亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        光電伺服系統(tǒng)傳感器精度補償方法研究*

        2018-03-16 03:36:02丁海錦賀文濤
        現(xiàn)代防御技術 2018年1期
        關鍵詞:測量誤差伺服系統(tǒng)傅里葉

        丁海錦,賀文濤

        (北京遙感設備研究所 隨動控制研究室,北京 100854)

        0 引言

        伺服系統(tǒng)廣泛應用于軍事和工業(yè)生產(chǎn)中,可以通過閉環(huán)控制使被控對象準確、快速復現(xiàn)輸入信號的指令。

        伺服系統(tǒng)角位置通過傳感器測得,并通過角位置編碼器將測得的位置信號反饋到控制器中。因此,傳感器的測量精度對伺服系統(tǒng)的整體性能有重要的影響。常用的角度測量元件有電位計、差動變壓器、自整角機、旋轉(zhuǎn)變壓器和感應同步器等,其中旋轉(zhuǎn)變壓器因其體積小、穩(wěn)定性好、壽命長等優(yōu)點廣泛應用于伺服系統(tǒng)中。旋轉(zhuǎn)變壓器同普通變壓器一樣具有一次側(cè)和二次側(cè),當在一次側(cè)施加一定頻率和幅值的交變電壓時,二次側(cè)產(chǎn)生的電壓信號與定子、轉(zhuǎn)子的相對角位置有關,利用此原理可以進行角度的測量。

        一般而言,角度測量元件的價格與其測量精度成正比,傳感器測量精度越高,伺服系統(tǒng)的整體價格也會相應提高。而角度傳感器的測量誤差由兩部分構成,一是傳感器的固定誤差,二是測量的隨機誤差。通過對傳感器的位置精度進行多次測量,對固定誤差部分進行建模和描述,尋找大致的誤差函數(shù),并對角度測量值進行補償,可以在不增加成本的情況下提高傳感器的測量精度[1-2]。

        1 旋轉(zhuǎn)變壓器測角原理

        圖1所示為典型的單軸伺服系統(tǒng)的控制框圖,其中包括控制器、功率放大、電機輸出、角位置測量等環(huán)節(jié)[3-6]。

        旋轉(zhuǎn)變壓器利用輸出電壓隨轉(zhuǎn)子機械轉(zhuǎn)角的變化規(guī)律來進行角度的測量。如圖2所示,轉(zhuǎn)子繞組輸入的激磁電壓為

        圖1 典型伺服系統(tǒng)結(jié)構Fig.1 Structure of classical servo system

        圖2 旋轉(zhuǎn)變壓器測角原理Fig.2 Diagram of measuring principle of resolver

        (1)

        兩定子繞著輸出的正、余弦電壓為

        us=Umsin(ωt)sin(Pθ),

        (2)

        uc=Umsin(ωt)cos(Pθ),

        (3)

        式中:Um為正、余弦繞著感應交流電壓的幅值;θ為轉(zhuǎn)子機械角;P為極對數(shù)。由此可求得θ

        (4)

        2 旋轉(zhuǎn)變壓器測角誤差分析

        旋轉(zhuǎn)變壓器的測量誤差主要由2部分構成,即制造工藝水平引起的誤差和硬件解碼方式造成的誤差。其中旋轉(zhuǎn)變壓器轉(zhuǎn)子兩相繞組在槽內(nèi)的位置不對稱、兩相繞組線圈電阻的差異,都會導致正、余弦兩相繞組輸出電壓幅值存在差異;鐵芯的齒槽分度不好、制造工藝水平有限,會導致正、余弦兩相繞組存在非正交性。

        實際中,若正弦繞組的輸出電壓為

        us=Umsin(ωt)sin(Pθ),

        (5)

        余弦繞組的輸出電壓可表示為

        uc=(Um+ΔU)sin(ωt)cos(Pθ+Δθ)

        ,

        (6)

        式中:ΔU為輸出信號電壓偏差值;Δθ為兩相繞組正交偏差角。

        如圖3所示為旋轉(zhuǎn)變壓器的角度跟蹤模型,其中Pθ′=Pθ+ΔΩ,θ′為旋轉(zhuǎn)變壓器的實際輸出角,ΔΩ為輸出信號幅值不對稱及空間兩相繞組正交偏差所引起的電氣誤差。在閉環(huán)反饋條件下,當跟蹤穩(wěn)定時可得

        圖3 角度跟蹤模型Fig.3 Angle tracking model of resolver

        (7)

        代入:Pθ′=Pθ+ΔΩ,得

        Umsin(Pθ)cos(Pθ+ΔΩ)-(Um+
        ΔU)cos(Pθ+Δθ)sin(Pθ+ΔΩ)=0,

        (8)

        式中:ΔΩ由2部分組成,一部分為ΔU引起的變壓比均衡性誤差ΔΩp,另一部分為Δθ引起的交軸誤差ΔΩq。

        令Δθ=0,得

        Umsin(Pθ)cos(Pθ+ΔΩp)-(Um+
        ΔU)cos(Pθ)sin(Pθ+ΔΩp)=0,

        (9)

        解得

        (10)

        (11)

        由此可見,輸出信號幅值不對稱引起的電氣誤差為2P次諧波誤差。

        令ΔU=0,得

        Umsin(Pθ)cos(Pθ+ΔΩq)-
        Umcos(Pθ+Δθ)sin(Pθ+ΔΩq)=0

        ,

        (12)

        解得

        (13)

        簡化得

        (14)

        由此可見,輸出繞組非正交引起的交軸誤差ΔΩq也是2P次諧波。

        綜上知,旋轉(zhuǎn)變壓器的測量誤差主要為2P次諧波[7]。

        3 伺服系統(tǒng)傳感器精度的測量

        精度是傳感器測量中準確度和精密度的綜合表征,光電伺服系統(tǒng)中的角度測量元件采用旋轉(zhuǎn)變壓器,可靠性高,能夠適應高溫、潮濕等惡劣環(huán)境。通過在實驗條件下,在原有的控制算法基礎上,通過對伺服系統(tǒng)等間隔地輸入不同的指令角,測量其實際輸出角,通過多次測量,統(tǒng)計旋轉(zhuǎn)變壓器的測量誤差。當測量范圍為[-12°,12°]時,測量結(jié)果如圖4所示。

        圖4 旋轉(zhuǎn)變壓器誤差測量曲線 Fig.4 Error curve of resolver

        從伺服系統(tǒng)誤差多次測量結(jié)果可以看出,旋轉(zhuǎn)變壓器測量的固定誤差具有明顯的規(guī)律性,根據(jù)測量結(jié)果,適當?shù)貙刂屏窟M行補償,可以彌補傳感器的測量固定誤差,提高伺服系統(tǒng)的控制精度。由于誤差曲線具有明顯的三角函數(shù)特征,可以通過多項式擬合和傅里葉分解等方法進行補償。工程上為了縮短計算時間,提高伺服系統(tǒng)的快速性,可以通過查表法對角度控制量進行補償。

        4 利用插值—多項式擬合對傳感器精度進行補償

        4.1 常用的插值方法

        在實際測量中,通過對光電伺服系統(tǒng)輸入不同的角度測量值,測量其實際輸出值。對測量數(shù)據(jù)進行插值,常用的插值方法有拉格朗日插值、牛頓多項式插值和樣條插值等方法。

        其中,樣條插值的離散化數(shù)據(jù)來源包括以下3種:

        (1) 根據(jù)原始曲線方程計算出坐標點;

        (2) 由實驗方式取得;

        (3) 由測繪方法取得。

        若函數(shù)S(x)∈C2[a,b],且在每個小區(qū)間[xj,xj+1]上是三次多項式,其中a=x0

        S(xj)=yj,j=0,1,…,n,

        則稱S(x)為三次樣條函數(shù)。

        若S(x)在區(qū)間[a,b]上四階導數(shù)連續(xù),則S(x)為五次樣條函數(shù)。

        4.2 對旋轉(zhuǎn)變壓器角度測量數(shù)據(jù)進行樣條插值,比較補償效果

        在多項式擬合中,由于傳感器誤差測量中輸入指令角的間隔為1°,可以對誤差測量結(jié)果進行樣條插值和多項式擬合,實現(xiàn)補償效果。當插值間隔為0.25°,多項式次數(shù)為五次時的補償效果如圖5所示。

        圖5 N=5,d=0.25時誤差補償效果Fig.5 Error compensation results when N=5, d=0.25

        5 基于查表法對傳感器精度進行補償

        查表法因其方法簡單、計算量小,廣泛地應用于工程實踐中,具有較好的效果。在伺服系統(tǒng)的改進中,對不同指令角范圍內(nèi)的誤差進行量化,計算出該范圍內(nèi)對應的誤差補償值,設計誤差補償表,在實際工作中通過查表的方法對旋轉(zhuǎn)變壓器的測量誤差進行補償。

        基于多項式擬合的補償結(jié)果,對各離散的測量值之間進行一次線性插值,可以求得各區(qū)間內(nèi)的一次補償函數(shù):

        xi=-12,-11,…,0,1,2,…,12,i=1,2,…,25.

        當xi≤x≤xi+1時,補償量為

        (15)

        由于查表法基于多項式擬合的補償結(jié)果,不改變在測量整數(shù)值處的補償效果。將五次多項式插值轉(zhuǎn)化為分段一次線性插值,在伺服系統(tǒng)實際控制中,采用查表的方法,對控制指令所在區(qū)間內(nèi)用一次函數(shù)進行補償,在保證補償精度的同時,計算量大大簡化,執(zhí)行周期數(shù)遠少于多項式插值補償。

        6 基于傅里葉分解對方位通道進行補償

        由于誤差測量結(jié)果具有三角函數(shù)的變化規(guī)律,故可以通過傅里葉分解的方法求得傳感器誤差的主要部分,并將其作為補償量對控制量進行補償。

        6.1 理想條件下運用傅里葉分解法對傳感器誤差進行補償

        對于如圖4所示的傳感器誤差測量曲線,具有明顯的正弦曲線特性(如圖6所示),利用Matlab軟件對其進行傅里葉分解,求解出其低頻的傅里葉分量為

        y=a0+a1cosω+b1sinω+a2cos 2ω+

        b2sin 2ω+a3cos 3ω+b3sin 3ω.

        用此函數(shù)對測量誤差進行補償,結(jié)果如圖7所示。

        如圖8所示,如果測量誤差具有典型的正弦函數(shù)特性,原始誤差為[-2°,+2°]的傳感器經(jīng)過傅里葉分解的方法進行補償后,測量誤差大幅減小,理想條件下具有很好的補償效果[8-15]。

        6.2 利用傅里葉分解法對光電伺服系統(tǒng)進行位置補償

        如圖9所示,在實際中應用傅里葉分解法對光電伺服系統(tǒng)的傳感器進行補償,也能達到一定的補償效果。

        圖6 理想條件下誤差曲線Fig.6 Error curve in ideal condition

        圖7 利用傅里葉分解求得補償曲線Fig.7 Error compensation curve using Fourier progressional dissolution

        圖8 補償后的誤差曲線Fig.8 Error curve after compensating

        圖9 利用傅里葉分解對傳感器補償后的測量誤差曲線Fig.9 Error compensation results using Fourier progressional dissolution

        7 不同補償方法比較

        通過應用不同階次、不同插值間隔的多項式擬合方法、查表法和傅里葉分解法對光電伺服系統(tǒng)的傳感器測量精度進行補償,發(fā)現(xiàn)各種補償方法在補償準確度和計算時間等方面具有較大的差異,現(xiàn)比較如表1所示。

        表1 不同方法補償效果對比表

        8 結(jié)束語

        綜上所述,采用多項式擬合、查表法和傅里葉分解等方法都能實現(xiàn)傳感器測量精度補償。其中,采用多項式擬合的執(zhí)行周期數(shù)隨著擬合函數(shù)階數(shù)的增加而增加,采用不同的插值間隔也會影響補償效果,綜合這2個因素的影響,當N=5,D=0.25時的補償效果最優(yōu)。采用傅里葉分解的方法也能達到一定的補償效果,但由于傳感器的測量誤差曲線與理想情況相差較遠,實際的補償效果有限,而且該方法的執(zhí)行周期數(shù)遠高于多項式擬合。查表法基于最優(yōu)的多項式補償效果,能夠保證補償后的測量精度,同時執(zhí)行周期數(shù)也遠低于其他方法,具有很好的工程實用性。

        [1] Robert W Mitchell,Jay Marchetti.Improved Position Accuracies of Multi-Axis Motion Test Simulators[R].AIAA 2006-6361.

        [2] 孫華麗,張政治,胡思才.五次樣條插值在GPS衛(wèi)星軌道標準化中的應用[J].大地測量與地球動力學,2012,32(1):76-79. SUN Hua-li,ZHANG Zheng-zhi,HU Si-cai.Application of Quintic Spline Interpolation to GPS Satellite Orbit Standardization[J].Journal of Geodesy and Geodynamics,2012,32(1):76-79.

        [3] 李明.導引頭捷聯(lián)穩(wěn)定技術的研究及應用[D].北京:中國航天科工集團公司二院,2010:25-30. LI Ming.Study on the Stabilization of Seeker Servo System[D]. Beijing:The Second Academy of CASIC,2010:25-30.

        [4] 陳國棟.雙T濾波器在導引頭伺服系統(tǒng)中的應用技術研究[D].北京:中國航天科工集團公司二院,2014:80-81. CHEN Guo-dong.Study on the Application of Notch Filter in Seeker Servo System[D].Beijing:The Second Academy of CASIC,2014:80-81.

        [5] 賀文濤.結(jié)構非線性對伺服系統(tǒng)性能影響的研究[D].北京:中國航天科工集團公司二院,2012:78-79. HE Wen-tao.Study on the Influence of Structural Nonlinear on Mechanical Servo System[D].Beijing:The Second Academy of CASIC,2012:78-79.

        [6] 文哲.捷聯(lián)伺服系統(tǒng)穩(wěn)定與跟蹤技術的研究[D].北京:中國航天科工集團公司二院,2013:2-4. WEN Zhe.Study on the Stabilization and Tracking Technology of Mechanical Servo[D].Beijing:The Second Academy of CASIC,2013:2-4.

        [7] 帥浩.基于旋轉(zhuǎn)變壓器的角位移測量技術研究[D].太原:中北大學,2015. SHUAI Hao.Study on Angular Displacement Measurement Technology Based on Resolver[D].Taiyuan:North University of China,2015.

        [8] 李慶揚,王能超,易大義.數(shù)值分析[M].北京:清華大學出版社,2008. LI Qing-yang,WANG Neng-chao,YI Da-yi.Numerical Analysis[M].Beijing:Tsinghua University Press,2008.

        [9] Robert W Mitchell,Jay Marchetti.Improved Position Accuracies of Multi-Axis Motion Test Simulators[C]∥AIAA Modeling and Simulation Technologies Conference and Exhibit 21-24,AIAA 2006-6361,August 2006.

        [10] Michael A Warden,Robin Hauser,Peter Hofstetter,et al.Keeping up with Dynamics of Next Generation Missiles[C]∥SPIE Vol 6942,694203,2008.

        [11] 潘承洞.Spline函數(shù)的理論及其應用[J].數(shù)學的實踐與認識,1975(3):64-75. PAN Cheng-dong.Theory and Application Spline Function[J].Mathematics in Practice and Theory,1975(3):64-75.

        [12] 廖良闖,徐大林,程蜀煒,等.一種提高全數(shù)字式RDC系統(tǒng)輸出實時性的方法[C]∥2008江蘇自動化學會學術年會論文集. LIAO Liang-chuang,XU Da-lin,CHEN Shu-wei,et al.A Method of Enhanced Real-Time Characteristic about Output of Complete-Digital RDC System[C]∥Jiangsu Automation Research Institute of CSIC,2008.

        [13] Louis A DeMore,Paul R Mackin,Michael Swamp,et al.Improvements in Flight Table Dynamic Transparency for Hardware-in-the-Loop Facilities[C]∥Proceedings of SPIE,2000,4027,0277-786X:101-112.

        [14] Michael Swamp,Colin Stevens,Peter Hoffstetter.Improvements in Transient Fidelity of HWIL Flight Tables Using Acceleration Feedback[C]∥Preceedings of SPIE,2002,4717,0277-786X:32-45.

        [15] RUDIN R T.Strapdown Stabilization for Imaging Seekers[R].AIAA-93-2660,1993.

        猜你喜歡
        測量誤差伺服系統(tǒng)傅里葉
        北京航空航天大學學報(2022年6期)2022-07-02 01:59:46
        密度測量誤差分析
        縱向數(shù)據(jù)下變系數(shù)測量誤差模型的漸近估計
        雙線性傅里葉乘子算子的量化加權估計
        基于小波降噪的稀疏傅里葉變換時延估計
        測控技術(2018年7期)2018-12-09 08:58:26
        基于復合前饋模糊PID的位置伺服系統(tǒng)研究
        測控技術(2018年12期)2018-11-25 09:37:44
        基于傅里葉變換的快速TAMVDR算法
        基于自適應反步的DGMSCMG框架伺服系統(tǒng)控制方法
        牽引變壓器功率測量誤差分析
        快速離散傅里葉變換算法研究與FPGA實現(xiàn)
        電測與儀表(2015年5期)2015-04-09 11:30:44
        亚洲精品久久久www小说| 国产日本精品一区二区| 91色区在线免费观看国产| 在教室伦流澡到高潮hgl动漫| 少妇被躁爽到高潮无码文| 精品免费一区二区三区在| 少妇人妻一区二区三飞| 久久久久成人精品免费播放动漫| 99久久久精品免费观看国产| 久久久久亚洲AV成人网毛片| 中文字幕亚洲视频三区| 日本免费视频| 亚洲av无码av日韩av网站| 丰满人妻无套中出中文字幕 | 中文字幕日韩精品永久在线| 丁香婷婷激情综合俺也去| 亚洲av永久无码一区| 亚洲啪啪AⅤ一区二区三区| 99久久婷婷国产一区| 色欲色欲天天天www亚洲伊| 69av视频在线观看| 午夜精品一区二区三区视频免费看| 日出白浆视频在线播放| 东北老女人高潮疯狂过瘾对白 | 亚洲一区极品美女写真在线看| 国产精品日韩经典中文字幕| 国产免费人成视频在线观看| 国产免费一级高清淫日本片| 精品国产麻豆免费人成网站| 国产精品久久久久久人妻无| 236宅宅理论片免费 | 老岳肥屁熟女四五十路| 亚洲亚洲人成综合丝袜图片| 人人狠狠综合久久亚洲婷婷| 精品女同一区二区三区不卡| 少妇高潮太爽了在线看| 真人直播 免费视频| 国产精品毛片99久久久久| 加勒比精品视频在线播放| 久久精品人妻无码一区二区三区| 免费无遮挡无码视频在线观看|