謝常寧, 吳 儉▲, 王欣萌, 彭斯聰, 吳 靜, 肖凌慧, 柳 濤, 2, 3△
(南昌大學(xué)第一附屬醫(yī)院 1兒科, 2醫(yī)學(xué)科研中心, 3江西省分子診斷與精準(zhǔn)醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室, 江西 南昌 330006)
圍生期窒息所引起的新生兒缺氧缺血性腦病(neonatal hypoxic-ischemic encephalopathy,NHIE)常并發(fā)多種神經(jīng)系統(tǒng)后遺癥,如腦癱[1],嚴(yán)重危害兒童健康。目前治療手段有限且療效不佳[2-3],因此探求NHIE治療的新途徑迫在眉睫。
海馬是NHIE最常累及的部位,其主要原因有:(1)腦缺血后,腦血流二次重新分配導(dǎo)致海馬梗死;(2)N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA)型谷氨酸受體在海馬CA1區(qū)高度表達(dá),易引起興奮性毒性,使其對(duì)缺氧缺血尤其敏感[4]。海馬CA1區(qū)是海馬神經(jīng)環(huán)路的最后一站,對(duì)維持海馬的正常功能(如學(xué)習(xí)和記憶)具有重要作用[5]。因此,減少缺氧缺血所導(dǎo)致的海馬CA1區(qū)神經(jīng)元損傷是治療NHIE的關(guān)鍵。
抑制性突觸傳遞可拮抗神經(jīng)元NMDA受體激活導(dǎo)致的興奮性毒性,對(duì)局部神經(jīng)環(huán)路的穩(wěn)定具有重要作用。γ-氨基丁酸(γ-aminobutyric acid,GABA)是大腦內(nèi)最主要的抑制性神經(jīng)遞質(zhì),使其信號(hào)增強(qiáng)的藥物,如唑吡坦和氯鎂噻唑等,均被證實(shí)對(duì)缺氧缺血后的神經(jīng)元損傷具有保護(hù)作用[6-7]。催產(chǎn)素(oxytocin)是一種由下丘腦室旁核和視上核的大細(xì)胞所合成的古老的神經(jīng)肽,具有分娩發(fā)動(dòng)和乳汁分泌等作用而被長(zhǎng)期應(yīng)用于臨床。在海馬中,催產(chǎn)素可增強(qiáng)幼年(3~5周齡)大鼠海馬CA1區(qū)椎體神經(jīng)元GABAA受體介導(dǎo)的自發(fā)性抑制性突觸后電流[8]。近年來,研究表明催產(chǎn)素對(duì)多種神經(jīng)系統(tǒng)疾病具有治療作用,如中風(fēng)[9-10]及帕金森病[11]。由于神經(jīng)系統(tǒng)發(fā)育分化的復(fù)雜性,神經(jīng)環(huán)路的結(jié)構(gòu)和功能在圍產(chǎn)期、幼年及成年盡管相互關(guān)聯(lián),但又有各自不同的特點(diǎn)。目前催產(chǎn)素在新生動(dòng)物缺氧缺血性損傷中的作用尚不明確。本研究探討了催產(chǎn)素對(duì)新生大鼠海馬CA1區(qū)神經(jīng)元缺氧缺血性損傷的保護(hù)作用并揭示了其細(xì)胞機(jī)制,為催產(chǎn)素用于臨床治療NHIE提供理論基礎(chǔ)。
本研究的動(dòng)物實(shí)驗(yàn)嚴(yán)格按照《南昌大學(xué)實(shí)驗(yàn)動(dòng)物管理辦法》和《南昌大學(xué)動(dòng)物實(shí)驗(yàn)倫理審查》原則進(jìn)行。健康7~10 d 齡Sprague-Dawley(SD)大鼠,雌雄不限,由江西中醫(yī)藥大學(xué)動(dòng)物中心提供。取8只新生大鼠的海馬腦片(6~8片/只),隨機(jī)分為4個(gè)處理組:對(duì)照(control)組、氧糖剝奪(oxygen-glucose deprivation,OGD) 20 min組、OGD 40 min組和OGD+oxytocin組。OGD 20 min組和OGD+oxytocin組孵育時(shí)間為20 min,OGD 40 min組孵育時(shí)間為40 min。全細(xì)胞膜片鉗記錄另取20只新生大鼠隨機(jī)分為4組,即OGD組、OGD+oxytocin組、OGD+dVOT(催產(chǎn)素受體阻斷劑)+oxytocin組和OGD+bicuculline(GABAA受體阻斷劑)+oxytocin組。
解剖液(即蔗糖高滲人工腦脊液,sucrose-substituted artificial cerebrospinal fluid,s-ACSF)成分為 (mmol/L):240 sucrose、2.5 KCl、3.5 MgCl2、0.5 CaCl2、1.25 NaH2PO4、0.4 ascorbic acid、2 pyruvate和25 NaHCO3;人工腦脊液(artificial cerebrospinal fluid,ACSF)成分為 (mmol/L):117 NaCl、3.6 KCl、1.2 NaH2PO4·2H2O、2.5 CaCl2·2H2O、1.2 MgCl2·6H2O、25 NaHCO3和11 glucose,pH 7.4;鉀電極內(nèi)液成分為(mmol/L):130 K-gluconate、5 KCl、4 Mg-ATP、10 phosphocreatinine、0.5 EGTA、0.3 Li-GTP和10 HEPES,pH 7.3,300 mOsm。催產(chǎn)素(1 μmol/L)、哇巴因(500 μmol/L)和bicuculline(10 μmol/L)購自Sigma;dVOT(1 μmol/L) 購自Bachem;TO-PRO-3 (1∶2 000)購自Invitrogen。
3.1腦片制備 選取7~10 d 齡SD大鼠置于0 ℃冰水混合物中冰凍麻醉,采用2~4 ℃預(yù)充氧(95% O2+5% CO2)的解剖液行心臟灌流后將大鼠斷頭。用VT1000S震動(dòng)切片機(jī)(Leica)進(jìn)行350 μm厚度的腦冠狀切片,后將切片移入32 ℃持續(xù)充氧(95% O2+5% CO2)的ACSF中孵育1 h后移入記錄槽。
3.2制備體外缺血缺氧模型 OGD液是目前應(yīng)用最普遍的用于模擬體外缺氧缺血的液體,其制備方法是將正常ACSF中的葡萄糖用相同摩爾質(zhì)量的蔗糖代替,并充混合氣(95% N2+5% CO2)30 min以排盡溶液中的氧氣。在記錄細(xì)胞的缺氧去極化(anoxic depolarization,AD)時(shí)間時(shí),為加速細(xì)胞死亡,于OGD液中加入鈉-鉀泵抑制劑哇巴因以誘導(dǎo)缺氧缺血所引起的細(xì)胞死亡[12]。
3.3TO-PRO-3染色 上述制備的腦片于ACSF液中恢復(fù)1 h后,將分好組的腦片放入上述4種溶液中進(jìn)行孵育(37 ℃)。隨后將其置于TO-PRO-3溶液中染色20 min(室溫),用ACSF洗去殘余染液。將腦片置于LSM700激光共聚焦顯微鏡(Zeiss)下觀察,激發(fā)光波長(zhǎng)為639 nm,拍照時(shí)各參數(shù)保持一致。用ZEN2010軟件統(tǒng)計(jì)每個(gè)切片CA1區(qū)面積為500 μm×500 μm中TO-PRO-3熒光陽性神經(jīng)元的數(shù)目。
3.4全細(xì)胞膜片鉗技術(shù) 在紅外相差顯微鏡下定位海馬CA1區(qū)椎體神經(jīng)元。記錄電極(1.5 mm,1.12 mm ID; World Precision Instruments)由P-97電極拉制儀(Sutter Instrument)拉制而成,入液電阻為4~6 MΩ。灌流速度為1~3 mL/min。電流鉗模式下記錄缺氧去極化時(shí)間,鉗制電流為0 pA,所有記錄的神經(jīng)元的靜息膜電位低于-45 mV,記錄溫度為32±1 ℃。信號(hào)采集采用EPC-10放大系統(tǒng)(HEAK),分析數(shù)據(jù)用Clamp-Fit軟件。串聯(lián)電阻在20~30 MΩ之間,且在記錄過程中變化<20%。
數(shù)據(jù)分析用SPSS 17.0軟件。所有參數(shù)用均數(shù)±標(biāo)準(zhǔn)誤(mean±SEM)表示,n代表腦切片個(gè)數(shù)(TO-PRO-3染色實(shí)驗(yàn))或神經(jīng)元個(gè)數(shù)(電生理實(shí)驗(yàn))。多組間比較采用單因素方差分析,事后檢驗(yàn)采用 Bonferroni校正檢驗(yàn)法。以P<0.05為有統(tǒng)計(jì)學(xué)意義。
為明確催產(chǎn)素的神經(jīng)保護(hù)作用,我們采用TO-PRO-3染色方法標(biāo)記死亡神經(jīng)元,紅色熒光代表TO-PRO-3熒光所標(biāo)記的死亡神經(jīng)元。根據(jù)之前的研究[13-14],我們選擇催產(chǎn)素濃度為1 μmol/L。結(jié)果顯示,OGD孵育20 min后,海馬CA1區(qū)TO-PRO-3陽性的神經(jīng)元數(shù)目比對(duì)照組增加(P<0.01); OGD 40 min組與OGD 20 min組相比,神經(jīng)元死亡數(shù)量增加差異無統(tǒng)計(jì)學(xué)意義,見圖1。這提示缺氧缺血后20 min神經(jīng)元已發(fā)生嚴(yán)重的不可逆性死亡,因此在缺氧缺血早期對(duì)神經(jīng)元進(jìn)行保護(hù)是十分必要的,接下來的藥物實(shí)驗(yàn)亦以此為時(shí)間點(diǎn)開展進(jìn)一步研究。
Figure 1. The effect of OGD on the death of hippocampal neurons (TO-PRO-3 staining, ×20). DIC: differential interference contrast. Mean±SEM.n=14 in control group;n=9 in OGD 20 min group;n=10 in OGD 40 min group.**P<0.01vscontrol group.
圖1OGD對(duì)海馬神經(jīng)元死亡的影響
在OGD液中加入催產(chǎn)素后,海馬CA1區(qū)TO-PRO-3陽性的神經(jīng)元平均死亡數(shù)量比OGD 20 min組減少(P<0.01),提示催產(chǎn)素可減少新生大鼠海馬CA1區(qū)神經(jīng)元缺氧缺血后的死亡,具有神經(jīng)保護(hù)作用,見圖2。
Figure 2. Oxytocin reduced the death of neurons caused by OGD (TO-PRO-3 staining). DIC: differential interference contrast. Mean±SEM.n=14 in control group;n=9 OGD 20 min group;n=10 OGD+oxytocin group.**P<0.01vscontrol group;##P<0.01vsOGD 20 min group.
圖2催產(chǎn)素干預(yù)減少OGD所致的神經(jīng)元死亡
為明確催產(chǎn)素對(duì)神經(jīng)元缺氧缺血性損傷的保護(hù)作用機(jī)制,我們進(jìn)一步觀察各組神經(jīng)元AD出現(xiàn)的時(shí)間。如圖3所示,OGD組AD出現(xiàn)的時(shí)間是(13.44±1.84) min,相比OGD組,OGD+oxytocin組AD出現(xiàn)的時(shí)間延長(zhǎng)至(23.19±2.04) min (P<0.01),提示催產(chǎn)素可提高海馬神經(jīng)元對(duì)缺氧缺血的耐受能力;OGD+dVOT+oxytocin組AD出現(xiàn)的時(shí)間是(15.49±1.74) min,相比OGD+oxytocin組,AD出現(xiàn)時(shí)間顯著縮短(P<0.05);相比OGD+oxytocin組,OGD+bicuculline+oxytocin組的AD出現(xiàn)時(shí)間[(12.66±2.24) min]也明顯縮短(P<0.01)。以上結(jié)果提示,催產(chǎn)素對(duì)新生大鼠海馬神經(jīng)元缺氧缺血性損傷具有拮抗作用,其作用可被dVOT和bicuculline所抑制,這表明催產(chǎn)素的神經(jīng)保護(hù)作用是通過結(jié)合催產(chǎn)素受體所發(fā)揮,并且與GABAA受體介導(dǎo)的電流有關(guān)。
Figure 3. Oxytocin delayed the onset of anoxic depolarization (AD) of hippocampal CA1 pyramidal neurons. Below the traces, arrows indicated the appearance of AD. In this figure, a bar on top of the trace indicated the perfusion period unless noted elsewhere. A: representative recordings of the AD onset in OGD group (n=9); B: representative recordings of the AD onset in OGD+oxytocin group (n=9); C: representative recordings of the AD onset in OGD+dVOT+oxytocin group (n=11); D: representative recordings of the AD onset in OGD+bicuculline+oxytocin group (n=8); E: summary of the onset of anoxic AD under different conditions. Mean±SEM.*P<0.05,**P<0.01vsOGD+oxytocin group.
圖3催產(chǎn)素對(duì)新生大鼠海馬神經(jīng)元缺氧去極化時(shí)間的影響
新生兒缺氧缺血性腦損傷發(fā)病機(jī)制復(fù)雜,其中興奮性毒性是導(dǎo)致神經(jīng)元死亡的重要原因。缺氧缺血所產(chǎn)生的神經(jīng)元興奮性毒性主要是由于興奮性神經(jīng)遞質(zhì)增強(qiáng)如谷氨酸大量釋放[4]以及抑制性神經(jīng)遞質(zhì)減弱如神經(jīng)元丟失及GABA受體功能障礙[15]。本研究證實(shí)催產(chǎn)素可減少體外缺氧缺血所致的神經(jīng)元死亡,其主要機(jī)制與催產(chǎn)素通過與神經(jīng)元上催產(chǎn)素受體結(jié)合,增加抑制性傳遞,從而消除興奮性毒性有關(guān)。
本實(shí)驗(yàn)TO-PRO-3染色結(jié)果表明,氧糖剝奪20 min導(dǎo)致新生大鼠海馬CA1區(qū)神經(jīng)元死亡數(shù)量顯著增加,與之前報(bào)道[16]基本一致,提示在神經(jīng)元缺氧缺血的早期采取有效的干預(yù)措施是十分有必要的。此外,我們的研究結(jié)果表明,催產(chǎn)素能顯著減少氧糖剝奪20 min導(dǎo)致的神經(jīng)元死亡。
近年來,隨著對(duì)催產(chǎn)素的病理生理功能的深入研究,研究表明催產(chǎn)素對(duì)神經(jīng)元損傷具有保護(hù)作用[9-10],但機(jī)制仍然不明確。為進(jìn)一步探討催產(chǎn)素的神經(jīng)保護(hù)作用機(jī)制,我們研究了催產(chǎn)素對(duì)新生大鼠海馬神經(jīng)元缺氧去極化時(shí)間的影響。缺氧去極化是電生理學(xué)上判斷神經(jīng)元死亡的重要標(biāo)志之一。由于缺氧去極化使神經(jīng)元膜電位迅速去極化至0 mV,鉀離子大量外流及鈉離子和鈣離子內(nèi)流,神經(jīng)元和突觸功能發(fā)生不可逆性損傷[17]。因此,延長(zhǎng)神經(jīng)元缺氧去極化的時(shí)間,可為減少神經(jīng)元的死亡贏得寶貴時(shí)間[18-19]。本研究結(jié)果顯示,催產(chǎn)素顯著延長(zhǎng)了新生大鼠海馬椎體神經(jīng)元缺氧去極化的時(shí)間,這與TO-PRO-3染色的結(jié)果一致。催產(chǎn)素受體在海馬CA1廣泛分布,如19%的GABA能神經(jīng)元表達(dá)催產(chǎn)素受體,而80%以上的椎體神經(jīng)元表達(dá)催產(chǎn)素受體[20]。我們觀察到催產(chǎn)素的保護(hù)作用可被催產(chǎn)素受體阻斷劑dVOT抑制,這表明催產(chǎn)素是通過結(jié)合的海馬神經(jīng)元膜上的催產(chǎn)素受體產(chǎn)生保護(hù)作用。
在海馬中,催產(chǎn)素增強(qiáng)抑制性神經(jīng)傳遞,其機(jī)制是調(diào)控抑制性中間神經(jīng)元,促使GABA釋放增加,激活GABAA受體,增強(qiáng)突觸GABA介導(dǎo)的電流[8, 21]。抑制性神經(jīng)傳遞如GABA可減少神經(jīng)元缺氧缺血后谷氨酸的釋放,從而拮抗缺氧缺血所產(chǎn)生的興奮性毒性[22],因此被認(rèn)為是神經(jīng)元缺氧缺血性損傷的保護(hù)機(jī)制之一。例如,地西泮、唑吡坦及氯鎂噻唑等GABA受體增強(qiáng)劑在動(dòng)物實(shí)驗(yàn)中被證實(shí)具有保護(hù)作用[6-7]。本研究表明,bicuculline阻斷GABAA受體后,催產(chǎn)素并不能延長(zhǎng)AD出現(xiàn)的時(shí)間。因此,我們推測(cè)催產(chǎn)素的對(duì)新生大鼠的神經(jīng)保護(hù)作用主要與GABAA受體介導(dǎo)的突觸后電流增強(qiáng)有關(guān)。Kaneko等[9]研究從分子生物上證實(shí)催產(chǎn)素調(diào)控GABAA受體亞基組成,增強(qiáng)GABAA受體效能,拮抗神經(jīng)元的興奮性毒性,這與我們的研究具有相似性。而Ceanga等[13]和Tyzio等[14]的研究認(rèn)為催產(chǎn)素可以降低胎鼠海馬神經(jīng)元降低鈉-鉀-氯共同轉(zhuǎn)運(yùn)體的活性,促進(jìn)GABA受體轉(zhuǎn)變?yōu)橐种菩訹13-14],我們認(rèn)為這種結(jié)果的差異與實(shí)驗(yàn)動(dòng)物發(fā)育期不同有關(guān)。
綜上所述,催產(chǎn)素對(duì)新生大鼠海馬神經(jīng)元缺氧缺血性損傷具有保護(hù)作用,其機(jī)制是通過結(jié)合催產(chǎn)素受體增強(qiáng)GABA能中間神經(jīng)元的活動(dòng),使GABA釋放,拮抗神經(jīng)元的興奮性毒性,提高催產(chǎn)素對(duì)缺氧缺血的耐受能力。我們的研究將為催產(chǎn)素用于新生兒缺氧缺血性腦病的治療提供新思路。
[參考文獻(xiàn)]
[1] Adhikari S, Rao KS. Neurodevelopmental outcome of term infants with perinatal asphyxia with hypoxic ischemic encephalopathy stage II[J]. Brain Dev, 2017, 39(2):107-111.
[2] Tagin M, Abdel-Hady H, ur Rahman S, et al. Neuroprotection for perinatal hypoxic ischemic encephalopathy in low- and middle-Income Countries[J]. J Pediatr, 2015, 167(1):25-28.
[3] Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis[J]. Lancet, 2015, 385(9966):430-440.
[4] Gee CE, Benquet P, Raineteau O, et al. NMDA receptors and the differential ischemic vulnerability of hippocampal neurons[J]. Eur J Neurosci, 2006, 23(10):2595-2603.
[5] Remondes M, Schuman EM. Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory[J]. Nature, 2004, 431(7009):699-703.
[6] Hiu T, Farzampour Z, Paz JT, et al. Enhanced phasic GABA inhibition during the repair phase of stroke: a novel therapeutic target[J]. Brain, 2016, 139(2):468-480.
[7] Vandevrede L, Tavassoli E, Luo J, et al. Novel analogues of chlormethiazole are neuroprotective in four cellular mo-dels of neurodegeneration by a mechanism with variable dependence on GABAAreceptor potentiation[J]. Br J Pharmacol, 2014, 171(2):389-402.
[8] Zaninetti M, Raggenbass M. Oxytocin receptor agonists enhance inhibitory synaptic transmission in the rat hippocampus by activating interneurons in stratum pyramidale[J]. Eur J Neurosci, 2000, 12(11):3975-3984.
[9] Kaneko Y, Pappas C, Tajiri N, et al. Oxytocin modulates GABAAR subunits to confer neuroprotection in strokeinvitro[J]. Sci Rep, 2016, 6:35659.
[10] Karelina K, Stuller KA, Jarrett B, et al. Oxytocin mediates social neuroprotection after cerebral ischemia[J]. Stroke, 2011, 42(12):3606-3611.
[11] Erbas O, Oltulu F, Taskiran D. Amelioration of rotenone-induced dopaminergic cell death in the striatum by oxytocin treatment[J]. Peptides, 2012, 38(2):312-317.
[12] White SH, Brisson CD, Andrew RD. Examining protection from anoxic depolarization by the drugs dibucaine and carbetapentane using whole cell recording from CA1 neurons[J]. J Neurophysiol, 2012, 107(8):2083-2095.
[13] Ceanga M, Spataru A, Zagrean AM. Oxytocin is neuroprotective against oxygen-glucose deprivation and reoxyge-nation in immature hippocampal cultures[J]. Neurosci Lett, 2010, 477(1):15-18.
[14] Tyzio R, Cossart R, Khalilov I, et al. Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery[J]. Science, 2006, 314(5806):1788-1792.
[15] Almeida-Suhett CP, Prager EM, Pidoplichko V, et al. GABAergic interneuronal loss and reduced inhibitory sy-naptic transmission in the hippocampal CA1 region after mild traumatic brain injury[J]. Exp Neurol, 2015, 273:11-23.
[16] Fernandez-Lopez D, Martinez-Orgado J, Casanova I, et al. Immature rat brain slices exposed to oxygen-glucose deprivation as an in vitro model of neonatal hypoxic-ischemic encephalopathy[J]. J Neurosci Methods, 2005, 145(1-2):205-212.
[17] Tanaka E, Yamamoto S, Kudo Y, et al. Mechanisms underlying the rapid depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neuronsinvitro[J]. J Neurophysiol, 1997, 78(2):891-902.
[18] Somjen GG. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization[J]. Physiol Rev, 2001, 81(3):1065-1096.
[19] 梁華為, 夏 強(qiáng). ROS介導(dǎo)線粒體ATP敏感性鉀通道開放劑對(duì)缺氧腦的保護(hù)作用[J]. 中國(guó)病理生理雜志, 2005, 21(10):2018-2021.
[20] Ripamonti S, Ambrozkiewicz MC, Guzzi F, et al. Tran-sient oxytocin signaling primes the development and function of excitatory hippocampal neurons[J]. Elife, 2017, 6:e22466.
[21] Owen SF, Tuncdemir SN, Bader PL, et al. Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons[J]. Nature, 2013, 500(7463):458-462.
[22] Matsumoto N, Kumamoto E, Furue H, et al. GABA-mediated inhibition of glutamate release during ischemia in substantia gelatinosa of the adult rat[J]. J Neurophysiol, 2003, 89(1):257-264.