趙 康,張 飛,呂江彥,劉元敏,汪海濱,李 耿
(西安航天動(dòng)力技術(shù)研究所,西安 710025)
固體火箭發(fā)動(dòng)機(jī)因具有可靠性高、維護(hù)方便、體積緊湊和啟動(dòng)迅速等特點(diǎn),而廣泛用于戰(zhàn)略、戰(zhàn)術(shù)導(dǎo)彈武器的核心推進(jìn)系統(tǒng)[1],同時(shí),也日益成為航天器運(yùn)載工具、多級(jí)間分離、飛行姿態(tài)軌道控制和動(dòng)能攔截器(KKV)等動(dòng)力系統(tǒng)的重要組成部分。然而,固體火箭發(fā)動(dòng)機(jī)工作過(guò)程控制調(diào)節(jié)能力較差,其成為制約固體推進(jìn)進(jìn)一步發(fā)展的技術(shù)瓶頸之一。因此,如何有效改善固體火箭發(fā)動(dòng)機(jī)實(shí)時(shí)調(diào)控能力,已成為國(guó)內(nèi)外研究人員長(zhǎng)期高度關(guān)注和致力突破的重要課題。
隨著固體推進(jìn)技術(shù)應(yīng)用領(lǐng)域逐步拓寬及導(dǎo)彈武器系統(tǒng)攻擊精度、機(jī)動(dòng)性和敏捷性需求不斷提高,導(dǎo)彈飛行過(guò)程中快速有效的俯仰、偏航和滾轉(zhuǎn)控制顯得尤為重要,其控制方法主要有空氣動(dòng)力控制(Aerodynamic Lift Control,ATC)和推力矢量控制(Thrust Vector Control,TVC)??諝鈩?dòng)力控制通過(guò)舵翼偏轉(zhuǎn)產(chǎn)生氣動(dòng)升力作為離心力而控制姿態(tài),采用這種方法具有高空推力效率低下和低速飛行回轉(zhuǎn)能力降低等難以克服的缺陷,難以滿足作戰(zhàn)需求,工程實(shí)際應(yīng)用較少。因此,科研人員將工作重點(diǎn)轉(zhuǎn)向推力矢量控制。經(jīng)過(guò)多年不懈努力和技術(shù)積累,探索出多種技術(shù)途徑和設(shè)計(jì)方案,使推力矢量控制技術(shù)獲得長(zhǎng)足發(fā)展,按工作原理一般分為機(jī)械式和流體二次噴射[2]。機(jī)械式推力矢量控制技術(shù)主要有燃?xì)舛鎇3-8]、擾流片[9]、喉栓(或針?biāo)?[10-17]和擺動(dòng)噴管[18-37]等。其中,燃?xì)舛嬖诘谒拇冗M(jìn)近距格斗空空導(dǎo)彈上有所應(yīng)用,如美國(guó)AIM-9X、法國(guó)MICA和北約AIM-132等[38];俄羅斯R-73導(dǎo)彈采用擾流片作為推力矢量控制技術(shù)[9];喉栓控制技術(shù)從20世紀(jì)60年代就開(kāi)始進(jìn)行原理驗(yàn)證研究,并于2002年試驗(yàn)飛行成功[10,12,39];美國(guó)的TSRM(SM-3 III級(jí))[40]、美國(guó)的STAR 12GV(Terrier LEAP III級(jí))[41]和歐洲的Aster15/30[42]等青睞于柔性噴管控制推力矢量。綜合而言,機(jī)械式推力矢量控制技術(shù)因其原理簡(jiǎn)單和實(shí)現(xiàn)相對(duì)容易而應(yīng)用較廣泛,不同類型控制技術(shù)均有各自的優(yōu)缺點(diǎn)。比如,燃?xì)舛娲嬖陧憫?yīng)慢,易受兩相燃?xì)鉀_刷和燒蝕等缺點(diǎn),喉栓方式的主要缺點(diǎn)是燒蝕非常嚴(yán)重,傳動(dòng)伺服機(jī)構(gòu)尺寸和質(zhì)量較大。同時(shí),機(jī)械式推力矢量控制技術(shù)均存在不同程度的軸向推力損失。例如,推力偏轉(zhuǎn)角5°時(shí)燃?xì)舛婧蛿_流片引起的推力損失分別為10%和10%~15%[43],這對(duì)導(dǎo)彈射程造成不可逆影響。與傳統(tǒng)的機(jī)械式控制方法相比,流體二次噴射推力矢量控制技術(shù)具有可靠性高、響應(yīng)迅速、成本低、主動(dòng)熱防護(hù)和推力損失小等特點(diǎn)[2,44-45],促進(jìn)其成為各軍事強(qiáng)國(guó)競(jìng)相作為技術(shù)儲(chǔ)備來(lái)研究發(fā)展的熱點(diǎn)[46],具備很大的發(fā)展?jié)摿蛷V闊的應(yīng)用前景。然而,由于其尚處于研究階段,且涉及激波耦合干擾、氣粒兩相流動(dòng)和推力調(diào)控工作模式等多方面問(wèn)題。為此,各國(guó)學(xué)者先后幾十年在流體二次噴射推力矢量控制領(lǐng)域開(kāi)展了一系列的研究工作,并取得了一定的研究成果。
本文主要針對(duì)有望應(yīng)用于固體火箭發(fā)動(dòng)機(jī)推力矢量控制的流體二次噴射技術(shù)發(fā)展進(jìn)行了歸納和分析,探討了該技術(shù)在固體推進(jìn)領(lǐng)域的發(fā)展趨勢(shì)和建議,以期為后續(xù)研究工作提供一定的借鑒和參考。
流體二次噴射技術(shù)最早可追溯到20世紀(jì)50年代末美國(guó)NASA和空軍共同開(kāi)展的“噴射注入噴管技術(shù)(FLINT)”研究計(jì)劃,主要研究及應(yīng)用對(duì)象為航空發(fā)動(dòng)機(jī)和火箭發(fā)動(dòng)機(jī)[47-49],該技術(shù)的成功應(yīng)用和技術(shù)驗(yàn)證,促進(jìn)了其在固體火箭發(fā)動(dòng)機(jī)上的發(fā)展。
流體二次噴射物理過(guò)程和流場(chǎng)特征[50]如圖1所示。流體二次噴射推力矢量的基本原理是當(dāng)氣體或液體蒸氣通過(guò)外部噴射進(jìn)入超音速主流時(shí),次流迅速膨脹并轉(zhuǎn)折成為附著壁面流動(dòng),對(duì)靠近噴射入口上游的主流產(chǎn)生干擾作用,從而形成弓形激波。造成射流前的區(qū)域壓強(qiáng)升高,附面層分離,進(jìn)而在上游區(qū)域形成分離激波,并在射流區(qū)域上下游形成回流區(qū)。二次噴射流體與主流相互作用,經(jīng)過(guò)激波后主流流動(dòng)方向會(huì)發(fā)生偏轉(zhuǎn),壁面壓強(qiáng)分布發(fā)生變化,造成噴管排氣流以一定偏轉(zhuǎn)角離開(kāi)噴管,使得出口推力偏斜。在噴管不同位置噴射,即可實(shí)現(xiàn)推力矢量的控制。
圖1 流體二次噴射物理過(guò)程和流場(chǎng)特征Fig.1 Diagram of the physical process and flow characteristicsof fluid secondary injection
為利用流體噴射原理進(jìn)行發(fā)動(dòng)機(jī)的推力矢量控制,目前主要提出了渦流閥、激波誘導(dǎo)和喉部噴射等控制技術(shù)。
渦流閥控制技術(shù)通過(guò)切向噴射的控制角動(dòng)量誘導(dǎo)燃?xì)庵髁鳟a(chǎn)生具有壓強(qiáng)梯度的旋轉(zhuǎn),增加主流的流動(dòng)阻力,減小流通面積,從而實(shí)現(xiàn)推力控制。
該控制技術(shù)最早在20世紀(jì)60年代末,由美國(guó)洛克希德推進(jìn)公司的Nelson等[51]提出,其對(duì)2英寸的難熔金屬渦流閥進(jìn)行了縮比試驗(yàn),并利用10英寸的高密度石墨渦流閥進(jìn)行嚴(yán)酷的燒蝕實(shí)驗(yàn),驗(yàn)證了渦流閥控制技術(shù)的可行性。后來(lái),美國(guó)Bendix研究實(shí)驗(yàn)室的Kasselmann[52]和Blatter[53]研制了大容量的內(nèi)置燃?xì)獍l(fā)生器式串聯(lián)渦流閥(圖2),利用質(zhì)量流量為0.9 kg/s和溫度為815 ℃的燃?xì)忾_(kāi)展了實(shí)驗(yàn)研究,獲得了200∶1的流動(dòng)增益。近年來(lái),美國(guó)威斯康星州立大學(xué)和加拿大肯高迪亞大學(xué)開(kāi)始嘗試?yán)脺u流閥進(jìn)行推力矢量控制,且均開(kāi)展了數(shù)值模擬和實(shí)驗(yàn)研究工作[54-55]。
文獻(xiàn)[54]在燃燒室切向布置8個(gè)內(nèi)徑25.4 mm和長(zhǎng)度60.3 mm的通道,噴射壓縮氮?dú)獾馁|(zhì)量流量為0.081 kg/s,模擬結(jié)果表明,在噴射速度164 m/s時(shí),旋轉(zhuǎn)噴射壓降為55 kPa,達(dá)到燃燒室壓強(qiáng)的20%。同時(shí),利用PIV測(cè)量手段,獲得了圖3所示的持續(xù)噴射30 s后渦流室流線和不同粒子密度在1.75 s時(shí)刻的圖像。
圖2 內(nèi)置燃?xì)獍l(fā)生器式串聯(lián)渦流閥裝置Fig.2 Equipment of the staged vortex valve withintegral gas generators
(a)流線
(b)粒子圖像圖3 切向噴射渦流室流線和粒子圖像Fig.3 A photo of the pathlines and particular imagesfor tangential injections
文獻(xiàn)[55]通過(guò)質(zhì)量和能量守恒積分方程及最小壓力準(zhǔn)則,比較分析了兩種不同幾何參數(shù)的渦流室模型和雷諾數(shù)對(duì)流場(chǎng)的影響。結(jié)果表明,壓降系數(shù)隨著面積比和雷諾數(shù)的增大而增大。此外,提出了確定渦流室內(nèi)切向速度和徑向壓力分布的新方法。
國(guó)內(nèi),西北工業(yè)大學(xué)的魏祥庚等在渦流閥幾何參數(shù)和控制流參數(shù)對(duì)調(diào)節(jié)性能以及推力計(jì)算方法等方面開(kāi)展了大量的研究工作[56-62]。其中,文獻(xiàn)[60]設(shè)計(jì)了長(zhǎng)尾管和環(huán)形燃?xì)獍l(fā)生器集成的渦流閥式變推力原理樣機(jī)(圖4),可實(shí)現(xiàn)推力調(diào)節(jié)比大于壓強(qiáng)調(diào)節(jié)比的工作特性,試驗(yàn)考核推力調(diào)節(jié)比達(dá)9∶1。
圖4 集成原理樣機(jī)示意圖Fig.4 Scheme of integrated prototype
激波誘導(dǎo)控制技術(shù)是在噴管擴(kuò)張段引入二次射流,誘導(dǎo)燃?xì)庵髁鳟a(chǎn)生斜激波,改變主流方向,從而實(shí)現(xiàn)一定的矢量角偏轉(zhuǎn)。
1963年,美國(guó)海軍軍械試驗(yàn)站的Green采用水、氟利昂-12、全氟乙烯、四氧化二氮和溴這5種液態(tài)工質(zhì)在擴(kuò)張段不同位置進(jìn)行二次噴射實(shí)驗(yàn),比較分析了側(cè)向力、軸向噴射位置和噴射流量及壓力間的關(guān)系,指出理想噴射工質(zhì)應(yīng)具有低比熱容、低汽化潛熱和高密度等熱物理性質(zhì)[63]。美國(guó)Magna公司的Zeamer選用氟利昂114-B2、四氧化二氮和62%的過(guò)氯酸鍶水溶液作為噴射工質(zhì)。結(jié)果表明,四氧化二氮可獲得最大的側(cè)向比沖(3924 N·s/kg),氟利昂114-B2產(chǎn)生680~1570 N·s/kg的側(cè)向比沖[64]。近期澳大利亞新南威爾士大學(xué)的Neely[65]等設(shè)計(jì)了最大喉部面積20 mm2和擴(kuò)張角13°的噴管,實(shí)現(xiàn)了近5°的矢量角,通過(guò)數(shù)值模擬及實(shí)驗(yàn)研究了流動(dòng)狀態(tài)(圖5)和側(cè)向推力等特性。結(jié)果發(fā)現(xiàn),數(shù)值模擬比實(shí)驗(yàn)獲得的最佳質(zhì)量流率偏高。韓國(guó)安東國(guó)立大學(xué)的Deng等建立理論分析模型,對(duì)從燃燒室引流噴射方式的流動(dòng)特性進(jìn)行研究。結(jié)果發(fā)現(xiàn),隨著噴射位置向上游移動(dòng)流動(dòng)分離點(diǎn)和噴射位置間距逐漸縮小;同時(shí),隨著引射流率增大,邊界層分離點(diǎn)向上游移動(dòng),系統(tǒng)推力比和比沖減小[66]。
近年來(lái),北京航空航天大學(xué)、國(guó)防科技大學(xué)和西北工業(yè)大學(xué)等國(guó)內(nèi)科研單位通過(guò)對(duì)激波誘導(dǎo)流動(dòng)特性有關(guān)的射流縫、噴射位置、噴嘴幾何結(jié)構(gòu)等參數(shù)進(jìn)行了數(shù)值模擬和實(shí)驗(yàn)研究[67-76]。文獻(xiàn)[70]采用數(shù)值計(jì)算,比較分析了燃?xì)庖龊腿細(xì)舛螄娚鋵?duì)燃燒室穩(wěn)定性和噴管內(nèi)流場(chǎng)的影響。結(jié)果發(fā)現(xiàn),二次噴射工作過(guò)程中燃燒室壓強(qiáng)波動(dòng)很大,燃?xì)馑俣却嬖谝欢ǔ潭鹊拿}動(dòng)。文獻(xiàn)[71-72]選取變量周向角、射流縫距出口截面軸向距離和軸向角,研究了其對(duì)流場(chǎng)性能的影響。落壓比為9及流量比為5%工況下不同周向角噴射的流線分布如圖6所示。
圖5 不同次流壓強(qiáng)下的實(shí)驗(yàn)紋影圖Fig.5 Experimental schlieren images at differentsecondary total pressures
圖6 不同周向角下的流線圖Fig.6 Streamline patterns with different circumferential angle
隨著周向角增大,回流區(qū)、射流角渦和分離渦均逐漸減小,周向角45°能夠?qū)崿F(xiàn)最大的氣動(dòng)矢量角,獲得較好的綜合效果。文獻(xiàn)[74]的研究表明,隨著主流總壓升高,出口激波鏈強(qiáng)度逐漸增強(qiáng),分叉激波鏈結(jié)構(gòu)逐漸拉長(zhǎng)且間距加大,在二次流噴射壓力逐漸增大的情況下,激波誘導(dǎo)分離點(diǎn)逐漸前移,且上壁面分離點(diǎn)后壓力也逐漸增大(圖7)??哲姽こ檀髮W(xué)的宋亞飛等對(duì)擴(kuò)張比為4.713的噴管采用顆粒軌道模型,比較分析了不同粒徑的運(yùn)動(dòng)軌跡和內(nèi)流場(chǎng)參數(shù)分布特征。結(jié)果顯示,粒子直徑越大,二次流中的粒子與擴(kuò)張段的碰撞和流動(dòng)參數(shù)不對(duì)稱性加劇[75]。此外,吳雄等[76]設(shè)計(jì)了燃?xì)舛螄娚涔腆w發(fā)動(dòng)機(jī)試驗(yàn)系統(tǒng),利用臥式六分力試車臺(tái)系統(tǒng)取得試驗(yàn)成功(圖8),獲得了7°矢量角及2366 N·s/kg側(cè)向比沖。
喉部噴射技術(shù)是指在喉部附近噴射二次流體,通過(guò)二次流的擠壓和增加流動(dòng)阻力形成比幾何喉部減小的氣動(dòng)喉部,如圖9所示。通過(guò)調(diào)控二次流的流量、壓強(qiáng)、工作脈寬等參數(shù),改變主流喉道面積大小及喉部形狀從而實(shí)現(xiàn)推力矢量控制。
圖7 主流壓力和次流壓力變化時(shí)噴管出口紋影圖Fig.7 Schlieren images of nozzle outflow at various mainstream pressure and secondary injection pressure
圖8 燃?xì)舛螄娚浒l(fā)動(dòng)機(jī)點(diǎn)火試驗(yàn)Fig.8 Fire test of the hot gas secondary injection motor
圖9 喉部噴射流場(chǎng)示意圖Fig.9 Diagram of flow field with throat injection
早在1956年英國(guó)布里斯托爾飛機(jī)公司的Martin[47]就提出了“氣動(dòng)可變噴管”概念,采用“渦片”模型描述噴射流體和主流間的滲流,并假設(shè)“混合”過(guò)程流體成分一致,分析比較了喉部噴射兩股流體的相互作用,能初步確定部分特征設(shè)計(jì)參數(shù),但與實(shí)驗(yàn)結(jié)果存在較大偏差。
在喉部脈沖噴射方面,美國(guó)洛克希德·馬丁航空公司的Miller等牽頭開(kāi)展了探索性研究[77,78-82]。文獻(xiàn)[78]利用數(shù)值方法,分析了脈沖噴射頻率、馬赫數(shù)和幾何噴射角度等參數(shù)對(duì)噴管扼流性能的影響。研究表明,相比定常噴射脈沖時(shí)均馬赫數(shù)增大,逆流45°噴射能夠獲得最好的扼流性能。文獻(xiàn)[77]在不同噴射工況下,對(duì)喉部附近逆流45°脈沖及穩(wěn)態(tài)噴射進(jìn)行數(shù)值模擬,得到了如圖10所示的激波分布圖,二次噴射形成的壓力脈沖使得下游流場(chǎng)形成一系列渦串,增強(qiáng)了二次流與主流的相互作用,提高了扼流能力。同時(shí),建立了預(yù)估流量系數(shù)的通量函數(shù)模型,分析討論了脈沖噴射對(duì)出口推力的影響。文獻(xiàn)[80]的研究表明,在噴射馬赫數(shù)為2和質(zhì)量流量為10%主流流量時(shí),45°噴射角比30°噴射角獲得的氣動(dòng)喉部面積更小,扼流能力有一定程度提高(圖11),當(dāng)引入18%主流流量的二次流,氣動(dòng)喉部相比幾何喉部可縮小50%。如圖12所示,噴射位置是影響流量系數(shù)和扼流能力的重要因素。文獻(xiàn)[81]利用諧振管方法,將二次脈沖噴射頻率提高到10~40 kHz。
圖11 不同噴射角的渦流分布圖Fig.11 Vorticity distributions at different injection angle
圖12 不同噴射位置的馬赫數(shù)分布圖Fig.12 Mach number distribution with differentlocation of injection
美國(guó)國(guó)家航空航天局蘭利研究中心、韓國(guó)安東國(guó)立大學(xué)和北京航空航天大學(xué)等科研機(jī)構(gòu),在喉部定常噴射方面開(kāi)展了大量的基礎(chǔ)性研究工作[83-96]。文獻(xiàn)[83-84]分別利用理論和實(shí)驗(yàn)手段對(duì)雙喉道在不同落壓比工況下的噴射特性進(jìn)行了研究,在噴管落壓比為4時(shí),推力矢量效率為6.1,推力比達(dá)到0.968,通過(guò)實(shí)驗(yàn)獲得了雙喉道噴管的紋影圖(圖13)。文獻(xiàn)[87]建立了雙喉道噴管二次噴射性能測(cè)試實(shí)驗(yàn)系統(tǒng)(圖14),分析比較了影響噴射性能的周向角、噴射角和空腔長(zhǎng)度等因素。減小空腔長(zhǎng)度,有助于提高推力比和流量系數(shù),但會(huì)使推力矢量效率降低。
圖13 雙喉道噴管實(shí)驗(yàn)紋影圖Fig.13 Experimental shadowgraph of dual throat nozzle
圖14 雙喉道噴管二次噴射性能測(cè)試實(shí)驗(yàn)裝置Fig.14 Experimental facility of performance for dual throatnozzle with secondary injection
文獻(xiàn)[95]搭建了如圖15所示的氣動(dòng)喉部噴管冷流實(shí)驗(yàn)系統(tǒng),以氮?dú)庾鳛閲娚涔べ|(zhì),對(duì)噴嘴面積及數(shù)量的扼流性能和空腔容積與壓強(qiáng)調(diào)節(jié)時(shí)間進(jìn)行了冷流實(shí)驗(yàn),掌握了有效氣動(dòng)喉部面積隨流量比變化的規(guī)律。結(jié)果顯示,氣動(dòng)喉部面積隨二次流與主流流量比增大而減小,流量比不超過(guò)0.4時(shí)具有較好的扼流性能;同時(shí),空腔體積越小,達(dá)到新平衡的壓強(qiáng)調(diào)節(jié)時(shí)間越短。文獻(xiàn)[96]設(shè)計(jì)了主流壓強(qiáng)2 MPa,喉徑9.6 mm,擴(kuò)張比3.17的實(shí)驗(yàn)發(fā)動(dòng)機(jī)和精度1%以內(nèi)的六分力測(cè)試臺(tái)(見(jiàn)圖16),以空氣與水為二次流工質(zhì),分析了不同工質(zhì)、噴射方式及流量下的推力響應(yīng)時(shí)間、扼流性能及推力效率。研究表明,氣體二次噴射的推力性能優(yōu)于液體噴射,但在相同流量比的前提下,液體二次流所需壓比小,且流量比的調(diào)節(jié)范圍更大。同時(shí),喉部和擴(kuò)張段處噴嘴存在相位差時(shí),推力損失較小。
圖15 氣動(dòng)喉部噴管冷流實(shí)驗(yàn)系統(tǒng)Fig.15 The cold-flow test system for aerodynamicthroat nozzle
圖16 實(shí)驗(yàn)發(fā)動(dòng)機(jī)和六分力測(cè)試臺(tái)Fig.16 Experimental motor and six-component force tester
由于在提高導(dǎo)彈機(jī)動(dòng)性及突防能力和姿態(tài)軌道控制等方面具有重要應(yīng)用前景,近年來(lái)各國(guó)學(xué)者對(duì)流體二次噴射推力矢量控制技術(shù)領(lǐng)域開(kāi)展了大量的研究工作,能夠?yàn)閷?shí)際工程應(yīng)用提供支持與參考。
然而,也必須看到,流體二次噴射推力矢量控制技術(shù)在固體火箭發(fā)動(dòng)機(jī)上實(shí)現(xiàn)工程應(yīng)用還存在一定的差距。因此,對(duì)后續(xù)研究工作需要重點(diǎn)關(guān)注的問(wèn)題提出以下幾方面建議:
(1)開(kāi)展結(jié)合氣動(dòng)喉部與激波誘導(dǎo)同時(shí)實(shí)現(xiàn)推力矢量控制的研究,獲得不同組合方案的調(diào)控規(guī)律,以控制效率和調(diào)節(jié)特性為目標(biāo),兼顧優(yōu)化噴射位置和角度等關(guān)鍵參數(shù)。
(2)脈沖噴射是目前研究的前沿?zé)狳c(diǎn),可開(kāi)展提高噴射頻率方法、噴注位置及噴嘴結(jié)構(gòu)形式等研究,掌握脈沖噴射的扼流性能、響應(yīng)特性和調(diào)控規(guī)律。
(3)開(kāi)展惰性工質(zhì)及氧化性工質(zhì)對(duì)二次流噴射性能影響的研究,優(yōu)選最佳二次流工質(zhì)。
(4)針對(duì)氣動(dòng)喉部噴射方法建立熱試驗(yàn)系統(tǒng),主要考核嚴(yán)酷熱力工況下喉部材料的結(jié)構(gòu)可靠性,掌握二次流噴射下喉部燒蝕特性及規(guī)律。
(5)對(duì)于渦流閥技術(shù),應(yīng)開(kāi)展減少渦流室凝聚相顆粒沉積和燒蝕方面的研究工作。
參考文獻(xiàn):
[1] 侯曉,付鵬,武淵.固體火箭發(fā)動(dòng)機(jī)能量管理技術(shù)及其新進(jìn)展[J].固體火箭技術(shù),2017,40(1):1-6.
HOU Xiao,FU Peng,WU Yuan.Energy management technology of SRM and its development[J].Journal of Solid Rocket Technology,2017,40(1):1-6.
[2] Heo J Y,Sung H G.Fluidic thrust vector control of supersonic jet using coflow injection[J].Journal of Propulsion and Power,2012,28(4):858-861.
[3] Hollstein H J.Jet tab thrust vector control[J].Journal of Spacecraft and Rockets,1965,2(6):927-930.
[4] Liu F X,Wang L M.Research on the thrust vector control via jet vane inrapid turning of vertical launch[C]// Proceedings of 2nd International Conference on Measurement,Information and Control,16 August 2013,Harbin,China.
[5] HASTüRK?.A novel electromechanical actuator for missile jet vane thrust control[C]//Proceedings of 2nd International Conference on Advanced Intelligent Mechatronics,7-11 July 2015,Busan,Korea.
[6] 曹熙煒,劉宇,謝侃,等.氣-粒兩相流對(duì)燃?xì)舛婀ぷ餍阅艿挠绊慬J].航空動(dòng)力學(xué)報(bào),2010,25(10):2539-2362.
CAO Xiwei,LIU Yu,XIE Kan,et al.Effect of gas-particle two-phase flow on jet vane performance[J].Journal of Aerospace Power,2010,25(10):2539-2362.
[7] 李軍.推力矢量發(fā)動(dòng)機(jī)燃?xì)舛鏆鈩?dòng)性能分析[J].航空學(xué)報(bào),2006,27(6):1005-1008.
LI Jun.Analysis of aerodynamic performance of et vane of thrustvector motor[J].Acta Aeronautica Et Ast ronautica Sinica,2006,27(6):1005-1008.
[8] 任文真,楊姝君,苗昊春,等.燃?xì)舛嫱屏κ噶靠刂萍夹g(shù)在反坦克導(dǎo)彈上的應(yīng)用[J].彈箭與制導(dǎo)學(xué)報(bào),2013,3(4):22-24.
REN Wenzhen,YANG Shujun,MIAO Haochun,et al.The application of jet vane thrust vector controltechnology in anti-tank missiles[J].Journal of Projectiles,Rockets,Missiles and Guidance,2013,3(4):22-24.
[9] 崔業(yè)兵,陳雄,周長(zhǎng)省,等.擾流片推力矢量控制系統(tǒng)動(dòng)態(tài)特性研究[J].推進(jìn)技術(shù),2013,34(8):1030-1034.
CUI Yebing,CHEN Xiong,ZHOU Changsheng,et al.Research on spoiler dynamic characteristic for thrust vector control[J].Journal of Propulsion Technology,2013,34(8):1030-1034.
[10] Ostrander M J,Bergmans J L,Thomas M E,et al.Pintle motor challenges for tactical missiles[R].AIAA 2000-3310.
[11] Pinto P C,Ramsel J,Niedermaier H,et al.Control characteristics of a gelled propellant throtteable rocket motor with a pintle nozzle[C]//50th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference,28-30 July 2014,Cleveland,USA.
[12] Napior J,Garmy V.Controllable solid propulsion for launch vehicle and spacecraft application[C]//57th International Astronautical Congress,2-6 October 2006,Valencia,Spain.
[13] 王佳興,魏志軍,王寧飛.高燃溫喉栓式變推力固體火箭發(fā)動(dòng)機(jī)試驗(yàn)[J].推進(jìn)技術(shù),2012,33(1):89-92.
WANG Jiaxing,WEI Zhijun,WANG Ningfei.High burning temperature experiment on pintle controlled solid motor[J].Journal of Propulsion Technology,2012,33(1):89-92.
[14] 武淵,何國(guó)強(qiáng),孫立剛,等.喉栓式變推力固體火箭發(fā)動(dòng)機(jī)內(nèi)彈道調(diào)節(jié)特性[J].固體火箭技術(shù),2009,32(5):510-513.
WU Yuan,HE Guoqiang,SUN Ligang,et al.Internal ballistic regulating property of variable thrust pintle SRM [J].Journal of Solid Rocket Technology,2009,32(5):510-513.
[15] 唐金蘭,宋慧敏,李進(jìn)賢,等.基于動(dòng)網(wǎng)格的喉栓式推力可調(diào)噴管內(nèi)流場(chǎng)數(shù)值模擬[J].固體火箭技術(shù),2014,37(5):634-639.
TANG Jinlan,SONG Huimin,LI Jinxian,et al.Numerical simulation of pintle-controlled nozzle flow field based on dynamic grid[J].Journal of Solid Rocket Technology,2014,37(5):634-639.
[16] 李娟,王占利,鄭凱,等.喉栓式推力可調(diào)固體火箭發(fā)動(dòng)機(jī)動(dòng)態(tài)響應(yīng)特性數(shù)值分析[J].固體火箭技術(shù),2009,32(1):48-52.
LI Juan,WANG Zhanli,ZHENG Kai,et al.Numerical analysis on dynamic response characteristics of pintle-controlled solid rocket motor[J].Journal of Solid Rocket Technology,2009,32(1):48-52.
[17] 周戰(zhàn)鋒,胡春波,李江,等.變推力固體火箭發(fā)動(dòng)機(jī)喉栓燒蝕試驗(yàn)研究[J].固體火箭技術(shù),2009,32(2):163-166.
ZHOU Zhanfeng,HU Chunbo,LI Jiang,et al.Experimental investigation of erosion performance of pintle in thrust-controllable SRM[J].Journal of Solid Rocket Technology,2009,32(2):163-166.
[18] Akiba R,Kohno M,Inohara H,et al.Development of movable nozzle for solid rocket motor[R].AIAA 1983-2285.
[19] Yoo J S.First korea space launch vehicle kick motor movable nozzle motion[J].Journal of Spacecraft and Rockets,2010,47(1):153-168.
[20] LUI C Y.Asbestos-free nozzle flexible boot load characterization for the space shuttle solid rocket booster[R].AIAA 1996-2778.
[21] LIU Y Q,WANG L.Fatigue reliability analysis for flexible nozzle of solid rocket motor[R].AIAA 1999-2651.
[22] Gaffin R D.Space shuttle solid rocket booster nozzle flexible seal pivot dynamics[R].AIAA 1977-986.
[23] REN J X,ZHANG X G,YANG J X,et al.Structural analysis and testing of a miniature flexible joint under pressure and vector loading[J].Journal of Mechanical Science and Technolog,2014,28(9):3637-3643.
[24] ZHANG X G,YU L,REN J X,et al.Solid rocket motor nozzle flexible joint design and fabrication[C]//2nd International Conference on Materials Engineering for Advanced Technologies,27-28 December 2012,Xiamen,China.
[25] 張丹陽(yáng),夏云峰,李信元,等.基于激光位移傳感器的柔性噴管動(dòng)態(tài)擺心非接觸測(cè)量方法[J].固體火箭技術(shù),2014,37(2):281-284.
ZHANG Danyang,XIA Yunfeng,LI Xinyuan,et al.Non-contact measuring method for pivot point of omni-axial movable flexible joint nozzle based on the laser displacement sensor[J].Journal of Solid Rocket Technology,2014,37(2):281-284.
[26] 史宏斌,關(guān)正西,侯曉.控制力作用柔性噴管動(dòng)力響應(yīng)研究[J].航空動(dòng)力學(xué)報(bào),2003,18(4):563-569.
SHI Hongbin,GUAN Zhengxi,HOU Xiao.Dynamic response study of flexible nozzle in a solid rocket motor[J].Journal of Aerospace Power,2003,18(4):563-569.
[27] 王周成,李耿,陳妮,等.容壓對(duì)柔性接頭擺動(dòng)密封可靠性的影響[J].固體火箭技術(shù),2016,39(3):337-341.
WANG Zhoucheng,LI Geng,CHEN Ni,et al.Influence of vessel pressure on flexible joint swing seal reliability[J].Journal of Solid Rocket Technology,2016,39(3):337-341.
[28] 王超,任軍學(xué),郝文強(qiáng),等.柔性接頭有效擺心漂移特性[J].航空動(dòng)力學(xué)報(bào),2014,29(12):2993-2999.
WANG Chao,REN Xuejun,HAO Wenqiang,et al.Characteristics of effective pivot point excursion for flexible joint[J].Journal of Aerospace Power,2014,29(12):2993-2999.
[29] 王春光,史宏斌,王雪坤,等.高壓下噴管柔性接頭擺動(dòng)力矩?cái)?shù)值分析[J].推進(jìn)技術(shù),2011,32(2):202-206.
WANG Chunguang,SHI Hongbin,WANG Xuekun,et al.Numerical analysis of deflection torque of flexible joint with high pressure[J].Journal of Propulsion Technology,2011,32(2):202-206.
[30] 曹翠微,陳偉民,蔡體敏,等.固體火箭發(fā)動(dòng)機(jī)柔性接頭的結(jié)構(gòu)分析[J].推進(jìn)技術(shù),2006,27(5):450-454.
CAO Cuiwei,CHEN Weimin,CAI Timin,et al.Structural analysis on solid rocket motor flexible joint[J].Journal of Propulsion Technology,2006,27(5):450-454.
[31] 劉勇瓊,尤軍鋒.固體火箭發(fā)動(dòng)機(jī)柔性接頭拉伸載荷下強(qiáng)度分析[J].航空動(dòng)力學(xué)報(bào),2003,18(2):264-268.
LIU Yongqiong,YOU Junfeng.Strength analysis of SRM flexible joint under tensile load[J].Journal of Aerospace Power,2003,18(2):264-268.
[32] Liu W Z,Wu J X,Li X Q,et al.Dynamics analysis of joint ball-socket nozzle[C]//2nd International Workshop on Intelligent Systems and Applications,22-23 May 2010,Wuhan,China.
[33] 劉文芝,武建新,薛俊芳,等.滾動(dòng)球窩噴管動(dòng)態(tài)性能分析[J].推進(jìn)技術(shù),2013,34(2):145-151.
LIU Wenzhi,WU Jianxin,XUE Junfang,et al.Dynamic characteristics analysis of rolling ball joint socket nozzle[J].Journal of Propulsion Technology,2013,34(2):145-151.
[34] 劉文芝,薛俊芳,李超超,等.固體火箭發(fā)動(dòng)機(jī)滾動(dòng)球窩噴管擺動(dòng)性能分析[J].機(jī)械工程學(xué)報(bào),2013,49(13):93-99.
LIU Wenzhi,XUE Junfang,LI Chaochao,et al.Swing performance analysis of rolling ball joint socket nozzle in a certain solid propellant rocket motor[J].Journal of Mechanical Engineering,2013,49(13):93-99.
[35] 劉文芝,李太安,韋廣梅,等.固體火箭發(fā)動(dòng)機(jī)滾動(dòng)球窩噴管彈塑性摩擦接觸承載性能分析[J].計(jì)算力學(xué)學(xué)報(bào),2013,30(4):580-586.
LIU Wenzhi,LI Taian,WEI Guangmei,et al.Elasto-plastic friction contact load-bearing performance analysis for rolling ball joint socket nozzle in a certain solid propellant rocket motor[J].Chinese Journal of Computational Mechanics,2013,30(4):580-586.
[36] 劉文芝,武建新,杜俊碩,等.固體火箭發(fā)動(dòng)機(jī)滾動(dòng)球窩噴管強(qiáng)化接頭材料性能分析[J].固體火箭技術(shù),2012,35(4):522-527.
LIU Wenzhi,WU Jianxin,DU Junshuo,et al.Material performance analysis for the intensified joint of rolling ball joint socket nozzle in solid propellant rocket motor[J].Journal of Solid Rocket Technology,2012,35(4):522-527.
[37] 陳剛,白效慧,陳晨.珠承噴管壓痕影響因素及控制的實(shí)驗(yàn)研究[J].固體火箭技術(shù),2012,35(5):619-622.
CHEN Gang,BAI Xiaohui,CHEN Chen.The experimental method on impression of ball-socket nozzle[J].Journal of Solid Rocket Technology,2012,35(5):619-622.
[38] 謝永強(qiáng),李舜,周須峰,等.推力矢量技術(shù)在空空導(dǎo)彈上的應(yīng)用分析[J].科學(xué)技術(shù)與工程,2009,9(20):6109-6113.
XIE Yongqiang,LI Shun,ZHOU Xufeng,et al.The application analysis of thrust vector control systems of air to air missile[J].Science Technology and Engineering,2009,9(20):6109-6113.
[39] Burroughs S.Status of army pintle technology for controllable thrust propulsion[R].AIAA 2001-3598.
[40] Caveny L H,Geisler R L,Ellis R A,et al.Solid rocket enabling technologies andmilestones in the united states[J].Journal of Propulsion and Power,2003,19(6):1038-1066.
[41] Olsen K E,Walsh J J,Thomas E L.Navy Terrier LEAP third-stage propulsion[C]//AIAA Missle Sciences Conference,7-9 November 1994,California,USA.
[42] Uhrig G.Propulsion of interceptors:masters technologies in europe[C]//3rd AAAF International Conference on Missile Defense,11-13 June 2006,Seville,Spain.
[43] 王永壽.導(dǎo)彈的推力矢量控制技術(shù)[J].飛航導(dǎo)彈,2005,11(1):54-60.
WANG Yongshou.The thrust vector control technology of missile[J].Aerodynamic Missile Journal,2005,11(1):54-60.
[44] 吳雄,張為華,王中偉.氣體二次噴射推力向量控制數(shù)值仿真[J].北京航空航天大學(xué)學(xué)報(bào),2007,33(1):42-45.
WU Xiong,ZHANG Weihua,WANG Zhongwei.Numerical smiulation of secondary gas injecting for thrust vector control[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(1):42-45.
[45] 鮑福廷,侯曉.固體火箭發(fā)動(dòng)機(jī)設(shè)計(jì)[M].北京:中國(guó)宇航出版社,2016.
BAO Futing,HOU Xiao.Design of solid rocket motor[M].Bei Jing:China Aerospace Press,2016.
[46] Berdoyes M.Thrust vector control by injection of hot gas bled from the chamber hot gas valve[R].AIAA 1989-2867.
[47] Martin A L.The aerodynamic variable nozzle[J].Journal of Aeronautical Sciences,1956,24(5):357-362.
[48] Blaszak J J,Fahrenholz F E.Rocket thrust control by gas injection[R].Massachusetts Institute of Technology,1960.
[49] Gunter F L,Fahrenholz F E.Final report on a study of rocket thrust control by gas injection[R].Massachusetts Institute of Technology,1961.
[50] Broadwell J E.Analysis of fluid mechanics of secondary injection for thrust vector control[J].AIAA Journal,1963,1(5):1067-1075.
[51] Nelson C,Roberts R,Fish V.The vortex valve controlled rocket motor[R].AIAA 1968-538.
[52] Kasselmann J T,Delozier T R.Fluidic valve for warm gas flow control[R].AIAA 1969-118.
[53] Blatter A,Keranen T W.Research and development of a vortex valve for flow modulation of a 16-percent aluminized 550℉ solid propellant gas[R].AIAA 1969-424.
[54] Anderson M,Valenzuela R,Rom C,et al.Vortex chamber flow field characterization for gelled propellant combustor applications[R].AIAA 2003-4474.
[55] Jawarneh A,Vatistas G H.Vortex chamber flows[R].AIAA 2004-5620.
[56] 魏祥庚,何國(guó)強(qiáng),李江,等.渦流閥幾何參數(shù)對(duì)固體發(fā)動(dòng)機(jī)推力調(diào)節(jié)特性的影響[J].推進(jìn)技術(shù),2007,28(4):352-355.
WEI Xianggeng,HE Guoqiang,LI Jiang,et al.Effects of vortex valve geometry parameters on SRM thrust modulation[J].Journal of Propulsion Technology,2007,28(4):352-355.
[57] 魏祥庚,何國(guó)強(qiáng),李江,等.控制流參數(shù)對(duì)渦流閥變推力固體發(fā)動(dòng)機(jī)性能的影響[J].推進(jìn)技術(shù),2009,30(5):571-575.
WEI Xianggeng,HE Guoqiang,LI Jiang,et al.Effects of control flow parameters on vortex valve SRM thrust modulation[J].Journal of Propulsion Technology,2009,30(5):571-575.
[58] 余曉京,何國(guó)強(qiáng).渦流閥式變推力發(fā)動(dòng)機(jī)性能影響因素?cái)?shù)值研究[J].西北工大大學(xué)學(xué)報(bào),2009,27(2):178-183.
YU Xiaojing,HE Guoqiang.Calculating effects of relevant parameters on vortex valve control of variable thrust SRM[J].Journal of Northwestern Polytechnical University,2009,27(2):178-183.
[59] 魏祥庚,李江,陳劍,等.渦流閥變推力發(fā)動(dòng)機(jī)渦流室渦流結(jié)構(gòu)分析[J].固體火箭技術(shù),2011,34(4):443-447.
WEI Xianggeng,LI Jiang,CHEN Jian,et al.Analysis of vortex structure in vortex chamber of variable-thrust motor[J].Journal of Solid Rocket Technology,2011,34(4):443-447.
[60] 魏祥庚,李江,金蔚,等.渦流閥式固體變推力集成原理樣機(jī)設(shè)計(jì)與實(shí)驗(yàn)[J].固體火箭技術(shù),2011,34(6):703-706.
WEI Xianggeng,LI Jiang,JIN Wei,et al.Design and experiment on integrated principle prototype of a solid propellant rocket motor modulated by a fluidic vortex valve[J].Journal of Solid Rocket Technology,2011,34(6):703-706.
[61] 金蔚,李江,魏祥庚.渦流閥變推力發(fā)動(dòng)機(jī)推力計(jì)算方法[J].固體火箭技術(shù),2012,35(3):330-334.
JIN Wei,LI Jiang,WEI Xianggeng.Thrust calculation method of variable thrust SRM controlled by vortex valve[J].Journal of Solid Rocket Technology,2012,35(3):330-334.
[62] Yu X J,He G Q,Li J,et al.Numerical analysis of flow in variable thrust SRM based on vortex valve[R].AIAA 2007-5801.
[63] Green C J,Mccullough F.Liquid injection thrust vector control[J].AIAA Journal,1963,1(3):573-578.
[64] Zeamer R J.Thrust vector control by liquid injection for solid propellant rockets[R].AIAA 1975-1225.
[65] Neely A J,Gesto F N,Young J.Performance studies of shock vector control fluidic thrust vectoring[R].AIAA 2007-5086.
[66] Deng R,Kim H D.A study on the thrust vector control using a bypass flow passage[J].Journal of Aerospace Engineering,2014,229(9):1722-1729.
[67] 王全,王強(qiáng).激波誘導(dǎo)二元矢量噴管內(nèi)流特性數(shù)值研究[J].航空動(dòng)力學(xué)報(bào),2006,21(4):681-685.
WANG Quan,WANG Qiang.Computational analysis on static internal flow field of shock vector controlled vectoring exhaust nozzles[J].Journal of Aerospace Power,2006,21(4):681-685.
[68] 金捷,雷金春,廖華琳,等.激波誘導(dǎo)軸對(duì)稱氣動(dòng)矢量噴管壁面靜壓分布的試驗(yàn)[J].航空動(dòng)力學(xué)報(bào),2007,22(10):1700-1703.
JIN Jie,LEI Jinchun,LIAO Hualin,et al.Experimental investigation of wall static pressure distributions of shock induced axisymmetric fluidic vectoring nozzle[J].Journal of Aerospace Power,2007,22(10):1700-1703.
[69] 吳雄,張為華,王中偉.氣體二次噴射推力向量控制數(shù)值仿真[J].北京航空航天大學(xué)學(xué)報(bào),2007,33(1):42-45.
WU Xiong,ZHANG Weihua,WANG Zhongwei.Numerical simulation of secondary gas injecting for thrust-vector-control[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(1):42-45.
[70] 吳雄,焦紹球,張為華,等.燃?xì)舛螄娚鋵?duì)推力矢量控制發(fā)動(dòng)機(jī)內(nèi)流場(chǎng)的影響[J].南京航空航天大學(xué)學(xué)報(bào),2007,39(6):775-780.
WU Xiong,JIAO Shaoqiu,ZHANG Weihua,et al.Effects of secondary hot gas injection on inner flow field of thrust vector control motor[J].Journal of Nanjing University of Aeronautics and Astronautics,2007,39(6):775-780.
[71] 雷金春,金捷.激波誘導(dǎo)軸對(duì)稱氣動(dòng)矢量噴管流場(chǎng)數(shù)值模擬[J].航空動(dòng)力學(xué)報(bào),2008,23(9):1585-1590.
LEI Jinchun,JIN Jie.Numerical simulation of flow-field for shock induced axisymmetric fluidic vectoring nozzle[J].Journal of Aerospace Power,2008,23(9):1585-1590.
[72] 雷金春,金捷.射流縫對(duì)激波誘導(dǎo)矢量噴管三維流場(chǎng)影響的數(shù)值模擬[J].推進(jìn)技術(shù),2009,30(1):63-66.
LEI Jinchun,JIN Jie.Computational investigation of slot geometric structure effects on the flow-field of shock-induced fluidic vectoring nozzle[J].Journal of Propulsion Technology,2009,30(1):63-66.
[73] 劉輝,邢玉明.激波誘導(dǎo)矢量噴管流場(chǎng)的數(shù)值模擬及試驗(yàn)[J].推進(jìn)技術(shù),2011,32(4):544-549.
LIU Hui,XING Yuming.Computational and experimental analysis of the flow field in shock vector control nozzle[J].Journal of Propulsion Technology,2011,32(4):544-549.
[74] 李衛(wèi)強(qiáng),宋文艷,羅飛騰.激波誘導(dǎo)控制推力矢量噴管實(shí)驗(yàn)及數(shù)值計(jì)算[J].航空動(dòng)力學(xué)報(bào),2012,27(7):1571-1578.
LI Weiqiang,SONG Wenyan,LUO Feiteng.Experimental and numerical investigations of shock induced thrust vectoring nozzle[J].Journal of Aerospace Power,2012,27(7):1571-1578.
[75] 宋亞飛,高峰,馬岑睿,等.軸對(duì)稱激波誘導(dǎo)矢量噴管三維兩相流數(shù)值模擬[J].推進(jìn)技術(shù),2012,33(2):239-244.
SONG Yafei,GAO Feng,MA Cenrui,et al.Numerical study on 3-D two-phase flow of axisymmetric shock induction controlled vectoring exhaust nozzle[J].Journal of Propulsion Technology,2012,33(2):239-244.
[76] 吳雄,焦紹球,杜長(zhǎng)寶,等.固體火箭發(fā)動(dòng)機(jī)燃?xì)舛螄娚渫屏κ噶靠刂圃囼?yàn)研究[J].固體火箭技術(shù),2008,31(5):457-460.
WU Xiong,JIAO Shaoqiu,DU Changbao,et al.Experimental study on secondary injection thrust vector control for solid rocket motor gas[J].Journal of Solid Rocket Technology,2008,31(5):457-460.
[77] Domel N D,Baruzzim D,Miller D N.Pulsed injection flow control for throttling in supersonic nozzles-a computational fluid dynamics based performance correlation[R].AIAA 2007-4214.
[78] Miller D N,Yagle E E,Smith B R.A computational investigation of pulsed injection into a confined,expanding crossflow[R].AIAA 2001-3026.
[79] Yagle P J,Miller D N,Bender E E,et al.A computational investigation of pulsed ejection[R].AIAA 2002-3278.
[80] Baruzzim D,Domel N,Miller D N.Pulsed injection flow control for throttling in supersonic nozzles-a computational fluid dynamics design study[R].AIAA 2007-4215.
[81] Dziuba M,Rossmann T.Active control of a sonic transverse jet in supersonic cross-flow using a powered resonance tube[R].AIAA 2005-0897.
[82] Bender E,Miller D,Smith B,et al.Simulation of pulsed injection in a crossflow using 3-D unsteady CFD[R].AIAA 2000-2318.
[83] Deere K A,Berrier B L,Flamm J D,et al.A computational study of a new dual throat fluidic thrust vectoring nozzle concept[R].AIAA 2005-3502.
[84] Flamm J D,Deere K A,Berrier B L,et al.Experimental study of a dual-throat fluidic thrust vectoring nozzle concept[R].AIAA 2005-3503.
[85] Lim C M,Kim H D.Studies on thrust vector control using a fluidic counter-flow concept[R].AIAA 2006-5204.
[86] Deere K A,Flamm J D,Berrier B L,et al.Computational study of an axisymmetric dual throat fluidic thrust vectoring nozzle for a supersonic aircraft application[R].AIAA 2007-5085.
[87] Flamm J D,Deere K A,Mason M L,et al.Experimental study of an axisymmetric dual throat fluidic thrust vectoring nozzle for supersonic aircraft application[R].AIAA 2007-5084.
[88] Cuppoletti D,Cutmark E,Hafsteinsson H,et al.Analysis of supersonic jet thrust with fluidic injection[R].AIAA 2014-0523.
[89] Hafsteinsson H E,Eriksson L E,Andersson N,et al.Near-field and far-fleid spectral analyzis of supersonic jet with and without fluidic injection[R].AIAA 2014-1403.
[90] 謝侃,劉宇,王一白.固體火箭發(fā)動(dòng)機(jī)環(huán)縫式氣動(dòng)喉部研究[J].航空動(dòng)力學(xué)報(bào),2009,24(11):2631-2636.
XIE Kan,LIU Yu,WANG Yibai.Investigation of ring aerodynamic throat for solid rocket motor[J].Journal of Aerospace Power,2009,24(11):2631-2636.
[91] 謝侃,王一白,劉宇.固體火箭發(fā)動(dòng)機(jī)氣動(dòng)喉部的兩相流數(shù)值模擬[J].推進(jìn)技術(shù),2010,31(1):56-60.
XIE Kan,WANG Yibai,LIU Yu.Simulation for the two-phase flow aerodynamic throat of solid rocket motors[J].Journal of Propulsion Technology,2010,31(1):56-60.
[92] 謝侃,劉宇,王一白.圓孔噴嘴形成氣動(dòng)喉部的定常數(shù)值研究[J].航空動(dòng)力學(xué)報(bào),2011,26(4):924-930.
XIE Kan,LIU Yu,WANG Yibai.Steady numerical study of aerodynamic throat formed by round injectors[J].Journal of Aerospace Power,2011,26(4):924-930.
[93] 謝侃,王一白,劉宇.固體火箭發(fā)動(dòng)機(jī)氣動(dòng)喉部非定常過(guò)程[J].推進(jìn)技術(shù),2011,32(1):103-108.
XIE Kan,WANG Yibai,LIU Yu.Unsteady process of aerodynamic throat for solid rocket motor[J].Journal of Propulsion Technology,2011,32(1):103-108.
[94] 張建華,謝侃.流體喉部噴管二次流矢量控制方案[J].北京航空航天大學(xué)學(xué)報(bào),2012,38(3):309-318.
ZHANG Jianhua,XIE Kan.Secondary flow thrust vector control study for fluidic throat nozzle[J].Journal of Beijing University of Aeronautics and Astronautics,2012,38(3):309-318.
[95] 謝侃,李博,郭常超,等.固體火箭發(fā)動(dòng)機(jī)氣動(dòng)喉部的推力調(diào)控特性[J].推進(jìn)技術(shù),2015,36(2):194-199.
XIE Kan,LI Bo,GUO Changchao,et al.Thrust control features for aerodynamic throat for solid rocket motor[J].Journal of Propulsion Technology,2015,36(2):194-199.
[96] 郭常超,于新宇,李博,等.流體喉部推力調(diào)節(jié)特性實(shí)驗(yàn)[J].航空動(dòng)力學(xué)報(bào),2015,30(4):999-1007.
GUO Changchao,YU Xinyu,LI Bo,et al.Experimental on thrust adjustment characteristics of fluidic nozzle throat[J].Journal of Aerospace Power,2015,30(4):999-1007.