亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        2-一致凸Banach空間的特征不等式*

        2018-04-23 07:27:38李婷婷蘇雅拉圖
        關(guān)鍵詞:雅拉李婷婷凸性

        李婷婷,蘇雅拉圖

        (1. 內(nèi)蒙古師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,內(nèi)蒙古 呼和浩特010022;2. 準(zhǔn)格爾民族小學(xué),內(nèi)蒙古 鄂爾多斯010300)

        In 1936, the concept of a uniformly rotund Banach space was first introduced by Clarkson[1], and this class of Banach spaces is very interesting and has numerous applications. Consequently, some methods were found to investigate the geometry of Banach space (see [1]~[11] ). In 1977, Sullivan[2]introduced the 2-uniformly rotund spaces as a generalization of uniformly rotund Banach spaces.

        In this paper,Xwill denotes a real Banach space andX*will denotes its dual space, symbols

        U(X)={x:x∈X,‖x‖≤1},

        S(X)={x:x∈X,‖x‖=1}

        denote the unit ball and the unit sphere inXrespectively. For arbitrarily real numbersλ1,λ2,λ3,we always letλ1∨λ2∨λ3=max(λ1,λ2,λ3),λ∧λ2∧λ3=min(λ1,λ2,λ3),and for allλ1,λ2,λ3∈[0,1]are always assumed to be such thatλ1+λ2+λ3=1.

        For an arbitrary spaceX,one of the measuring the “2-uniformly ”of the set of three dimensional subspaces is in terms of the real valued modulus of rotundity, i.e. forε>0,

        Where

        A(x1,x2,x3)=

        Banach spaceXis said to be 2-uniformly rotund[2]if for anyε>0,there exists aδ>0, such that forx1,x2,x3∈S(X),if ‖x1+x2+x3‖>3-δ,thenA(x1,x2,x3)<ε.

        In 1989, Zongben Xu and G. F. Roach [3] gave the characteristic inequality in the uniformly rotund Banach spaces as follows:Xis uniformly rotund Banach space if and only if for ?p∈(0,1),there exists a strictly increasing functionδp(λ,μ,·):R+→R+,δp(λ,μ,0)=0, such that

        ‖λx+μy‖p+(‖x‖∨‖y‖)p·

        λ‖x‖p+μ‖y‖p,?x,y∈X

        Where the symbol ‖x‖∨‖y‖means maximum of ‖x‖and ‖y‖, and ?λ,μ∈[0,1] are satisfy thatλ+μ=1.

        The generalization of above characteristic inequality to the 2-uniformly rotund Banach spaces which we shall consider can be motivated by the following restatement of the characteristic inequality in the uniformly rotund Banach spaces:Xis uniformly rotund Banach space if and only if for ?p∈(0,1),there exists a strictly increasing functionδp(λ,μ,·):R+→R+,δp(λ,μ,0)=0, such that

        ‖λx+μy‖p+(‖x‖∨‖y‖)p·

        λ‖x‖p+μ‖y‖p,?x,y∈X

        Where

        Now we give the characteristic inequality in the 2-uniformly rotund Banach spaces as follows:Xis 2-uniformly rotund if and only if for each ?p∈(0,1), there exists a strictly increasing functionδp(λ1,λ2,λ3,·):R+→R+,δp(λ1,λ2,λ3,0)=0,such that

        The characteristic inequality of 2-uniformly rotund Banach spaces.

        Theorem1Xis 2-uniformly rotund if and only if for each ?p∈(0,1), there exists a strictly increasing functionδp(λ1,λ2,λ3,·):R+→R+,δp(λ1,λ2,λ3,0)=0,such that

        (1)

        In order to prove theorem 1,we give two lemmas.

        Lemma1[4]Xis 2-uniformly rotund Banach space if and only ifδX(ε)>0.

        Lemma2 Forx1,x2,x3∈S(X),t1,t2∈(0,1],letε=A(x1,x2,x3)≠0,then

        ‖λ1x1+λ2t1x2+λ3t2x3‖≤

        λ1+λ2t1+λ3t2-3(λ1∧λ2∧λ3)t1t2δX(ε)

        Proof(I) Suppose thatx1,x2,x3are linearly independent and denote byEthe subspace spanned by the elementsx1,x2,x3and the zero element, then the elementλ1x1+λ2t1x2+λ3t2x3belongs toE. Letzbe the intersection point of the vectorλ1x1+λ2t1x2-x3and the rayτ·(λ1x1+λ2t1x2+λ3t2x3) in the subspaceE,whereτ≥0. Then there exist real numbersα,βsuch that

        z=α(λ1x1+λ2t1x2+λ3t2x3),α≥0,

        z=β(λ1x1+λ2t1x2)+(1-β)(λ1x1+

        λ2t1x2+λ3x3), 0≤β≤1

        Sincex1,x2,x3are linearly independent,it follows thatα=1,β=1-t2, and

        ‖λ1x1+λ2t1x2+λ3t2x3‖=

        ‖β(λ1x1+λ2t1x2)+(1-β)·

        (λ1x1+λ2t1x2+λ3x3)‖≤

        (1-t2)λ1+(1-t2)λ2t1+

        t2‖λ1x1+λ2t1x2+λ3x3‖

        Letwbe the intersection point of the rayτ·(λ1x1+λ3x3+λ2t1x2), (whereτ≥0) and the vectorλ1x1+λ3x3-x2.Then there exist real numbersμ,νsuch that

        w=μ(λ1x1+λ3x3+λ2t1x2),μ≥0,

        Sincex1,x2,x3are linearly independent, it follows thatμ=1,ν=1-t1,and

        ‖λ1x1+λ2t1x2+λ3x3‖=

        Therefore

        ‖λ1x1+λ2t1x2+λ3t2x3‖≤(1-t2)λ1+

        (1-t2)λ2t1+t2‖λ1x1+λ2t1x2+λ3x3‖≤

        (1-t2)λ1+(1-t2)λ2t1+(1-t1)t2λ1+

        (1-t1)t2λ3+t1t2‖λ1x1+λ2t1x2+λ3x3‖=

        λ1+λ2t1+λ3t2-t1t2+

        t1t2‖λ1x1+λ2t1x2+λ3x3‖

        We define a function

        where the symbolλ∧μmeans minimum ofλandμwithλ,μ∈[0,1],λ2+μ2≠0,andx,x1,x2∈X. Without loss of generality , we may assume thatλ3=min(λ1,λ2,λ3), then

        f(λ2,λ3,x1,x2-x1,x3-x1)-

        ‖x1+x2+x3‖+3‖x1‖≤

        Moreover, we have

        1-3λ3δX(ε)

        Consequently,

        ‖λ1x1+λ2t1x2+λ3t2x3‖≤

        λ1+λ2t1+λ3t2-3(λ1∧λ2∧λ3)t1t2δX(ε)

        (2)

        (II) Suppose thatx1,x2,x3are linearly dependent. BecauseA(x1,x2,x3)≠0,sox1,x2,x3are not all linearly dependent in pairs.

        Ifλ1x1+λ2t1x2+λ3t2x3=0, then the conclusion is obviously.

        Ifλ1x1+λ2t1x2+λ3t2x3≠0, it is impossible thatλ1x1+λ2t1x2andx3are collinear is simultaneous withλ1x1+λ3t2x3andx2are collinear. Otherwise, there exist real numbers,λ,μsuch that

        λ1x1+λ2t1x2+λx3=0

        (3)

        λ1x1+μx2+λ3t2x3=0

        (4)

        From (3) and (4), we know thatx2andx3are non-collinear, it follows thatλ=λ3t2,μ=λ2t1.This is incompatible withλ1x1+λ2t1x2+λ3t2x3≠0.

        ① Whenλ1x1+λ2t1x2andx3are non-collinear,λ1x1+λ3t2x3andx2are collinear, denote byEthe subspace spanned by the elementsx1,x2,x3and the zero element, then the elementλ1x1+λ2t1x2+λ3t2x3belongs toE. Letzbe the intersection point of the vectorλ1x1+λ2t1x2-x3and the rayτ·(λ1x1+λ2t1x2+λ3t2x3) in the subspaceE, whereτ≥0. Then there exist real numbersα,βsuch that

        z=α(λ1x1+λ2t1x2+λ3t2x3),α≥0

        (5)

        z=β(λ1x1+λ2t1x2)+(1-β)·

        (λ1x1+λ2t1x2+λ3x3),0≤β≤1

        (6)

        (6)×α-(5), we have

        αz-z=α(λ1x1+λ2t1x2+(1-β)λ3x3)-

        α(λ1x1+λ2t1x2+λ3t2x3)=α(1-β-t2)λ3x3

        Sincezandx3are linearly independent , it follows thatα=1,β=1-t2, and

        ‖λ1x1+λ2t1x2+λ3t2x3‖=

        ‖β(λ1x1+λ2t1x2)+

        (1-β)(λ1x1+λ2t1x2+λ3x3)‖≤

        (1-t2)λ1+(1-t2)λ2t1+

        t2‖λ1x1+λ2t1x2+λ3x3‖

        Fromλ1x1+λ3t2x3andx2are collinear, we know thatλ1x1+λ3x3andx2are non-collinear.

        Letwbe the intersection point of the rayτ·(λ1x1+λ3x3+λ2t1x2), (whereτ≥0) and the vectorλ1x1+λ3x3-x2.Then there exist real numbersμ,νsuch that

        w=μ(λ1x1+λ3x3+λ2t1x2),μ≥0

        (7)

        w=ν(λ1x1+λ3x3)+

        (8)

        (8)×μ-(7), we have

        μw-w=μ(λ1x1+λ3x3+(1-ν)λ2x2)-

        μ(λ1x1+λ3x3+λ2t1x2)=μ(1-ν-t1)λ2x2

        Sincex2andware linearly independent, it follows thatμ=1,ν=1-t1,and

        ‖λ1x1+λ2t1x2+λ3x3‖=

        Therefore

        (1-t2)(λ1+λ2t1)+

        (9)

        By (2) we know that

        (10)

        Combining (9)and(10), we have

        λ1+λ2t1+λ3t2-3(λ1∧λ2∧λ3)δX(ε)

        ② Whenλ1x1+λ2t1x2andx3are collinear,λ1x1+λ3t2x3andx2are collinear, we can prove it greatly similar to ①.

        ③ Whenλ1x1+λ2t1x2andx3are non-collinear,λ1x1+λ3t2x3andx2are non-collinear,from the process of proving (I) ,it follows that

        ‖λ1x1+λ2t1x2+λ3t2x3‖≤(1-t2)λ1+

        (1-t2)λ2t1+t2‖λ1x1+λ2t1x2+λ3x3‖

        Now we divide two possible cases:

        ‖λ1x1+λ2t1x2+λ3t2x3‖≤(1-t2)λ1+

        (1-t2)λ2t1+t2‖λ1x1+λ2t1x2+λ3x3‖=

        (1-t2)λ1+(1-t2)λ2t1+t2(λ2-λ2t1)=

        λ1+λ2t1+λ3t2-2λ2t1t2-(λ1+λ3-λ2)t2≤

        λ1+λ2t1+λ3t2-2λ2t1t2-(λ1+λ3-λ2)t1t2=

        λ1+λ2t1+λ3t2-t1t2≤

        λ1+λ2t1+λ3t2-t1t2δX(ε)≤

        λ1+λ2t1+λ3t2-3(λ1∧λ2∧λ3)t1t2δX(ε)

        Which implies that

        Thus, applying Lemma 1, we know thatXis 2-uniformly rotund Banach space.

        Conversely, suppose thatXis a 2-uniformly rotund Banach space. We shall construct a functionδp(λ1,λ2,λ3,ε), so that the inequality (1) is fulfilled. For this purpose, we first define a function

        where

        Now we show the following inequality:

        ‖λ1x1+λ2x2+λ3x3‖p+φp(λ1,λ2,λ3,ε)≤

        λ1‖x1‖p+λ2‖x2‖p+λ3‖x3‖p

        with the functionδp(λ1,λ2,λ3,ε)holds for every ?x1∈S(X),x2,x3∈U(X).

        Let

        ‖x1‖=1,‖x2‖=t1,

        and consider the functiongdefined by

        g(t,t′)=

        λ1+λ2tp+λ3t′p-(λ1+λ2t+λ3t′-

        0≤t,t′≤1

        From Lemma 2, we have

        λ1‖x1‖p+λ2‖x2‖p+

        λ3‖x3‖p-‖λ1x1+λ2x2+λ3x3‖

        (11)

        In what follows, we will divide four possible cases which complete the steps of proving theorem 1.

        Let

        then

        (λ1+λ2t1+λ3t2)p≥

        and

        Because

        (λ1+λ2t1+λ3t2)p≥

        Indeed,

        It follows that

        Because the functionδX(ε) is strictly increasing inε,so we have

        (λ1+λ2t1+λ3t2-

        From

        Hence

        Hence

        (λ1+λ2t1+λ3t2)p≥

        and

        From

        Hence

        (λ1+λ2t1+λ3t2)p≥

        Hence

        Combining these inequalities with (11), we have that

        ‖λ1x1+λ2x2+λ3x3‖p+φp(λ1,λ2,λ3,ε)≤

        λ1‖x1‖p+λ2‖x2‖p+λ3‖x3‖p

        for

        ?x1∈S(X) andx2,x3∈U(X)

        Let

        δp(λ1,λ2,λ3,ε)=

        min{φp(λ1,λ2,λ3,ε),

        φp(λ2,λ1,λ3,ε),φp(λ3,λ2,λ1,ε)}

        then ,for eachp∈(0,1),there exists a strictly increasing functionδp(λ1,λ2,λ3,·):R+→R+,

        δp(λ1,λ2,λ3,0)=0,such that

        參考文獻(xiàn):

        [1] CLARKSON J A. Uniformly convex spaces [J]. Trans Amer Math Soc, 1936, 40: 396-414.

        [2] SULLIVAN F. A generalization of uniformly rotund Banach spaces [J]. Canad J Math, 1979,31: 628-636.

        [3] XU Z B, ROACH G F. Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces [J]. J Math Anal Appl, 1991, 157: 189-210.

        [4] YU X T. Geometric theory of Banach space [D]. Shanghai: East China Normal University, 1984.

        [5] GEREMA R, SULLIVAN F. Multi-dimensional volumes and moduli of convexity in Banach spaces [J]. Ann Math Pure Appl, 1981,127: 231-251.

        [6] KIRK W A, SIMS B. Handbook of metric fixed point theory [M]. Dordrecht:Kluwer Acad Publ, 2001.

        [7] MITRINOVIC D S, PEUCARIC J E, FINK A M. Classical and new inequalities in analysis [M]. Dordrecht: Kluwer Acad Publ, 1993.

        [8] 黎永錦,林潔珠. 連續(xù)線性泛函與Banach 空間的凸性[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版),2006, 45(1): 17-19.

        LI Y J, LIN J Z. Bilinear continuous functional and convexity of Banach spaces [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2006, 45(1): 17-19.

        [9] 華柳斌,黎永錦. 2-賦范空間和擬Banach 空間中的華羅庚不等式[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版),2009, 48(3): 13-15.

        HUA L B, LI Y J. Hua Lo-Keng inequality in 2-normed spaces and quasi-Banach spaces [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2009, 48(3): 13-15.

        [10] 黎永錦,舒小保.k-弱凸性與k-弱光滑性[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版),2002, 41(5): 8-10.

        LI Y J, SHU X B.k-weakly convex andk-weakly smooth [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2002, 41(5): 8-10.

        [11] 冼軍,黎永錦,趙志紅. 中點(diǎn)局部k-一致凸性和φ-直和[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版), 2005, 44(6):1-4.

        XIAN J, LI Y J, ZHAO Z H. Midpoint locallyk-uniform convexity andφ-direct sum [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2005, 44(6):1-4.

        猜你喜歡
        雅拉李婷婷凸性
        李婷婷油畫(huà)作品
        大眾文藝(2023年12期)2023-07-25 14:17:32
        SOLO理論下的高中數(shù)學(xué)教學(xué)分析
        A Class of Rumor Spreading Models with Population Dynamics?
        長(zhǎng)江藝苑 李婷婷《玉女潭寫(xiě)生》國(guó)畫(huà)
        論納·賽西雅拉圖教授的史詩(shī)研究
        網(wǎng)祭
        新方向“雅拉”復(fù)合肥效果出眾
        国产无套中出学生姝| 香蕉亚洲欧洲在线一区| 免费在线av一区二区| 亚洲高清三区二区一区 | 国产精品无码久久久久成人影院| 国产黄页网站在线观看免费视频| 亚洲精品一区二区三区播放| 一区二区三区视频亚洲| 67194熟妇人妻欧美日韩| 国产精品丝袜黑色高跟鞋| 精品久久免费一区二区三区四区 | 中文字幕乱伦视频| 亚洲五月激情综合图片区| 亚洲精品中文字幕乱码3| 天天躁夜夜躁狠狠是什么心态| 末发育娇小性色xxxxx视频| 在线观看国产精品91| 开心五月激情五月天天五月五月天| 久久99精品久久久久久噜噜| 亚洲欧美日韩国产精品专区| 在线偷窥制服另类| 美女脱了内裤洗澡视频| 天堂新版在线资源| 日日摸夜夜添夜夜添一区二区| 一区二区中文字幕蜜桃 | 亚洲av无码精品蜜桃| 99精品成人片免费毛片无码| 美腿丝袜网址亚洲av| 欧洲乱码伦视频免费| www插插插无码免费视频网站| 亚洲在战AV极品无码| 亚洲av男人的天堂一区| 伊人久久大香线蕉av网禁呦| 亚洲AV永久无码精品导航| 中文字幕一区二区三区6| 无码无套少妇毛多18pxxxx| 久久国产精品波多野结衣av| 午夜精品一区二区三区av免费| 人妻夜夜爽天天爽三区丁香花| 九月婷婷人人澡人人添人人爽| 大陆啪啪福利视频|