潘兵宏,武生權(quán),潘細宏,劉 斌
(1.長安大學(xué)公路學(xué)院,陜西西安 710064;2.中交第一公路勘察設(shè)計研究院有限公司,陜西西安 710075)
環(huán)形平面交叉口是中國常用的一種道路平面交叉形式,它能夠使進入環(huán)島的車輛沿著一定的方向行駛,而不需使用信號燈,有效地減少了行車延誤與沖突次數(shù)。目前中國規(guī)范中對于環(huán)形平面交叉口的一些設(shè)計指標并沒有做出詳細的規(guī)定,在實際設(shè)計過程中,只能依靠工程經(jīng)驗,這樣易導(dǎo)致環(huán)形平面交叉口出入口設(shè)計指標不合理,成為城市道路交通事故的高發(fā)點。
傳統(tǒng)的環(huán)形平面交叉口設(shè)計為了追求對稱美觀的藝術(shù)效果,采用出口道半徑與入口道半徑大致相等的設(shè)計,這樣的設(shè)計存在著較大的弊端:若入口道半徑設(shè)計過大,車輛可以較高的車速進入環(huán)島,易發(fā)生追尾等交通事故;若出口道半徑設(shè)計較小,導(dǎo)致交叉口的通行能力受限且不利于車輛較快地駛出環(huán)道,造成交叉口交通擁堵。
目前,國內(nèi)外關(guān)于環(huán)形平面交叉口的研究主要集中在環(huán)島半徑、環(huán)道寬度、延誤、通行能力等方面[1-2],而對進口道與出口道半徑對環(huán)形平面交叉口通行能力、行車延誤、沖突次數(shù)等指標的研究則相對較少。《城市道路交叉口設(shè)計規(guī)程》(CJJ 152—2010)中也沒有對環(huán)道進出口道半徑做出明確的規(guī)定,僅指出環(huán)道進口道外緣交角圓弧曲線,半徑不應(yīng)大于中心島計算半徑,環(huán)道出口道半徑可大于中心島計算半徑[3]。
故本文擬基于環(huán)形平面交叉口通行能力的應(yīng)用模型,分析環(huán)島半徑與其通行能力之間的相互關(guān)系,研究通行能力最佳時所對應(yīng)的環(huán)島半徑以及環(huán)道的最佳行駛速度,最后由環(huán)道的最佳行駛速度進行反推,得到環(huán)道入口合理半徑的取值;同理由主線的設(shè)計速度得到環(huán)形平面交叉出口處最小半徑的取值,最后采用VISSIM仿真軟件對以上結(jié)果進行仿真驗證。
環(huán)形平面交叉口單位時間內(nèi)能通過的最大車輛數(shù)即為環(huán)形平面交叉口的理想通行能力。目前有關(guān)環(huán)形平面交叉口通行能力的計算模型大致分為以下3類:第1類是以交織理論為基礎(chǔ),以交織段的通行能力作為環(huán)形平面交叉口的通行能力;第2類是在分析大量實測數(shù)據(jù)的基礎(chǔ)上,回歸出環(huán)形平面交叉口入口段通行能力與設(shè)計指標之間的相互關(guān)系;第3類是以間隙接受理論為基礎(chǔ),利用車輛可插入間隙來計算環(huán)形平面交叉口的通行能力。近年來由于車輛性能的顯著提升,環(huán)道寬度的加大使得交織段的長度明顯減小,故不能再用第1類方法來計算環(huán)形平面交叉口的通行能力。
通常情況下環(huán)形平面交叉口的通行能力是用流量表征的,但研究表明,在準飽和狀態(tài)下,環(huán)形平面交叉口的通行能力僅與環(huán)島半徑、環(huán)道的車道數(shù)以及車道寬度這3個條件有關(guān),故當環(huán)形平面交叉口的設(shè)計確定時,其最大通行能力是穩(wěn)定不變的[4]。因此本文以間隙接受理論為基礎(chǔ),結(jié)合中國環(huán)形平面交叉口處實際的交通現(xiàn)狀,提出適用于中國的環(huán)形平面交叉口通行能力的計算模型。
環(huán)形平面交叉口最外側(cè)車道的通行能力為
式中:C0為環(huán)形平面交叉口最外側(cè)車道的通行能力(veh·h-1);R0為環(huán)形平面交叉口中心島的半徑(m);m1為環(huán)形平面交叉口環(huán)道的車道數(shù);b為環(huán)形平面交叉口環(huán)道車道寬度(m)。
環(huán)形平面交叉口內(nèi)側(cè)車道的通行能力為
式中:C1為環(huán)形平面交叉口內(nèi)側(cè)車道的通行能力(veh·h-1);m2為環(huán)形平面交叉口的內(nèi)側(cè)車道數(shù),m2=m1-1。
當環(huán)形平面交叉口的環(huán)道車道有多條時,即該環(huán)形平面交叉口既有內(nèi)側(cè)車道又有最外側(cè)車道時,該環(huán)形平面交叉口通行能力C的計算模型為[4]
環(huán)道每條機動車道的寬度包括基本寬度與加寬寬度2部分,不同的環(huán)島半徑所對應(yīng)的車道寬度如表1所示。
表1 環(huán)道的車道寬度
采用式(1)~(3)可以計算得到不同環(huán)道數(shù)、不同中心島半徑所對應(yīng)的環(huán)形平面交叉口的通行能力,如表2所示。
通過對以上數(shù)據(jù)進行整理分析,可以得到環(huán)形平面交叉口的通行能力與環(huán)島半徑之間的關(guān)系曲線,如圖1所示。
表2 環(huán)形平面交叉口的通行能力
圖1 環(huán)形平面交叉口通行能力
通過對圖1的分析可知:當環(huán)形平面交叉口的車道數(shù)為2時,環(huán)島半徑為30 m左右較為合適,此時環(huán)形平面交叉口的通行能力接近最大;再增大環(huán)島半徑不僅不能顯著提高整個環(huán)形平面交叉口的通行能力,還會提高整個工程的造價,造成城市資源浪費;若環(huán)島半徑小于30 m,交叉口的通行能力則會明顯降低,當交叉口的交通量較大時可能會造成交叉口交通擁堵。同理,當環(huán)形平面交叉口的車道數(shù)為3時,環(huán)島半徑應(yīng)取40 m;車道數(shù)為4時,環(huán)島半徑應(yīng)取50 m。
車輛在環(huán)道的最佳行車速度為
式中:V為環(huán)道的最佳行車速度;ih為環(huán)道橫坡度(%),實際設(shè)計時一般取2.0%;μ為道路的橫向力系數(shù),一般 μ取0.1~0.16,考慮到環(huán)道的車速較低,本文取 μ=0.16。
因此,在實際設(shè)計時為了保證車輛在環(huán)道的行駛速度達到最佳行車速度,必須對環(huán)形平面交叉的出入口平面半徑進行控制,并在入口處圓曲線前端設(shè)置一定長度的減速段,這樣才能保證在交通量較大時環(huán)形平面交叉口的通行能力最佳。
環(huán)形平面交叉入口平面半徑的計算公式為
式中:R1為環(huán)形平面交叉入口處的半徑(m)。
通過以上分析可以得到不同環(huán)道數(shù)所對應(yīng)的最佳環(huán)島半徑、最大通行能力、環(huán)道的最佳行車速度以及入口處平面半徑推薦值,如表3所示。
車輛在加速駛出環(huán)道匯入主路的過程之中,速度逐步增加,故出口的平曲線半徑應(yīng)當由主路的設(shè)計速度決定。
環(huán)形平面交叉出口半徑的計算公式為
表3 環(huán)道入口參數(shù)推薦值
式中:R2為環(huán)形平面交叉出口處半徑(m);V1為主路的設(shè)計速度(km·h-1);μ為道路的橫向力系數(shù),考慮到車輛在駛出環(huán)道時加速行駛的需求,此時取μ=0.1。
由式(6)可以得出主路的設(shè)計速度所對應(yīng)的環(huán)道出口處的平面半徑,如表4所示。實際應(yīng)用時環(huán)道的出口半徑應(yīng)當采用推薦最小半徑,這樣才能滿足行車安全舒適的需求,使得環(huán)形交叉口的通行能力與服務(wù)水平得到顯著改善。
表4 環(huán)道出口處平面半徑的最小值
在環(huán)型平面交叉口通行效率和運行安全方面,國內(nèi)外學(xué)者做了大量的研究,Raffaele Mauro和Federico Branco建立了單入口道的通行能力模型和行車延誤模型來評價交叉口通行效率;Raffaele Mauro和Marco Cattani基于動態(tài)行車和路口用戶行為,提出了環(huán)交口潛在的事故率評價模型,以評價環(huán)交口安全性;《美國道路通行能力手冊》以車輛的平均延誤為指標提出了劃分服務(wù)水平的標準;中國在此基礎(chǔ)之上通過大量的數(shù)據(jù)調(diào)查分析,提出了適應(yīng)于中國道路服務(wù)水平的劃分標準,如表5所示[5]。
表5 中國無信號交叉口服務(wù)水平劃分標準
由于近年來環(huán)形平面交叉口交通量明顯增加,使得其內(nèi)部車輛的運行規(guī)律更加復(fù)雜,尤其是在北京、上海、西安等大城市,環(huán)道車輛基本處于準飽和狀態(tài),車輛之間的沖突次數(shù)增加,發(fā)生交通事故的可能性增大。因此本文在兼顧安全與效率的基礎(chǔ)之上,將行車平均延誤與總沖突次數(shù)作為環(huán)形平面交叉口的評價指標,對以上結(jié)論進行驗證。
運用VISSIM仿真軟件來對環(huán)形平面交叉口的交通狀況進行分析研究,借助仿真得到的環(huán)形平面交叉口車輛的平均延誤和總沖突次數(shù)隨環(huán)道入口半徑的變化關(guān)系,來分析理論研究的合理性。
由于篇幅的限制,本文只列出了相交道路的設(shè)計速度均為60 km·h-1、相交道路為雙向四車道、交叉口內(nèi)環(huán)道為三車道、環(huán)島的半徑為40 m、出口道的半徑為240 m的仿真結(jié)果。設(shè)定本次仿真的暖機時間為600 s,取600~3 600 s的數(shù)據(jù)進行統(tǒng)計分析(開始仿真時系統(tǒng)內(nèi)沒有車輛,應(yīng)該等到系統(tǒng)內(nèi)部車輛的運行穩(wěn)定后再進行統(tǒng)計分析),仿真時路網(wǎng)的具體情況如圖2所示[6-8]。
圖2 環(huán)形平面交叉口仿真實例分析
車輛的平均延誤與總沖突次數(shù)都是通過VISSIM軟件多次仿真得到,將采集到的數(shù)據(jù)進行處理可以得到兩者與環(huán)道入口半徑之間的關(guān)系,如圖3、4所示。
圖3 環(huán)形平面交叉口車輛的平均延誤
通過以上仿真數(shù)據(jù)可以發(fā)現(xiàn),環(huán)形平面交叉口的延誤與沖突數(shù)的變化有以下的規(guī)律。
(1)行車延誤與V/C之間的關(guān)系。當V/C≤0.6時,環(huán)形平面交叉口內(nèi)的交通量比較小,車輛可以自由通行,適當?shù)卦龃蠡驕p小入口半徑對車輛行駛的延誤影響較小;當 V/C≥0.7時,環(huán)形平面交叉口的交通量較大,車輛平均延誤迅速增長,環(huán)道入口平面半徑R為40 m或50 m所產(chǎn)生的延誤較為接近,與其他幾組相比延誤明顯較低。
圖4 環(huán)形平面交叉口車輛總沖突次數(shù)
(2)總沖突次數(shù)與V/C之間的關(guān)系。當V/C≤0.5時,車輛之間的沖突相對較少,車輛可以在環(huán)形平面交叉口內(nèi)自由行駛;當0.6≤V/C≤0.7時,車輛總沖突次數(shù)增長相對較快,車輛之間的運行受到一定的干擾;當V/C≥0.8時,車輛行駛的總沖突次數(shù)已經(jīng)達到一個穩(wěn)定值,此時環(huán)形平面交叉口車輛擁堵嚴重,行車安全隱患較大。
(3)當環(huán)形平面交叉口交通量較大時(V/C≥0.6),若環(huán)形平面交叉入口半徑R為20 m或30 m,將迫使車輛以較低的速度駛?cè)氕h(huán)道,對環(huán)道內(nèi)車輛的運行產(chǎn)生一定的干擾,導(dǎo)致環(huán)道的通行能力降低,行車延誤與車輛的總沖突次數(shù)增加。另外,環(huán)道入口半徑R=50 m與R=40 m所產(chǎn)生的行車延誤較為接近,但前者的沖突次數(shù)較多,可能是由于設(shè)計指標較高導(dǎo)致車輛以較高的車速駛?cè)氕h(huán)道,短時間內(nèi)入環(huán)的車輛數(shù)多于出環(huán)車輛數(shù),從而導(dǎo)致環(huán)形平面交叉口的車輛擁堵較為嚴重。因此,當環(huán)道數(shù)為3時,環(huán)形平面交叉口的入口半徑為40 m較為合適,與理論分析結(jié)果一致。對其他情況進行仿真驗證得到的結(jié)果類似。
本文分析了以往環(huán)形平面交叉口設(shè)計時出入口半徑相等所存在的不足,提出了慢入快出型環(huán)形平面交叉口的概念,即通過減小入口的半徑并且增大出口的半徑,使得車輛的行駛更加安全流暢?;谄渫ㄐ心芰Φ挠嬎隳P头治霏h(huán)形平面交叉口車輛的行駛特性,得出以下幾點結(jié)論。
(1)提出了不同環(huán)道車道數(shù)所對應(yīng)的中心島最佳半徑、環(huán)道進出口平面半徑的建議值,這樣的設(shè)計可以充分發(fā)揮環(huán)形平面交叉口的重要作用,保證交通順暢與行車安全,填補了《城市道路交叉口設(shè)計規(guī)程》中的不足。
(2)若半徑設(shè)計過大,容易導(dǎo)致車輛高速駛?cè)?,造成車輛追尾等交通事故;半徑設(shè)計過小則會使交叉口通行能力受限,造成交通擁堵。
(3)采用VISSIM仿真軟件對其進行驗證,結(jié)果表明在環(huán)島進出口處采用本文推薦值能有效減少行車延誤與車輛沖突次數(shù),保證車輛安全快速的運行。
(4)本文的研究中并沒有對入口減速段以及出口加速段的合理取值進行研究,今后仍需要結(jié)合實例對其長度的取值進行深入分析。
參考文獻:
[1] 付會萍.無信號環(huán)形平面交叉口交通運行狀況評價及改善措施研究[D].西安:長安大學(xué),2013.
[2] 郭瑞軍.基于間隙接受理論的環(huán)形平面交叉口通行能力研究[D].北京:北京交通大學(xué),2013.
[3] 盛 萍,魚 童.環(huán)形平面交叉口設(shè)計理論及其應(yīng)用[J].交通科技,2013,5(3):147-149.
[4] 王瑋琪.北京市環(huán)形平面交叉口通行能力研究[D].北京:北京工業(yè)大學(xué),2013.
[5] 李慶印,孫 鋒.環(huán)形平面交叉口評價指標選取及服務(wù)水平分級[J].公路交通科技,2011,28(8):131-135.
[6] 翟 穎,常玉林.基于Vissim仿真的公路環(huán)形平面交叉口中心島半徑優(yōu)化設(shè)計[J].交通信息與安全,2007,25(4):29-31.
[7] 李 巖.基于Vissim的環(huán)形平面交叉口微觀仿真研究[D].成都:西南交通大學(xué),2014.
[8] 段宇洲,宋現(xiàn)敏,胡宏宇,等.基于VISSIM的雙車道環(huán)形平面交叉口運行特性[J].長安大學(xué)學(xué)報:自然科學(xué)版,2015,35(S1):160-165.