冉偉,張瑾,張新,藺松波, 孫曉玲*
?
茶尺蠖幼蟲取食提高茶樹兒茶素代謝響應(yīng)強(qiáng)度
冉偉1,2,張瑾1,2,張新1,2,藺松波1,2, 孫曉玲1,2*
1. 中國(guó)農(nóng)業(yè)科學(xué)院茶葉研究所,浙江 杭州 310008; 2. 農(nóng)業(yè)部茶樹生物學(xué)與資源利用重點(diǎn)實(shí)驗(yàn)室,浙江 杭州 310008
研究了茶尺蠖幼蟲為害茶樹葉片對(duì)兒茶素合成途徑的影響。采用3齡茶尺蠖幼蟲取食茶樹新梢芽下第二葉,測(cè)定了兒茶素合成相關(guān)基因的表達(dá)水平和兒茶素含量。研究結(jié)果表明,與對(duì)照相比,茶尺蠖幼蟲為害后3、6、12?h顯著誘導(dǎo)了基因的相對(duì)表達(dá)水平,且在為害后3?h和12?h達(dá)到了極顯著差異。基因在茶尺蠖為害后6?h和12?h,與對(duì)照具有顯著差異。茶尺蠖幼蟲為害后24?h顯著誘導(dǎo)了沒(méi)食子酸、沒(méi)食子兒茶素、表兒茶素、表沒(méi)食子兒茶素沒(méi)食子酸酯和表兒茶素沒(méi)食子酸酯含量的升高,而茶尺蠖為害后48?h僅沒(méi)食子酸和沒(méi)食子兒茶素的含量顯著高于對(duì)照;兒茶素、表沒(méi)食子兒茶素和沒(méi)食子兒茶素沒(méi)食子酸酯在茶尺蠖為害后24?h和48?h均沒(méi)有被顯著誘導(dǎo)。上述結(jié)果表明茶尺蠖幼蟲為害提高了茶樹兒茶素合成途徑的代謝強(qiáng)度和兒茶素類化合物的積累。
茶尺蠖;取食;兒茶素;誘導(dǎo);茶樹
茶樹是我國(guó)重要的木本經(jīng)濟(jì)作物之一,富含茶多酚、咖啡堿和類黃酮類衍生化合物。兒茶素類是茶多酚的重要組成部分,是類黃酮衍生化合物的次生代謝產(chǎn)物,其含量約占鮮葉茶多酚總量的80%[1]。大量研究結(jié)果表明,茶多酚類物質(zhì)具有顯著的抑菌效果[2-5]。例如,Aditi等[5]研究了兒茶素類化合物對(duì)李斯特菌()、銅綠假單胞菌()、蠟狀芽孢桿菌()、金黃色葡萄球菌()和大腸桿菌()等病原菌菌絲生長(zhǎng)的抑制作用,結(jié)果發(fā)現(xiàn)表沒(méi)食子兒茶素沒(méi)食子酸酯(EGCG)、表兒茶素沒(méi)食子酸酯(ECG)和表沒(méi)食子兒茶素(EGC)對(duì)上述病原菌均具有較好的抑菌效果。Wang等[6]發(fā)現(xiàn),EGCG和兒茶素(C)對(duì)于茶樹炭疽病病原菌()的生長(zhǎng)具有顯著抑制效果。盡管很多研究結(jié)果證實(shí),多酚類化合物在植物抗蟲防御方面具有重要作用[7-8],但是,關(guān)于茶樹多酚類化合物抗蟲功能的研究?jī)H見(jiàn)少量報(bào)道,并且都集中于總茶多酚的抗蟲方面[9-12]。目前,茶樹多酚類化合物中具體哪種成分發(fā)揮了抗蟲作用則尚不明晰。
茶尺蠖(Prout)廣泛分布于我國(guó)各個(gè)茶區(qū),是茶園中發(fā)生普遍且為害嚴(yán)重的食葉性害蟲種類之一,是當(dāng)前制約我國(guó)茶葉安全生產(chǎn)的重要因素。茉莉酸和乙烯信號(hào)轉(zhuǎn)導(dǎo)途徑與植物次級(jí)代謝產(chǎn)物的合成密切相關(guān),研究發(fā)現(xiàn)這兩條途徑可被茶尺蠖幼蟲取食所激活[13-14]。業(yè)已證明,茶尺蠖幼蟲取食可誘導(dǎo)茶樹釋放大量揮發(fā)性化合物,這些揮發(fā)物可被天敵、害蟲及鄰近植物所識(shí)別,從而在害蟲和天敵種群調(diào)控以及誘導(dǎo)鄰近植株防御反應(yīng)中發(fā)揮作用[15-17]。然而,有關(guān)茶尺蠖幼蟲取食誘導(dǎo)茶樹產(chǎn)生的有毒代謝物質(zhì)或防御蛋白等方面的研究尚鮮見(jiàn)報(bào)道,尤其是具有廣泛抗菌作用的兒茶素類化合物是否可被茶尺蠖幼蟲取食所誘導(dǎo)則尚未見(jiàn)報(bào)道。鑒于此,本文擬通過(guò)比較健康茶苗與茶尺蠖幼蟲為害茶苗葉片中兒茶素合成途徑中無(wú)色花色素還原酶基因(,登錄號(hào):AY169404)和花青素還原酶基因(,登錄號(hào):AY641729)轉(zhuǎn)錄水平的表達(dá)量差異,以及不同處理茶樹葉片中兒茶素類組分的含量差異,確定茶尺蠖幼蟲為害對(duì)茶樹兒茶素代謝途徑的影響,以期為從茶尺蠖幼蟲為害誘導(dǎo)的兒茶素類化合物中篩選出具有抗蟲作用的功能物質(zhì)提供理論基礎(chǔ)。
供試茶苗為3年生龍井43扦插苗,于(25±2)℃溫室中培養(yǎng),光周期為12?L︰12?D,相對(duì)濕度60%~70%,每4個(gè)月施1次有機(jī)肥。選擇長(zhǎng)勢(shì)良好、無(wú)病蟲害茶苗用于實(shí)驗(yàn)。
茶尺蠖幼蟲飼養(yǎng)于智能型人工氣候室,溫度(25±2)℃,相對(duì)濕度60%~80%,光周期為14?L︰10?D,飼以新鮮茶樹葉片。室內(nèi)飼養(yǎng)一代后的3齡幼蟲,饑餓3?h后用于茶苗處理。
在(25±2)℃,相對(duì)濕度60%~80%,光周期為14?L︰10?D的條件下進(jìn)行茶苗處理。將2頭3齡茶尺蠖幼蟲接種于茶樹新梢芽下第二葉,套以透氣網(wǎng)袋防止逃逸;僅套網(wǎng)袋不接蟲的葉片作為對(duì)照。處理3、6、12?h后取芽下第二葉用于基因表達(dá)量分析。處理24、48?h后的芽下第二葉用于兒茶素含量的測(cè)定。每個(gè)處理6個(gè)重復(fù)。
采用TIANGEN試劑盒(天根生化科技有限公司,北京)進(jìn)行總RNA提取和反轉(zhuǎn)錄,具體步驟按照產(chǎn)品說(shuō)明進(jìn)行操作。以為內(nèi)參基因,引物序列見(jiàn)表1。定量檢測(cè)方法參照SYBR Premix ExTaq試劑盒(TAKARA,寶日醫(yī)生物技術(shù)有限公司,北京)的操作步驟,采用20?μL體系于LightCycler96實(shí)時(shí)熒光定量PCR儀上檢測(cè)目的基因的表達(dá)水平。反應(yīng)條件為95℃預(yù)變性5?min;95℃變性5?s,60℃退火30?s,40個(gè)循環(huán)。每個(gè)樣品重復(fù)3次,反應(yīng)結(jié)束后收集CT值進(jìn)行分析。
兒茶素類含量分析采用高效液相法[18]。準(zhǔn)確稱取0.1?g茶粉(液氮下研磨),加入1?mL 80%甲醇水溶液,震蕩10?min(1?200?r·min-1),然后超聲5?min(100?Hz,25℃),再震蕩5?min后,離心30?min(–4℃,12?000?r·min-1),取上清液過(guò)0.22?μm濾膜,所得濾液用于分析。
對(duì)照與處理之間和相對(duì)表達(dá)量及兒茶素組分含量的差異顯著性均采用獨(dú)立樣本檢驗(yàn)進(jìn)行分析。統(tǒng)計(jì)分析軟件采用SPSS18.0,在Windows 10操作系統(tǒng)下進(jìn)行。
表1 qRT-PCR引物
注:與對(duì)照相比,*P<0.05,**P<0.01,下同。Compare with CK, *P<0.05,**P<0.01. The same as follow.
茶尺蠖幼蟲為害可顯著誘導(dǎo)和在轉(zhuǎn)錄水平上的表達(dá)量。其中,的相對(duì)表達(dá)量在為害后3、6、12?h分別比對(duì)照提高2.77、3.18和3.13倍,且為害后3?h、6?h和12?h與對(duì)照相比具有顯著性差異,在3?h和12?h達(dá)到了極顯著差異;的相對(duì)表達(dá)量在為害后3、6?h和12?h分別比對(duì)照提高2.30、2.16和3.67倍,且為害后6?h和12?h與對(duì)照相比具有顯著性差異。
茶尺蠖幼蟲為害顯著誘導(dǎo)茶樹葉片沒(méi)食子酸(GA)、沒(méi)食子兒茶素(GC)、表兒茶素(EC)、EGCG和ECG含量的升高,但是C、EGC和沒(méi)食子兒茶素沒(méi)食子酸酯(GCG)的含量不受茶尺蠖幼蟲為害所誘導(dǎo)。其中,GA、GC、EC、EGCG和ECG含量在為害后24?h即達(dá)到顯著差異,而為害后48?h僅有GA和GC的含量顯著高于對(duì)照(圖2)。
圖2 茶尺蠖幼蟲為害對(duì)茶樹兒茶素類化合物含量的影響
植物在與植食性昆蟲的長(zhǎng)期協(xié)同進(jìn)化過(guò)程中,形成了一套有效的防御體系。在這一防御體系中,包含了植物組成抗性(Constitutive resistance)和誘導(dǎo)抗性(Induced resistance)兩個(gè)方面。植物被植食性昆蟲為害誘導(dǎo)后,通過(guò)積累有毒代謝物或防御蛋白對(duì)害蟲進(jìn)行直接防御,也可通過(guò)釋放蟲害誘導(dǎo)揮發(fā)物引誘植食性昆蟲的天敵前來(lái)捕食或寄生而進(jìn)行間接防御[19-21]。植物多酚類能被植食性昆蟲取食所誘導(dǎo),并參與到植物的抗蟲防御中[8, 22-23]。例如,抗蚜蟲小麥葉片總酚和鄰二羥基苯酚的含量顯著高于感蟲品種,并且抗蟲品種在蚜蟲為害后更早和更強(qiáng)地誘導(dǎo)了查耳酮合成酶的活性和葉片多酚含量[8, 23];棉花多酚含量與棉鈴蟲抗性也呈現(xiàn)正相關(guān),且隨棉酚劑量增加,棉鈴蟲幼蟲死亡率增加、幼蟲歷期延長(zhǎng)、蛹重逐漸減少、成蟲產(chǎn)卵量降低[24]。兒茶素類是茶樹中重要的酚類化合物,并對(duì)多種病原菌具有抑制生長(zhǎng)的作用[5-6]。和是茶樹類黃酮代謝途徑的關(guān)鍵控制基因,無(wú)色花色素可以被轉(zhuǎn)化為C、GC,被轉(zhuǎn)化為EC和EGC[25]。本研究發(fā)現(xiàn)茶尺蠖幼蟲為害后3、6、12?h可誘導(dǎo)相對(duì)表達(dá)水平的顯著升高,且在3?h和12?h達(dá)到極顯著差異,而的表達(dá)量在茶尺蠖為害后6?h和12?h與對(duì)照具有顯著差異。根據(jù)上述結(jié)果,GC在茶尺蠖幼蟲為害后24?h和48?h均顯著高于對(duì)照,而C卻始終與對(duì)照無(wú)顯著差異,我們推測(cè)茶尺蠖幼蟲為害誘導(dǎo)表達(dá)的僅使GC的含量顯著積累,卻并不影響C的含量。而ECG和EGCG在茶尺蠖幼蟲為害后24?h被顯著誘導(dǎo),EC和EGC分別作為ECG和EGCG合成的前體物質(zhì),可能更早被的上調(diào)誘導(dǎo)合成,但新合成的EC和EGC又馬上與1--沒(méi)食子?;?β-葡萄糖(βG)發(fā)生酯化反應(yīng)生成了EGCG和ECG,并進(jìn)一步參與到其他反應(yīng)中,所以在茶尺蠖幼蟲為害后48?h EGCG和ECG的含量與對(duì)照無(wú)顯著差異。綜上,茶尺蠖幼蟲為害影響了茶樹兒茶素代謝途徑(圖3)。
圖3 茶尺蠖幼蟲為害對(duì)兒茶素代謝途徑的影響
眾所周知,多酚氧化酶(PPO)在植物抵御病原菌侵染和植食性昆蟲取食中發(fā)揮重要作用[26-29],并且噴施茉莉酸甲酯和機(jī)械損傷都能顯著誘導(dǎo)植物葉片中PPO的活性[30-33]。前期研究發(fā)現(xiàn),茶樹葉片PPO對(duì)茶尺蠖具有直接防御作用,能顯著抑制茶尺蠖的生長(zhǎng)發(fā)育[34]。有趣的是,茶尺蠖幼蟲為害茶樹葉片卻顯著降低了茶樹葉片PPO的活性,而兒茶素類作為多酚氧化酶的底物,在茶尺蠖幼蟲為害葉片中的含量卻顯著升高。并且酯型兒茶素類在茶尺蠖幼蟲為害后24?h的葉片中顯著高于對(duì)照,而為害后48?h的葉片中與對(duì)照卻無(wú)顯著差異,酯型兒茶素含量的這種變化是否與PPO活性降低具有相關(guān)性值得進(jìn)一步研究。
[1] 宛曉春. 茶葉生物化學(xué)[M]. 3版. 北京: 中國(guó)農(nóng)業(yè)出版社, 2003.
[2] Jiang X, Feng K, Yang X.antifungal activity and mechanism of action of tea polyphenols and tea saponin against[J]. J Mol Microbiol Biotechnol, 2015, 35(7): 269-276.
[3] Mikulic-Petkovsek M, Schmitzer V, Jakopic J, et al. Phenolic compounds as defence response of pepper fruits to[J]. Physiol Mol Plant Pathol, 2013, 84(1): 138-145.
[4] Yi S M, Zhu J L, Fu L L, et al. Tea polyphenols inhibit Pseudomonas aeruginosa through damage to the cell membrane [J]. Int J Food Microbiol, 2010, 144(1): 111-117.
[5] Aditi S, Kanwar S S, Sud R G, et al. Influence of phenolic compounds of Kangra tea [(L) O Kuntze] on bacterial pathogens and indigenous bacterial probiotics of Western Himalayas [J]. Braz J Microbiol. 2013, 44(3): 709-715.
[6] Wang Y C, Qian W J, Li N N, et al. Metabolic changes of caffeine in tea pant ((L.) O. Kuntze) as defense response to colletotrichum fructicola [J]. Journal of Agricultural & Food Chemistry, 2016, 64(35): 6685-6693.
[7] Siranidou E, Kang Z, Buchenauer H. Studies on symptom development, phenolic compounds and morphological defense responses in wheat cultivars differing in resistance to fusarium, head bight [J]. Journal of Phytopathology, 2002, 150(5): 200-208.
[8] Czerniewicz P, Sytykiewicz H, Durak R, et al. Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack [J]. Plant Physiology & Biochemistry Ppb, 2017(118): 529-540.
[9] 鄭高云. 不同茶樹品種對(duì)茶尺蠖抗性機(jī)制的研究[D]. 合肥: 安徽農(nóng)業(yè)大學(xué), 2008.
[10] 金珊. 不同茶樹品種抗假眼小綠葉蟬機(jī)理研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2012.
[11] 高香鳳, 李慧玲, 王慶森. 茶樹葉片組織結(jié)構(gòu)及次生物質(zhì)與抗蟲性關(guān)系研究進(jìn)展[J]. 茶葉科學(xué)技術(shù), 2011(2): 7-11.
[12] Mohanpuria P, Kumar V, Yadav S K. Tea caffeine: Metabolism, functions, and reduction strategies [J]. Food Science & Biotechnology, 2010, 19(2): 275-287.
[13] Xin Z, Zhang Z, Chen Z, et al. Salicylhydroxamic acid (SHAM) negatively mediates tea herbivore-induced direct and indrect defense against the tea geometrid[J]. J Plant Res, 2014, 127(4): 565-572.
[14] Fragoso V, Rothe E, Baldwin I T, et al. Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increaseresistance [J]. New Phytologist, 2014, 202(4): 1335-1345.
[15] Sun X L, Wang G C, Gao Y, et al. Volatiles emitted from tea plants infested bylarvae are attractive to conspecifc moths [J]. Journal of Chemical Ecology, 2014, 40(10): 1080-1089.
[16] 孫曉玲, 高宇, 陳宗懋. 蟲害誘導(dǎo)植物揮發(fā)物(HIPVs)對(duì)植食性昆蟲的行為調(diào)控[J]. 應(yīng)用昆蟲學(xué)報(bào), 2012, 49(6): 1413-1422.
[17] 雷舒, 李喜旺, 孫曉玲, 等. 茶尺蠖為害提高臨近茶苗對(duì)茶尺蠖幼蟲的防御能力[J]. 茶葉科學(xué), 2016, 36(6): 587-593.
[18] 張琪, 徐維玲, 李翠芹. HPLC法同時(shí)測(cè)定茶葉中兒茶素類和咖啡因的含量[J]. 食品工業(yè)科技, 2015, 36(4): 53-56.
[19] Kessler A, Baldwin IT. Plant responses to insect herbivory: the emerging molecular hypothesis [J]. Annu Rev Plant Biol, 2002, 53(1): 299-328. DOI: 10.1146/annurev.arplant. 53.100301.135207.
[20] War AR, Paulraj MG, Hussain B, et al. Effect of plant secondary metabolites on legume pod borer, helicoverpa armigera [J]. Journal of Pest Science, 2013, 86(3): 399-408.
[21] Scogings P F, Hj?ltén J, Skarpe C, et al. Nutrient and secondary metabolite concentrations in a savanna are independently affected by large herbivores and shoot growth rate [J]. Plant Ecology, 2014, 215(1): 73-82.
[22] Lattanzio V, Lattanzio V M T, Cardinali A. Role of polyphenols in the resistance mechanisms of plants against fungal pathogens and insects [M]. Imperato, F. Phytochemistry: Advances in research, Research Signpost. Trivandrum, Kerala, India, 2006: 23-67.
[23] Wójcicka A. Cereal phenolic compounds as biopesticides of cereal aphids [J]. Polish Journal of Environmental Studies, 2010, 19(6): 1337-1343.
[24] 劉澤輝, 趙國(guó)虎, 陸敬善, 等. 棉花棉酚含量與抗蟲特性的研究[J]. 新疆農(nóng)業(yè)科學(xué), 2008, 45(3): 409-413.
[25] Punyasiri P A, Abeysinghe I S, Kumar V, et al. Flavonoid biosynthesis in the tea plant: properties of enzymes of the prominent epicatechin and catechin pathways [J]. Archives of Biochemistry & Biophysics, 2004, 431(1): 22-30.
[26] Felton G, Donato K, Broadway R, et al. Impact of oxidized plant phenolics on the nutritional quality of dietar protein to a noctuid herbivore,[J]. Journal of Insect Physiology, 1992, 38(4): 277-285
[27] Wang J, Constabel C P. Polyphenol oxidase overexpression in transgenicenhances resistance to herbivory by forest tent caterpillar () [J]. Planta, 2004, 220(1): 87-96.
[28] Bhonwong A, Stout MJ, Attajarusit J, et al. Defensive role of tomato polyphenol oxidases against cotton bollworm () and beet armyworm () [J]. Journal of Chemical Ecology, 2009, 35(1): 28-38.
[29] Vanitha S C, Umesha S. Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato [J]. Journal of Phytopathology, 2010, 157(9): 552-557.
[30] Bosch M, Berger S, Schaller A, et al. Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense againstbut not against[J]. Bmc Plant Biology, 2014, 14(1): 257-272.
[31] 朱香鎮(zhèn), 麻巧迎, 張帥, 等. 棉花多酚氧化酶基因的克隆及在棉鈴蟲取食誘導(dǎo)反應(yīng)中的作用[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(16): 3174-3183.
[32] Mishra BB, Gautam S. Polyphenol oxidases: biochemical and molecular characterization, distribution, role and its control [J]. Enz Eng, 2016, 5: 141. Doi:10.4172/2329-6674.1000141.
[33] Liang X, Chen Q, Lu H, et al. Increased activities of peroxidase and polyphenol oxidase enhance cassava resistance to[J]. Experimental and Applied Acarology, 2017, 71(3), 195-209.
[34] Yang ZW, DUAN XN, Jin S, et al. Regurgitant derived from the tea geometridsuppresses, wound-induced polyphenol oxidases activity in tea plants [J]. Journal of Chemical Ecology, 2013, 39(6): 744-751.
Infestation ofAffects the Catechin Metabolism in Tea Plants
RAN Wei1, 2, ZHANG Jin1, 2, ZHANG Xin1, 2, LIN Songbo1,2, SUN Xiaoling1, 2*
1. Institute of Tea Research, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; 2. Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
In this study, the effect of feeding byon the catechin pathway of tea plant was analyzed. The transcriptional levels of catechin-related genes and the contents of individual catechins in the infested or intact leaves were measured. The transcriptional level ofin the infested leaves was significantly higher than that in the intact leaves 3, 6?h and 12?h after infestation. Meanwhile, the infestation ofalso significantly induced the expression level ofafter 6?h and 12?h. The contents of gallic acid, gallocatechin, epicatechin, epigallocatechin gallate and epicatechin gallate were significantly induced 24?h after infestation. Moreover, the contents of gallic acid and gallocatechin were also significantly induced 48?h after infestation. However, the infestation ofdidn’t induce the increases of catechin, epigallocatechin and gallocatechin gallate. In a word, the infestation ofaffected catechin metabolism in tea plant.
, infestation, catechins, induced,
S571.1;S435.711
A
1000-369X(2018)02-133-07
2017-12-18
2018-01-16
公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)經(jīng)費(fèi)(201403030)、國(guó)家自然科學(xué)基金(31471784、31272053)、浙江省“151”人才工程資助項(xiàng)目
冉偉,男,碩士研究生,主要從事茶樹害蟲互作方面的研究。
xlsun1974@163.com