental motor and six-component force tester

        3 結(jié)束語(yǔ)

        由于在提高導(dǎo)彈機(jī)動(dòng)性及突防能力和姿態(tài)軌道控制等方面具有重要應(yīng)用前景,近年來(lái)各國(guó)學(xué)者對(duì)流體二次噴射推力矢量控制技術(shù)領(lǐng)域開(kāi)展了大量的研究工作,能夠?yàn)閷?shí)際工程應(yīng)用提供支持與參考。

        然而,也必須看到,流體二次噴射推力矢量控制技術(shù)在固體火箭發(fā)動(dòng)機(jī)上實(shí)現(xiàn)工程應(yīng)用還存在一定的差距。因此,對(duì)后續(xù)研究工作需要重點(diǎn)關(guān)注的問(wèn)題提出以下幾方面建議:

        (1)開(kāi)展結(jié)合氣動(dòng)喉部與激波誘導(dǎo)同時(shí)實(shí)現(xiàn)推力矢量控制的研究,獲得不同組合方案的調(diào)控規(guī)律,以控制效率和調(diào)節(jié)特性為目標(biāo),兼顧優(yōu)化噴射位置和角度等關(guān)鍵參數(shù)。

        (2)脈沖噴射是目前研究的前沿?zé)狳c(diǎn),可開(kāi)展提高噴射頻率方法、噴注位置及噴嘴結(jié)構(gòu)形式等研究,掌握脈沖噴射的扼流性能、響應(yīng)特性和調(diào)控規(guī)律。

        (3)開(kāi)展惰性工質(zhì)及氧化性工質(zhì)對(duì)二次流噴射性能影響的研究,優(yōu)選最佳二次流工質(zhì)。

        (4)針對(duì)氣動(dòng)喉部噴射方法建立熱試驗(yàn)系統(tǒng),主要考核嚴(yán)酷熱力工況下喉部材料的結(jié)構(gòu)可靠性,掌握二次流噴射下喉部燒蝕特性及規(guī)律。

        (5)對(duì)于渦流閥技術(shù),應(yīng)開(kāi)展減少渦流室凝聚相顆粒沉積和燒蝕方面的研究工作。

        參考文獻(xiàn):

        [1] 侯曉,付鵬,武淵.固體火箭發(fā)動(dòng)機(jī)能量管理技術(shù)及其新進(jìn)展[J].固體火箭技術(shù),2017,40(1):1-6.

        HOU Xiao,FU Peng,WU Yuan.Energy management technology of SRM and its development[J].Journal of Solid Rocket Technology,2017,40(1):1-6.

        [2] Heo J Y,Sung H G.Fluidic thrust vector control of supersonic jet using coflow injection[J].Journal of Propulsion and Power,2012,28(4):858-861.

        [3] Hollstein H J.Jet tab thrust vector control[J].Journal of Spacecraft and Rockets,1965,2(6):927-930.

        [4] Liu F X,Wang L M.Research on the thrust vector control via jet vane inrapid turning of vertical launch[C]// Proceedings of 2nd International Conference on Measurement,Information and Control,16 August 2013,Harbin,China.

        [5] HASTüRK?.A novel electromechanical actuator for missile jet vane thrust control[C]//Proceedings of 2nd International Conference on Advanced Intelligent Mechatronics,7-11 July 2015,Busan,Korea.

        [6] 曹熙煒,劉宇,謝侃,等.氣-粒兩相流對(duì)燃?xì)舛婀ぷ餍阅艿挠绊慬J].航空動(dòng)力學(xué)報(bào),2010,25(10):2539-2362.

        CAO Xiwei,LIU Yu,XIE Kan,et al.Effect of gas-particle two-phase flow on jet vane performance[J].Journal of Aerospace Power,2010,25(10):2539-2362.

        [7] 李軍.推力矢量發(fā)動(dòng)機(jī)燃?xì)舛鏆鈩?dòng)性能分析[J].航空學(xué)報(bào),2006,27(6):1005-1008.

        LI Jun.Analysis of aerodynamic performance of et vane of thrustvector motor[J].Acta Aeronautica Et Ast ronautica Sinica,2006,27(6):1005-1008.

        [8] 任文真,楊姝君,苗昊春,等.燃?xì)舛嫱屏κ噶靠刂萍夹g(shù)在反坦克導(dǎo)彈上的應(yīng)用[J].彈箭與制導(dǎo)學(xué)報(bào),2013,3(4):22-24.

        REN Wenzhen,YANG Shujun,MIAO Haochun,et al.The application of jet vane thrust vector controltechnology in anti-tank missiles[J].Journal of Projectiles,Rockets,Missiles and Guidance,2013,3(4):22-24.

        [9] 崔業(yè)兵,陳雄,周長(zhǎng)省,等.擾流片推力矢量控制系統(tǒng)動(dòng)態(tài)特性研究[J].推進(jìn)技術(shù),2013,34(8):1030-1034.

        CUI Yebing,CHEN Xiong,ZHOU Changsheng,et al.Research on spoiler dynamic characteristic for thrust vector control[J].Journal of Propulsion Technology,2013,34(8):1030-1034.

        [10] Ostrander M J,Bergmans J L,Thomas M E,et al.Pintle motor challenges for tactical missiles[R].AIAA 2000-3310.

        [11] Pinto P C,Ramsel J,Niedermaier H,et al.Control characteristics of a gelled propellant throtteable rocket motor with a pintle nozzle[C]//50th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference,28-30 July 2014,Cleveland,USA.

        [12] Napior J,Garmy V.Controllable solid propulsion for launch vehicle and spacecraft application[C]//57th International Astronautical Congress,2-6 October 2006,Valencia,Spain.

        [13] 王佳興,魏志軍,王寧飛.高燃溫喉栓式變推力固體火箭發(fā)動(dòng)機(jī)試驗(yàn)[J].推進(jìn)技術(shù),2012,33(1):89-92.

        WANG Jiaxing,WEI Zhijun,WANG Ningfei.High burning temperature experiment on pintle controlled solid motor[J].Journal of Propulsion Technology,2012,33(1):89-92.

        [14] 武淵,何國(guó)強(qiáng),孫立剛,等.喉栓式變推力固體火箭發(fā)動(dòng)機(jī)內(nèi)彈道調(diào)節(jié)特性[J].固體火箭技術(shù),2009,32(5):510-513.

        WU Yuan,HE Guoqiang,SUN Ligang,et al.Internal ballistic regulating property of variable thrust pintle SRM [J].Journal of Solid Rocket Technology,2009,32(5):510-513.

        [15] 唐金蘭,宋慧敏,李進(jìn)賢,等.基于動(dòng)網(wǎng)格的喉栓式推力可調(diào)噴管內(nèi)流場(chǎng)數(shù)值模擬[J].固體火箭技術(shù),2014,37(5):634-639.

        TANG Jinlan,SONG Huimin,LI Jinxian,et al.Numerical simulation of pintle-controlled nozzle flow field based on dynamic grid[J].Journal of Solid Rocket Technology,2014,37(5):634-639.

        [16] 李娟,王占利,鄭凱,等.喉栓式推力可調(diào)固體火箭發(fā)動(dòng)機(jī)動(dòng)態(tài)響應(yīng)特性數(shù)值分析[J].固體火箭技術(shù),2009,32(1):48-52.

        LI Juan,WANG Zhanli,ZHENG Kai,et al.Numerical analysis on dynamic response characteristics of pintle-controlled solid rocket motor[J].Journal of Solid Rocket Technology,2009,32(1):48-52.

        [17] 周戰(zhàn)鋒,胡春波,李江,等.變推力固體火箭發(fā)動(dòng)機(jī)喉栓燒蝕試驗(yàn)研究[J].固體火箭技術(shù),2009,32(2):163-166.

        ZHOU Zhanfeng,HU Chunbo,LI Jiang,et al.Experimental investigation of erosion performance of pintle in thrust-controllable SRM[J].Journal of Solid Rocket Technology,2009,32(2):163-166.

        [18] Akiba R,Kohno M,Inohara H,et al.Development of movable nozzle for solid rocket motor[R].AIAA 1983-2285.

        [19] Yoo J S.First korea space launch vehicle kick motor movable nozzle motion[J].Journal of Spacecraft and Rockets,2010,47(1):153-168.

        [20] LUI C Y.Asbestos-free nozzle flexible boot load characterization for the space shuttle solid rocket booster[R].AIAA 1996-2778.

        [21] LIU Y Q,WANG L.Fatigue reliability analysis for flexible nozzle of solid rocket motor[R].AIAA 1999-2651.

        [22] Gaffin R D.Space shuttle solid rocket booster nozzle flexible seal pivot dynamics[R].AIAA 1977-986.

        [23] REN J X,ZHANG X G,YANG J X,et al.Structural analysis and testing of a miniature flexible joint under pressure and vector loading[J].Journal of Mechanical Science and Technolog,2014,28(9):3637-3643.

        [24] ZHANG X G,YU L,REN J X,et al.Solid rocket motor nozzle flexible joint design and fabrication[C]//2nd International Conference on Materials Engineering for Advanced Technologies,27-28 December 2012,Xiamen,China.

        [25] 張丹陽(yáng),夏云峰,李信元,等.基于激光位移傳感器的柔性噴管動(dòng)態(tài)擺心非接觸測(cè)量方法[J].固體火箭技術(shù),2014,37(2):281-284.

        ZHANG Danyang,XIA Yunfeng,LI Xinyuan,et al.Non-contact measuring method for pivot point of omni-axial movable flexible joint nozzle based on the laser displacement sensor[J].Journal of Solid Rocket Technology,2014,37(2):281-284.

        [26] 史宏斌,關(guān)正西,侯曉.控制力作用柔性噴管動(dòng)力響應(yīng)研究[J].航空動(dòng)力學(xué)報(bào),2003,18(4):563-569.

        SHI Hongbin,GUAN Zhengxi,HOU Xiao.Dynamic response study of flexible nozzle in a solid rocket motor[J].Journal of Aerospace Power,2003,18(4):563-569.

        [27] 王周成,李耿,陳妮,等.容壓對(duì)柔性接頭擺動(dòng)密封可靠性的影響[J].固體火箭技術(shù),2016,39(3):337-341.

        WANG Zhoucheng,LI Geng,CHEN Ni,et al.Influence of vessel pressure on flexible joint swing seal reliability[J].Journal of Solid Rocket Technology,2016,39(3):337-341.

        [28] 王超,任軍學(xué),郝文強(qiáng),等.柔性接頭有效擺心漂移特性[J].航空動(dòng)力學(xué)報(bào),2014,29(12):2993-2999.

        WANG Chao,REN Xuejun,HAO Wenqiang,et al.Characteristics of effective pivot point excursion for flexible joint[J].Journal of Aerospace Power,2014,29(12):2993-2999.

        [29] 王春光,史宏斌,王雪坤,等.高壓下噴管柔性接頭擺動(dòng)力矩?cái)?shù)值分析[J].推進(jìn)技術(shù),2011,32(2):202-206.

        WANG Chunguang,SHI Hongbin,WANG Xuekun,et al.Numerical analysis of deflection torque of flexible joint with high pressure[J].Journal of Propulsion Technology,2011,32(2):202-206.

        [30] 曹翠微,陳偉民,蔡體敏,等.固體火箭發(fā)動(dòng)機(jī)柔性接頭的結(jié)構(gòu)分析[J].推進(jìn)技術(shù),2006,27(5):450-454.

        CAO Cuiwei,CHEN Weimin,CAI Timin,et al.Structural analysis on solid rocket motor flexible joint[J].Journal of Propulsion Technology,2006,27(5):450-454.

        [31] 劉勇瓊,尤軍鋒.固體火箭發(fā)動(dòng)機(jī)柔性接頭拉伸載荷下強(qiáng)度分析[J].航空動(dòng)力學(xué)報(bào),2003,18(2):264-268.

        LIU Yongqiong,YOU Junfeng.Strength analysis of SRM flexible joint under tensile load[J].Journal of Aerospace Power,2003,18(2):264-268.

        [32] Liu W Z,Wu J X,Li X Q,et al.Dynamics analysis of joint ball-socket nozzle[C]//2nd International Workshop on Intelligent Systems and Applications,22-23 May 2010,Wuhan,China.

        [33] 劉文芝,武建新,薛俊芳,等.滾動(dòng)球窩噴管動(dòng)態(tài)性能分析[J].推進(jìn)技術(shù),2013,34(2):145-151.

        LIU Wenzhi,WU Jianxin,XUE Junfang,et al.Dynamic characteristics analysis of rolling ball joint socket nozzle[J].Journal of Propulsion Technology,2013,34(2):145-151.

        [34] 劉文芝,薛俊芳,李超超,等.固體火箭發(fā)動(dòng)機(jī)滾動(dòng)球窩噴管擺動(dòng)性能分析[J].機(jī)械工程學(xué)報(bào),2013,49(13):93-99.

        LIU Wenzhi,XUE Junfang,LI Chaochao,et al.Swing performance analysis of rolling ball joint socket nozzle in a certain solid propellant rocket motor[J].Journal of Mechanical Engineering,2013,49(13):93-99.

        [35] 劉文芝,李太安,韋廣梅,等.固體火箭發(fā)動(dòng)機(jī)滾動(dòng)球窩噴管彈塑性摩擦接觸承載性能分析[J].計(jì)算力學(xué)學(xué)報(bào),2013,30(4):580-586.

        LIU Wenzhi,LI Taian,WEI Guangmei,et al.Elasto-plastic friction contact load-bearing performance analysis for rolling ball joint socket nozzle in a certain solid propellant rocket motor[J].Chinese Journal of Computational Mechanics,2013,30(4):580-586.

        [36] 劉文芝,武建新,杜俊碩,等.固體火箭發(fā)動(dòng)機(jī)滾動(dòng)球窩噴管強(qiáng)化接頭材料性能分析[J].固體火箭技術(shù),2012,35(4):522-527.

        LIU Wenzhi,WU Jianxin,DU Junshuo,et al.Material performance analysis for the intensified joint of rolling ball joint socket nozzle in solid propellant rocket motor[J].Journal of Solid Rocket Technology,2012,35(4):522-527.

        [37] 陳剛,白效慧,陳晨.珠承噴管壓痕影響因素及控制的實(shí)驗(yàn)研究[J].固體火箭技術(shù),2012,35(5):619-622.

        CHEN Gang,BAI Xiaohui,CHEN Chen.The experimental method on impression of ball-socket nozzle[J].Journal of Solid Rocket Technology,2012,35(5):619-622.

        [38] 謝永強(qiáng),李舜,周須峰,等.推力矢量技術(shù)在空空導(dǎo)彈上的應(yīng)用分析[J].科學(xué)技術(shù)與工程,2009,9(20):6109-6113.

        XIE Yongqiang,LI Shun,ZHOU Xufeng,et al.The application analysis of thrust vector control systems of air to air missile[J].Science Technology and Engineering,2009,9(20):6109-6113.

        [39] Burroughs S.Status of army pintle technology for controllable thrust propulsion[R].AIAA 2001-3598.

        [40] Caveny L H,Geisler R L,Ellis R A,et al.Solid rocket enabling technologies andmilestones in the united states[J].Journal of Propulsion and Power,2003,19(6):1038-1066.

        [41] Olsen K E,Walsh J J,Thomas E L.Navy Terrier LEAP third-stage propulsion[C]//AIAA Missle Sciences Conference,7-9 November 1994,California,USA.

        [42] Uhrig G.Propulsion of interceptors:masters technologies in europe[C]//3rd AAAF International Conference on Missile Defense,11-13 June 2006,Seville,Spain.

        [43] 王永壽.導(dǎo)彈的推力矢量控制技術(shù)[J].飛航導(dǎo)彈,2005,11(1):54-60.

        WANG Yongshou.The thrust vector control technology of missile[J].Aerodynamic Missile Journal,2005,11(1):54-60.

        [44] 吳雄,張為華,王中偉.氣體二次噴射推力向量控制數(shù)值仿真[J].北京航空航天大學(xué)學(xué)報(bào),2007,33(1):42-45.

        WU Xiong,ZHANG Weihua,WANG Zhongwei.Numerical smiulation of secondary gas injecting for thrust vector control[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(1):42-45.

        [45] 鮑福廷,侯曉.固體火箭發(fā)動(dòng)機(jī)設(shè)計(jì)[M].北京:中國(guó)宇航出版社,2016.

        BAO Futing,HOU Xiao.Design of solid rocket motor[M].Bei Jing:China Aerospace Press,2016.

        [46] Berdoyes M.Thrust vector control by injection of hot gas bled from the chamber hot gas valve[R].AIAA 1989-2867.

        [47] Martin A L.The aerodynamic variable nozzle[J].Journal of Aeronautical Sciences,1956,24(5):357-362.

        [48] Blaszak J J,Fahrenholz F E.Rocket thrust control by gas injection[R].Massachusetts Institute of Technology,1960.

        [49] Gunter F L,Fahrenholz F E.Final report on a study of rocket thrust control by gas injection[R].Massachusetts Institute of Technology,1961.

        [50] Broadwell J E.Analysis of fluid mechanics of secondary injection for thrust vector control[J].AIAA Journal,1963,1(5):1067-1075.

        [51] Nelson C,Roberts R,Fish V.The vortex valve controlled rocket motor[R].AIAA 1968-538.

        [52] Kasselmann J T,Delozier T R.Fluidic valve for warm gas flow control[R].AIAA 1969-118.

        [53] Blatter A,Keranen T W.Research and development of a vortex valve for flow modulation of a 16-percent aluminized 550℉ solid propellant gas[R].AIAA 1969-424.

        [54] Anderson M,Valenzuela R,Rom C,et al.Vortex chamber flow field characterization for gelled propellant combustor applications[R].AIAA 2003-4474.

        [55] Jawarneh A,Vatistas G H.Vortex chamber flows[R].AIAA 2004-5620.

        [56] 魏祥庚,何國(guó)強(qiáng),李江,等.渦流閥幾何參數(shù)對(duì)固體發(fā)動(dòng)機(jī)推力調(diào)節(jié)特性的影響[J].推進(jìn)技術(shù),2007,28(4):352-355.

        WEI Xianggeng,HE Guoqiang,LI Jiang,et al.Effects of vortex valve geometry parameters on SRM thrust modulation[J].Journal of Propulsion Technology,2007,28(4):352-355.

        [57] 魏祥庚,何國(guó)強(qiáng),李江,等.控制流參數(shù)對(duì)渦流閥變推力固體發(fā)動(dòng)機(jī)性能的影響[J].推進(jìn)技術(shù),2009,30(5):571-575.

        WEI Xianggeng,HE Guoqiang,LI Jiang,et al.Effects of control flow parameters on vortex valve SRM thrust modulation[J].Journal of Propulsion Technology,2009,30(5):571-575.

        [58] 余曉京,何國(guó)強(qiáng).渦流閥式變推力發(fā)動(dòng)機(jī)性能影響因素?cái)?shù)值研究[J].西北工大大學(xué)學(xué)報(bào),2009,27(2):178-183.

        YU Xiaojing,HE Guoqiang.Calculating effects of relevant parameters on vortex valve control of variable thrust SRM[J].Journal of Northwestern Polytechnical University,2009,27(2):178-183.

        [59] 魏祥庚,李江,陳劍,等.渦流閥變推力發(fā)動(dòng)機(jī)渦流室渦流結(jié)構(gòu)分析[J].固體火箭技術(shù),2011,34(4):443-447.

        WEI Xianggeng,LI Jiang,CHEN Jian,et al.Analysis of vortex structure in vortex chamber of variable-thrust motor[J].Journal of Solid Rocket Technology,2011,34(4):443-447.

        [60] 魏祥庚,李江,金蔚,等.渦流閥式固體變推力集成原理樣機(jī)設(shè)計(jì)與實(shí)驗(yàn)[J].固體火箭技術(shù),2011,34(6):703-706.

        WEI Xianggeng,LI Jiang,JIN Wei,et al.Design and experiment on integrated principle prototype of a solid propellant rocket motor modulated by a fluidic vortex valve[J].Journal of Solid Rocket Technology,2011,34(6):703-706.

        [61] 金蔚,李江,魏祥庚.渦流閥變推力發(fā)動(dòng)機(jī)推力計(jì)算方法[J].固體火箭技術(shù),2012,35(3):330-334.

        JIN Wei,LI Jiang,WEI Xianggeng.Thrust calculation method of variable thrust SRM controlled by vortex valve[J].Journal of Solid Rocket Technology,2012,35(3):330-334.

        [62] Yu X J,He G Q,Li J,et al.Numerical analysis of flow in variable thrust SRM based on vortex valve[R].AIAA 2007-5801.

        [63] Green C J,Mccullough F.Liquid injection thrust vector control[J].AIAA Journal,1963,1(3):573-578.

        [64] Zeamer R J.Thrust vector control by liquid injection for solid propellant rockets[R].AIAA 1975-1225.

        [65] Neely A J,Gesto F N,Young J.Performance studies of shock vector control fluidic thrust vectoring[R].AIAA 2007-5086.

        [66] Deng R,Kim H D.A study on the thrust vector control using a bypass flow passage[J].Journal of Aerospace Engineering,2014,229(9):1722-1729.

        [67] 王全,王強(qiáng).激波誘導(dǎo)二元矢量噴管內(nèi)流特性數(shù)值研究[J].航空動(dòng)力學(xué)報(bào),2006,21(4):681-685.

        WANG Quan,WANG Qiang.Computational analysis on static internal flow field of shock vector controlled vectoring exhaust nozzles[J].Journal of Aerospace Power,2006,21(4):681-685.

        [68] 金捷,雷金春,廖華琳,等.激波誘導(dǎo)軸對(duì)稱氣動(dòng)矢量噴管壁面靜壓分布的試驗(yàn)[J].航空動(dòng)力學(xué)報(bào),2007,22(10):1700-1703.

        JIN Jie,LEI Jinchun,LIAO Hualin,et al.Experimental investigation of wall static pressure distributions of shock induced axisymmetric fluidic vectoring nozzle[J].Journal of Aerospace Power,2007,22(10):1700-1703.

        [69] 吳雄,張為華,王中偉.氣體二次噴射推力向量控制數(shù)值仿真[J].北京航空航天大學(xué)學(xué)報(bào),2007,33(1):42-45.

        WU Xiong,ZHANG Weihua,WANG Zhongwei.Numerical simulation of secondary gas injecting for thrust-vector-control[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(1):42-45.

        [70] 吳雄,焦紹球,張為華,等.燃?xì)舛螄娚鋵?duì)推力矢量控制發(fā)動(dòng)機(jī)內(nèi)流場(chǎng)的影響[J].南京航空航天大學(xué)學(xué)報(bào),2007,39(6):775-780.

        WU Xiong,JIAO Shaoqiu,ZHANG Weihua,et al.Effects of secondary hot gas injection on inner flow field of thrust vector control motor[J].Journal of Nanjing University of Aeronautics and Astronautics,2007,39(6):775-780.

        [71] 雷金春,金捷.激波誘導(dǎo)軸對(duì)稱氣動(dòng)矢量噴管流場(chǎng)數(shù)值模擬[J].航空動(dòng)力學(xué)報(bào),2008,23(9):1585-1590.

        LEI Jinchun,JIN Jie.Numerical simulation of flow-field for shock induced axisymmetric fluidic vectoring nozzle[J].Journal of Aerospace Power,2008,23(9):1585-1590.

        [72] 雷金春,金捷.射流縫對(duì)激波誘導(dǎo)矢量噴管三維流場(chǎng)影響的數(shù)值模擬[J].推進(jìn)技術(shù),2009,30(1):63-66.

        LEI Jinchun,JIN Jie.Computational investigation of slot geometric structure effects on the flow-field of shock-induced fluidic vectoring nozzle[J].Journal of Propulsion Technology,2009,30(1):63-66.

        [73] 劉輝,邢玉明.激波誘導(dǎo)矢量噴管流場(chǎng)的數(shù)值模擬及試驗(yàn)[J].推進(jìn)技術(shù),2011,32(4):544-549.

        LIU Hui,XING Yuming.Computational and experimental analysis of the flow field in shock vector control nozzle[J].Journal of Propulsion Technology,2011,32(4):544-549.

        [74] 李衛(wèi)強(qiáng),宋文艷,羅飛騰.激波誘導(dǎo)控制推力矢量噴管實(shí)驗(yàn)及數(shù)值計(jì)算[J].航空動(dòng)力學(xué)報(bào),2012,27(7):1571-1578.

        LI Weiqiang,SONG Wenyan,LUO Feiteng.Experimental and numerical investigations of shock induced thrust vectoring nozzle[J].Journal of Aerospace Power,2012,27(7):1571-1578.

        [75] 宋亞飛,高峰,馬岑睿,等.軸對(duì)稱激波誘導(dǎo)矢量噴管三維兩相流數(shù)值模擬[J].推進(jìn)技術(shù),2012,33(2):239-244.

        SONG Yafei,GAO Feng,MA Cenrui,et al.Numerical study on 3-D two-phase flow of axisymmetric shock induction controlled vectoring exhaust nozzle[J].Journal of Propulsion Technology,2012,33(2):239-244.

        [76] 吳雄,焦紹球,杜長(zhǎng)寶,等.固體火箭發(fā)動(dòng)機(jī)燃?xì)舛螄娚渫屏κ噶靠刂圃囼?yàn)研究[J].固體火箭技術(shù),2008,31(5):457-460.

        WU Xiong,JIAO Shaoqiu,DU Changbao,et al.Experimental study on secondary injection thrust vector control for solid rocket motor gas[J].Journal of Solid Rocket Technology,2008,31(5):457-460.

        [77] Domel N D,Baruzzim D,Miller D N.Pulsed injection flow control for throttling in supersonic nozzles-a computational fluid dynamics based performance correlation[R].AIAA 2007-4214.

        [78] Miller D N,Yagle E E,Smith B R.A computational investigation of pulsed injection into a confined,expanding crossflow[R].AIAA 2001-3026.

        [79] Yagle P J,Miller D N,Bender E E,et al.A computational investigation of pulsed ejection[R].AIAA 2002-3278.

        [80] Baruzzim D,Domel N,Miller D N.Pulsed injection flow control for throttling in supersonic nozzles-a computational fluid dynamics design study[R].AIAA 2007-4215.

        [81] Dziuba M,Rossmann T.Active control of a sonic transverse jet in supersonic cross-flow using a powered resonance tube[R].AIAA 2005-0897.

        [82] Bender E,Miller D,Smith B,et al.Simulation of pulsed injection in a crossflow using 3-D unsteady CFD[R].AIAA 2000-2318.

        [83] Deere K A,Berrier B L,Flamm J D,et al.A computational study of a new dual throat fluidic thrust vectoring nozzle concept[R].AIAA 2005-3502.

        [84] Flamm J D,Deere K A,Berrier B L,et al.Experimental study of a dual-throat fluidic thrust vectoring nozzle concept[R].AIAA 2005-3503.

        [85] Lim C M,Kim H D.Studies on thrust vector control using a fluidic counter-flow concept[R].AIAA 2006-5204.

        [86] Deere K A,Flamm J D,Berrier B L,et al.Computational study of an axisymmetric dual throat fluidic thrust vectoring nozzle for a supersonic aircraft application[R].AIAA 2007-5085.

        [87] Flamm J D,Deere K A,Mason M L,et al.Experimental study of an axisymmetric dual throat fluidic thrust vectoring nozzle for supersonic aircraft application[R].AIAA 2007-5084.

        [88] Cuppoletti D,Cutmark E,Hafsteinsson H,et al.Analysis of supersonic jet thrust with fluidic injection[R].AIAA 2014-0523.

        [89] Hafsteinsson H E,Eriksson L E,Andersson N,et al.Near-field and far-fleid spectral analyzis of supersonic jet with and without fluidic injection[R].AIAA 2014-1403.

        [90] 謝侃,劉宇,王一白.固體火箭發(fā)動(dòng)機(jī)環(huán)縫式氣動(dòng)喉部研究[J].航空動(dòng)力學(xué)報(bào),2009,24(11):2631-2636.

        XIE Kan,LIU Yu,WANG Yibai.Investigation of ring aerodynamic throat for solid rocket motor[J].Journal of Aerospace Power,2009,24(11):2631-2636.

        [91] 謝侃,王一白,劉宇.固體火箭發(fā)動(dòng)機(jī)氣動(dòng)喉部的兩相流數(shù)值模擬[J].推進(jìn)技術(shù),2010,31(1):56-60.

        XIE Kan,WANG Yibai,LIU Yu.Simulation for the two-phase flow aerodynamic throat of solid rocket motors[J].Journal of Propulsion Technology,2010,31(1):56-60.

        [92] 謝侃,劉宇,王一白.圓孔噴嘴形成氣動(dòng)喉部的定常數(shù)值研究[J].航空動(dòng)力學(xué)報(bào),2011,26(4):924-930.

        XIE Kan,LIU Yu,WANG Yibai.Steady numerical study of aerodynamic throat formed by round injectors[J].Journal of Aerospace Power,2011,26(4):924-930.

        [93] 謝侃,王一白,劉宇.固體火箭發(fā)動(dòng)機(jī)氣動(dòng)喉部非定常過(guò)程[J].推進(jìn)技術(shù),2011,32(1):103-108.

        XIE Kan,WANG Yibai,LIU Yu.Unsteady process of aerodynamic throat for solid rocket motor[J].Journal of Propulsion Technology,2011,32(1):103-108.

        [94] 張建華,謝侃.流體喉部噴管二次流矢量控制方案[J].北京航空航天大學(xué)學(xué)報(bào),2012,38(3):309-318.

        ZHANG Jianhua,XIE Kan.Secondary flow thrust vector control study for fluidic throat nozzle[J].Journal of Beijing University of Aeronautics and Astronautics,2012,38(3):309-318.

        [95] 謝侃,李博,郭常超,等.固體火箭發(fā)動(dòng)機(jī)氣動(dòng)喉部的推力調(diào)控特性[J].推進(jìn)技術(shù),2015,36(2):194-199.

        XIE Kan,LI Bo,GUO Changchao,et al.Thrust control features for aerodynamic throat for solid rocket motor[J].Journal of Propulsion Technology,2015,36(2):194-199.

        [96] 郭常超,于新宇,李博,等.流體喉部推力調(diào)節(jié)特性實(shí)驗(yàn)[J].航空動(dòng)力學(xué)報(bào),2015,30(4):999-1007.

        GUO Changchao,YU Xinyu,LI Bo,et al.Experimental on thrust adjustment characteristics of fluidic nozzle throat[J].Journal of Aerospace Power,2015,30(4):999-1007.

        猜你喜歡
        喉部激波渦流
        軸排凝汽器喉部設(shè)計(jì)
        基于CFD仿真分析的各缸渦流比一致性研究
        電子喉鏡聯(lián)合窄帶成像技術(shù)對(duì)喉部早期惡性病變的診斷價(jià)值研討
        一種基于聚類分析的二維激波模式識(shí)別算法
        基于HIFiRE-2超燃發(fā)動(dòng)機(jī)內(nèi)流道的激波邊界層干擾分析
        凝汽器喉部流場(chǎng)數(shù)值模擬
        斜激波入射V形鈍前緣溢流口激波干擾研究
        渦流傳感器有限元仿真的研究與實(shí)施
        適于可壓縮多尺度流動(dòng)的緊致型激波捕捉格式
        咽及喉部鱗癌放射治療技術(shù)研究進(jìn)展
        久久久久久人妻无码| 加勒比东京热综合久久| 国产伦奸在线播放免费| 一区二区三区中文字幕p站| 日日麻批免费高清视频| 亚洲成a人v欧美综合天堂| 亚洲国产成人久久一区| 在线观看一区二区女同| 国产我不卡在线观看免费| 小妖精又紧又湿高潮h视频69| 少妇人妻偷人精品视频| 97色伦图片97综合影院久久| 亚洲AV无码日韩一区二区乱| 久久精品熟女亚洲av麻豆永永| 先锋中文字幕在线资源| 男女超爽视频免费播放| 91精品国产免费久久久久久青草| 免费人成网站在线播放| 18禁止进入1000部高潮网站| 夜夜高潮夜夜爽夜夜爱爱| 精品一区二区三区四区少妇 | 精品国产精品久久一区免费式| 亚洲欧美国产精品久久久| 富婆叫鸭一区二区三区| 日本最新一区二区三区视频观看 | 成人性生交大片免费看r| 高跟丝袜一区二区三区| 人妖一区二区三区在线| 久久9精品区-无套内射无码| 国产精品嫩草影院午夜| 亚洲中文字幕乱码在线视频| 色欲av永久无码精品无码蜜桃| 特黄a级毛片免费视频| 午夜在线观看有码无码| 国产三级一区二区三区在线观看| 丰满人妻一区二区三区视频| 老色鬼永久精品网站| 亚洲日日噜噜噜夜夜爽爽| 久久丝袜熟女av一区二区| 天天天天躁天天爱天天碰2018| 免费无码中文字幕A级毛片|