武新梅,徐愛俊,周素茵
?
生豬養(yǎng)殖業(yè)污水排放智慧監(jiān)管系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
武新梅,徐愛俊,周素茵※
(1. 浙江農(nóng)林大學(xué)信息工程學(xué)院,杭州 311300; 2. 浙江農(nóng)林大學(xué)浙江省林業(yè)智能監(jiān)測(cè)與信息技術(shù)研究重點(diǎn)實(shí)驗(yàn)室,杭州 311300)
為了對(duì)生豬養(yǎng)殖業(yè)污水的治理過程進(jìn)行監(jiān)控和違規(guī)排污預(yù)警,該文提出了養(yǎng)殖污水實(shí)時(shí)監(jiān)管策略,設(shè)計(jì)并實(shí)現(xiàn)了生豬養(yǎng)殖污水治理智慧監(jiān)管系統(tǒng)。該系統(tǒng)通過信息采集模塊收集養(yǎng)殖污水排放的實(shí)時(shí)數(shù)據(jù),實(shí)現(xiàn)養(yǎng)殖污水實(shí)時(shí)數(shù)據(jù)監(jiān)測(cè)、預(yù)警分析等功能。其中集中治理的監(jiān)管是根據(jù)安裝在槽罐車上的GPS數(shù)據(jù)和污水集中處理廠的信息,判斷污水是否被運(yùn)送到指定地點(diǎn)排放;工業(yè)治理的監(jiān)管是采用模糊推理理論,以監(jiān)管因子的濃度偏差及偏差變化率為輸入量,相應(yīng)的污水預(yù)警等級(jí)作為輸出量,對(duì)監(jiān)管因子進(jìn)行模糊化及邏輯推理,建立相應(yīng)的模糊監(jiān)管子系統(tǒng),生成工業(yè)治理監(jiān)管規(guī)則及策略;針對(duì)生態(tài)治理的監(jiān)管,構(gòu)建了相應(yīng)的監(jiān)管策略和Ecological數(shù)學(xué)模型,該模型以監(jiān)管策略為依據(jù),對(duì)實(shí)時(shí)數(shù)據(jù)進(jìn)行定性與定量分析預(yù)測(cè),實(shí)現(xiàn)對(duì)偷排漏排、滿溢等違規(guī)排污現(xiàn)象的判斷。試驗(yàn)結(jié)果表明,系統(tǒng)預(yù)警準(zhǔn)確度為96.17%,平均誤差時(shí)間為33.22 s,違規(guī)排污量平均值為15.77 L,能夠滿足養(yǎng)殖污水排放監(jiān)管要求,對(duì)提高監(jiān)管效率具有重要意義。
污水;排放控制;設(shè)計(jì);生豬養(yǎng)殖;模糊推理;智慧監(jiān)管;監(jiān)管系統(tǒng)
生豬養(yǎng)殖業(yè)日趨集約化和規(guī)?;?,這在促進(jìn)農(nóng)業(yè)的產(chǎn)業(yè)化發(fā)展的同時(shí),養(yǎng)殖廢水也對(duì)生態(tài)環(huán)境構(gòu)成了嚴(yán)重的威脅[1-3]。養(yǎng)殖污水的監(jiān)測(cè)成為社會(huì)關(guān)注的重要話題。生豬養(yǎng)殖業(yè)污水治理方式主要分為生態(tài)治理、工業(yè)治理和集中治理[4-8]。生態(tài)治理指生豬養(yǎng)殖企業(yè)將污水排往沼液池,通過沉淀和消納地等來實(shí)現(xiàn)污水的循環(huán)利用;工業(yè)治理指生豬養(yǎng)殖企業(yè)自建發(fā)酵池,通過微生物發(fā)酵的方式來治理污水;集中治理指將污水運(yùn)輸至污水處理廠集中處理。不同的處理方式原理及排放流程有所不同,其監(jiān)管方式也有所差異。
傳統(tǒng)的養(yǎng)殖污水達(dá)標(biāo)排放檢測(cè)是基于化學(xué)方法,該方法需要消耗試劑,容易造成二次污染[9-10]。Matcalf等[11]通過用水量折算污水排放量,采集污水進(jìn)行水質(zhì)分析,這種方法測(cè)量周期長(zhǎng)、精度低,無法實(shí)現(xiàn)水體污染的動(dòng)態(tài)監(jiān)測(cè)。韓紅桂等[12]提出了一種基于模糊神經(jīng)網(wǎng)絡(luò)的軟測(cè)量方法,用于測(cè)量污水處理過程中出水NH4-N的值。神經(jīng)網(wǎng)絡(luò)法的軟測(cè)量是一種大樣本學(xué)習(xí)方法[13-14],由于實(shí)際應(yīng)用中樣本數(shù)量有限,模型精確度往往不高。為了能夠高效地監(jiān)測(cè)養(yǎng)殖污水的排放,解決監(jiān)管過程中存在的取證難度大、實(shí)時(shí)性差等問題,將物聯(lián)網(wǎng)與智能監(jiān)管方法有機(jī)結(jié)合,構(gòu)建基于無線傳感網(wǎng)絡(luò)與智能監(jiān)管相結(jié)合的污水監(jiān)管系統(tǒng)是未來發(fā)展的趨勢(shì)。Li等[15]構(gòu)建了污水質(zhì)量監(jiān)控系統(tǒng),解決了污水監(jiān)測(cè)傳感器中可能存在嚴(yán)重污染物和生物淤積等問題,從而提高對(duì)污水質(zhì)量監(jiān)測(cè)的實(shí)時(shí)性。近年來中國(guó)畜禽養(yǎng)殖業(yè)信息化發(fā)展速度也相對(duì)較快[16-20]。李慧等[21]開發(fā)了一種基于物聯(lián)網(wǎng)的水產(chǎn)養(yǎng)殖遠(yuǎn)程監(jiān)控系統(tǒng),通過無線傳感網(wǎng)絡(luò)實(shí)現(xiàn)水質(zhì)環(huán)境的遠(yuǎn)程控制,但由于環(huán)境因子響應(yīng)速度慢、抗干擾能力差使得監(jiān)控的實(shí)現(xiàn)仍存在問題。馬從國(guó)等[22]研制了基于模糊控制方法和無線傳感網(wǎng)絡(luò)相結(jié)合的水產(chǎn)養(yǎng)殖池塘溶解氧智能監(jiān)控系統(tǒng),為解決非線性、大時(shí)滯復(fù)雜對(duì)象的控制問題提供一種新思路。謝秋菊等[23]提出了豬舍多環(huán)境因子模糊控制系統(tǒng)及策略,根據(jù)設(shè)定值對(duì)豬舍內(nèi)環(huán)境因子進(jìn)行自動(dòng)控制,模糊控制方法的引入有助于實(shí)現(xiàn)豬舍環(huán)境因子的調(diào)控,使系統(tǒng)運(yùn)行更加高效穩(wěn)定。
本文在分析現(xiàn)有污水治理方式的特點(diǎn)和傳統(tǒng)養(yǎng)殖污水監(jiān)測(cè)方式不足的基礎(chǔ)上,設(shè)計(jì)并實(shí)現(xiàn)了生豬養(yǎng)殖污水治理智慧監(jiān)管系統(tǒng),實(shí)現(xiàn)對(duì)養(yǎng)殖污水排放的實(shí)時(shí)監(jiān)管與預(yù)警;基于模糊推理理論建立工業(yè)治理模式下的污水監(jiān)管模式,對(duì)監(jiān)管因子進(jìn)行模糊化及邏輯推理,制定相應(yīng)監(jiān)管因子的監(jiān)管策略及規(guī)則;針對(duì)養(yǎng)殖污水生態(tài)治理本文提出了Ecological模型,模型以生態(tài)治理監(jiān)管策略的工作原理為基礎(chǔ),對(duì)監(jiān)測(cè)數(shù)據(jù)進(jìn)行定性與定量分析、預(yù)測(cè)。該系統(tǒng)的實(shí)現(xiàn)對(duì)提高污水監(jiān)管效率具有重要意義。
生豬養(yǎng)殖污水智慧監(jiān)管系統(tǒng)以污水的處理與排放過程為研究對(duì)象,利用傳感器、GPS、視頻監(jiān)控設(shè)備獲取實(shí)時(shí)數(shù)據(jù),結(jié)合歷史數(shù)據(jù)及實(shí)地調(diào)研數(shù)據(jù)構(gòu)建云數(shù)據(jù)庫(kù)。將云數(shù)據(jù)庫(kù)與3種治理方式的監(jiān)管指標(biāo)體系相結(jié)合,通過特定的污水監(jiān)管策略實(shí)現(xiàn)生豬養(yǎng)殖業(yè)污水排放數(shù)據(jù)的分析與預(yù)警,并利用預(yù)警決策分析方法實(shí)現(xiàn)系統(tǒng)警報(bào)推送機(jī)制。另外,預(yù)警決策結(jié)果也將作為評(píng)價(jià)企業(yè)信用等級(jí)的依據(jù)保存至歷史數(shù)據(jù)庫(kù),用于實(shí)現(xiàn)對(duì)嚴(yán)重違規(guī)排放企業(yè)的重點(diǎn)監(jiān)管。具體監(jiān)管框架如圖1所示。
圖1 生豬養(yǎng)殖污水智慧監(jiān)管系統(tǒng)總體架構(gòu)
污水排放數(shù)據(jù)采集系統(tǒng)主要由傳感器、微處理器和GPRS無線傳輸模塊組成,其框架如圖2所示。各傳感器及儀表與微處理器之間通過RS485(采用MODBUS協(xié)議)進(jìn)行通信。微處理器與GPRS無線傳輸模塊通過RS232協(xié)議進(jìn)行通信。系統(tǒng)采集的數(shù)據(jù)直接傳送到云服務(wù)器,作為整個(gè)監(jiān)管系統(tǒng)的基礎(chǔ)實(shí)時(shí)數(shù)據(jù)。
信息采集終端使用的設(shè)備信息如表1所示。不同污水治理方式使用不同類型的傳感器或GPS定位設(shè)備對(duì)污水排放進(jìn)行動(dòng)態(tài)監(jiān)測(cè),根據(jù)數(shù)據(jù)的實(shí)際變化情況,生態(tài)治理和集中治理的監(jiān)管設(shè)定采集周期為10 min,工業(yè)治理采集周期為2 h。采集的數(shù)據(jù)主要有污水氨氮含量、COD值、沼液池液位、流量、槽罐車經(jīng)緯度等。
注:COD為化學(xué)需氧量,BOD生化需氧量,SS懸浮量。
表1 設(shè)備基本信息
1.3.1 監(jiān)管數(shù)據(jù)流分析
生豬養(yǎng)殖污水智慧監(jiān)管系統(tǒng)通過從數(shù)據(jù)采集終端監(jiān)聽與獲取實(shí)時(shí)數(shù)據(jù),根據(jù)不同的污水治理方式分析和判斷污水排放時(shí)間、地點(diǎn)及水質(zhì)狀況等是否滿足污水排放要求及環(huán)保標(biāo)準(zhǔn),監(jiān)測(cè)養(yǎng)殖企業(yè)是否存在偷排、漏排、滿溢、不適宜時(shí)間排放及水質(zhì)不達(dá)標(biāo)等違規(guī)排污現(xiàn)象。為了確保養(yǎng)殖污水的正常排放,本節(jié)根據(jù)污水的3種治理方式的治理流程及特征,分析其數(shù)據(jù)監(jiān)管流程,如圖3所示。
其中,集中治理模式下,當(dāng)大于1小于2,大于1小于2時(shí),槽罐車到達(dá)污水處理廠,此時(shí)若流量值增加,則污水正常排放;若槽罐車到達(dá)污水處理廠但值未發(fā)生變化或減小則發(fā)送設(shè)備故障警報(bào)。若小于1或大于2,或小于1或大于2時(shí),則說明槽罐車并未到達(dá)污水集中處理廠,流量值若發(fā)生變化,則說明養(yǎng)殖污水未被運(yùn)輸?shù)街付ǖ攸c(diǎn)進(jìn)行排放,此時(shí)系統(tǒng)發(fā)送實(shí)時(shí)預(yù)警。
注:μ表示安裝在槽罐車排污口處流量傳感器的值;X1、Y1、X2、Y2分別表示污水集中處理廠范圍的最小經(jīng)度、最小緯度、最大經(jīng)度和最大緯度;(X, Y)為槽罐車實(shí)時(shí)位置;h為沼液池深度的90%;hi為第i次獲取的液位傳感器的數(shù)據(jù);F(h, hi)是判斷沼液池是否滿溢的函數(shù);λ是電機(jī)狀態(tài),λ=1時(shí)電機(jī)開啟,λ=0時(shí)電機(jī)關(guān)閉;μ0為沼液排放總流量,μ1, μ2 … μn表示各終端流量,M(μ0, μ1, μ2,…, μn)是總流量與終端流量和的關(guān)系的判斷函數(shù);T(r,t)為排放時(shí)間判斷函數(shù),r為消納地所在區(qū)域雨量值,t為排放時(shí)間。
1.3.2 功能結(jié)構(gòu)設(shè)計(jì)
生豬養(yǎng)殖污水智慧監(jiān)管系統(tǒng)主要包括實(shí)時(shí)數(shù)據(jù)、視頻監(jiān)控、站點(diǎn)管理、設(shè)備管理、數(shù)據(jù)統(tǒng)計(jì)、預(yù)警管理6個(gè)模塊,系統(tǒng)總體功能結(jié)構(gòu)如圖4所示。該系統(tǒng)的總體目標(biāo)是通過對(duì)污水排放數(shù)據(jù)進(jìn)行處理和分析,達(dá)到污水排放的實(shí)時(shí)監(jiān)管和違規(guī)排污實(shí)時(shí)預(yù)警的效果。在保證養(yǎng)殖企業(yè)信息的完整性及可修改性的同時(shí),實(shí)現(xiàn)不同治理模式下養(yǎng)殖企業(yè)的統(tǒng)一監(jiān)管。因此,系統(tǒng)功能設(shè)計(jì)應(yīng)盡可能使各模塊間具有較低的耦合性,模塊內(nèi)部各功能之間具有較高的內(nèi)聚性,從而提高系統(tǒng)的可擴(kuò)展性和靈活性。保證各模塊在邏輯結(jié)構(gòu)上相互聯(lián)系,在物理結(jié)構(gòu)上相互獨(dú)立。
圖4 系統(tǒng)功能模塊設(shè)計(jì)
本系統(tǒng)選取負(fù)責(zé)人身份(監(jiān)管人員1、企業(yè)管理員2)作為預(yù)警決策一級(jí)指標(biāo);1所包含的二級(jí)指標(biāo)及指標(biāo)因子分別為實(shí)時(shí)預(yù)警1(偷排漏排、不適宜時(shí)間排放、設(shè)備故障、滿溢、水質(zhì)不達(dá)標(biāo)排放)、企業(yè)信用等級(jí)2(違規(guī)次數(shù)、累計(jì)污水排放違規(guī)時(shí)間、累計(jì)違規(guī)排污量)、警報(bào)等級(jí)3(違規(guī)排污量、違規(guī)類型)、警報(bào)處理時(shí)間4(違規(guī)排污對(duì)應(yīng)的處理時(shí)間)等作為警報(bào)推送決策指標(biāo);2所包含的二級(jí)指標(biāo)及指標(biāo)因子分別為實(shí)時(shí)預(yù)警1(偷排漏排、不適宜時(shí)間排放、設(shè)備故障、滿溢、水質(zhì)狀況)、是否向監(jiān)管人員發(fā)送警報(bào)5。預(yù)警推送決策的指標(biāo)體系的一級(jí)指標(biāo)、二級(jí)指標(biāo)和指標(biāo)因子如表2所示。
表2 預(yù)警推送決策指標(biāo)體系
按照預(yù)警推送決策指標(biāo)體系進(jìn)行警報(bào)推送,當(dāng)監(jiān)測(cè)到實(shí)時(shí)數(shù)據(jù)異常時(shí),將警報(bào)信息推送給生豬養(yǎng)殖企業(yè)管理人員,同時(shí)對(duì)該企業(yè)的信用等級(jí)進(jìn)行評(píng)判,若信用等級(jí)較低,則將警報(bào)信息推送給監(jiān)管人員;否則根據(jù)排污量、違規(guī)排污類型對(duì)本次違規(guī)等級(jí)進(jìn)行評(píng)估,按照監(jiān)管指標(biāo)因子及其相應(yīng)的權(quán)重進(jìn)行等級(jí)劃分,將警報(bào)等級(jí)較高的警報(bào)信息推送給監(jiān)管人員;對(duì)等級(jí)較低的違規(guī)排污預(yù)警將根據(jù)企業(yè)管理人員是否對(duì)預(yù)警做出及時(shí)處理決定是否將預(yù)警信息推送給監(jiān)管人員。因此系統(tǒng)中的預(yù)警決策是由實(shí)時(shí)預(yù)警、企業(yè)信用等級(jí)、違規(guī)排污等級(jí)以及企業(yè)管理人員對(duì)預(yù)警處理的時(shí)效性等因素決定的,其警報(bào)推送流程如圖5所示。
圖5 預(yù)警推送決策
根據(jù)GB18596-2001《畜禽養(yǎng)殖業(yè)污染物排放標(biāo)準(zhǔn)》,本系統(tǒng)選取生豬養(yǎng)殖污水排放時(shí)污水中的生化需氧量、氨氮、總磷、化學(xué)需氧量、懸浮量作為污水監(jiān)測(cè)指標(biāo)。工業(yè)治理具有監(jiān)測(cè)參數(shù)多、非線性及時(shí)變等特點(diǎn),無法建立精確的模型,達(dá)不到精確監(jiān)管的效果。因此,模糊推理方法可以很好的實(shí)現(xiàn)生豬養(yǎng)殖污水工業(yè)治理的實(shí)時(shí)智慧監(jiān)管。
模糊推理是利用模糊數(shù)學(xué)以人腦的思維方式識(shí)別和判斷模糊事物或現(xiàn)象,首先進(jìn)行模糊輸入處理,把精確的數(shù)值通過模糊化處理轉(zhuǎn)變?yōu)槟:现械脑?,?jīng)過模糊推理得到模糊化的輸出變量,最后將模糊化的輸出變量進(jìn)行解模糊化,輸出精確量[24-25]。養(yǎng)殖污水工業(yè)治理模糊推理系統(tǒng)過程如圖6所示。生豬養(yǎng)殖污水工業(yè)治理監(jiān)管系統(tǒng)由5個(gè)雙輸入單輸出的模糊子系統(tǒng)組合而成,這5個(gè)模糊監(jiān)管子系統(tǒng)分別為懸浮量監(jiān)管子系統(tǒng)、氨氮監(jiān)管子系統(tǒng)、生化需氧量監(jiān)管子系統(tǒng)、化學(xué)需氧量監(jiān)管子系統(tǒng)、總磷監(jiān)管子系統(tǒng)。模糊監(jiān)管子系統(tǒng)分別以懸浮量、氨氮、生化需氧量、化學(xué)需氧量、總磷的濃度偏差及偏差變化率為輸入量,以相應(yīng)的污水預(yù)警等級(jí)為輸出量,對(duì)監(jiān)管因子進(jìn)行模糊化及邏輯推理。
注:s,n,b,c,p 分別為SS、氨氮、BOD、COD、TP標(biāo)準(zhǔn)值,e1,e2,e3,e4,e5 分別為SS濃度偏差、氨氮濃度偏差、BOD濃度偏差、COD濃度偏差、TP濃度偏差;ds/dt,dn/dt,db/dt,dc/dt,dp/dt 為單位時(shí)間內(nèi)SS濃度、氨氮濃度、BOD濃度、COD濃度、TP濃度偏差變化率;ks,kn,kb,kc,kp 為輸入變量比例因子;u1,u2,u3,u4,u5 為違規(guī)預(yù)警等級(jí)。
本文以懸浮量監(jiān)管子系統(tǒng)為例對(duì)模糊監(jiān)管系統(tǒng)進(jìn)行詳細(xì)解釋。以懸浮量濃度偏差和濃度偏差變化率作為模糊推理的輸入變量,懸浮量違規(guī)預(yù)警等級(jí)為輸出變量1。懸浮量排放標(biāo)準(zhǔn)為小于等于200 mg/L,系統(tǒng)對(duì)污水中質(zhì)量濃度為175~275 mg/L的懸浮量進(jìn)行監(jiān)控,設(shè)定污水違規(guī)排放懸浮量濃度偏差的基本論域?yàn)閇-25,75],模糊論域?yàn)閇-1,3],懸浮量偏差輸入變量比例因子為k=4/100= 0.02,偏差變化率的論域?yàn)閇-6,6],輸入變量用5個(gè)模糊狀態(tài)表示,懸浮量濃度偏差和偏差變化率模糊集合分別定義為={N, ZO, PS, PM, PB}和={NB, NS, ZO, PS, PB},即={負(fù)、零、正小、正中、正大},={負(fù)大、負(fù)小、零、正小、正大}。輸出量模糊集合={NB, NS, ZO, PS, PB},用5個(gè)模糊狀態(tài)分別表示養(yǎng)殖污水違規(guī)排污5個(gè)等級(jí),即綠色、黃色、橙色、紅色、黑色預(yù)警,輸出量的論域?yàn)閇1,5]。
選取對(duì)稱三角形作為輸入輸出變量的隸屬度函數(shù),這樣做便于計(jì)算,在保證系統(tǒng)靈敏度的同時(shí),兼顧系統(tǒng)的魯棒性[22-23,25]。
根據(jù)生豬養(yǎng)殖污水工業(yè)治理特點(diǎn)和監(jiān)管人員養(yǎng)殖污水監(jiān)管預(yù)警經(jīng)驗(yàn)構(gòu)建監(jiān)管規(guī)則表,實(shí)現(xiàn)高效模糊推理監(jiān)管。系統(tǒng)采用重心法對(duì)輸出量進(jìn)行解模糊,得到輸出變量的精確量。根據(jù)推理結(jié)果可以確定,不同懸浮量濃度偏差大小和偏差變化率對(duì)養(yǎng)殖污水違規(guī)排污預(yù)警等級(jí)均有影響。當(dāng)濃度偏差為N時(shí),無論>0或<0,推理輸出為NB。當(dāng)濃度偏差為PB時(shí),無論>0或<0,輸出為PB。當(dāng)濃度偏差為ZO、PS、PM時(shí),需要根據(jù)濃度偏差變化率來確定預(yù)警等級(jí),選擇相應(yīng)的監(jiān)管規(guī)則,確定養(yǎng)殖企業(yè)污水違規(guī)排放等級(jí)。當(dāng)<0時(shí),說明懸浮量濃度呈減少趨勢(shì),預(yù)警等級(jí)相對(duì)較低;當(dāng)>0時(shí),表明懸浮量濃度呈增加趨勢(shì),預(yù)警等級(jí)相對(duì)較高。因此從以上策略分析,根據(jù)畜禽養(yǎng)殖業(yè)污水排放標(biāo)準(zhǔn),可以得出25條養(yǎng)殖污水懸浮量模糊推理監(jiān)管規(guī)則,該系統(tǒng)的模糊推理規(guī)則表如表3所示。
表3 懸浮量濃度模糊推理規(guī)則
本系統(tǒng)將生態(tài)治理模式下生豬養(yǎng)殖企業(yè)污水治理智慧監(jiān)管模型定義為:
Ecological模型處理過程是等于1時(shí),電機(jī)開啟,此時(shí)模型通過將與第次獲取的液位傳感器監(jiān)測(cè)數(shù)據(jù)h進(jìn)行對(duì)比判斷沼液池是否存在滿溢現(xiàn)象,同時(shí)通過比較沼液排放總流量0與各終端流量1,2,…,μ之和來判斷生豬養(yǎng)殖業(yè)污水是否存在偷排、漏排或者設(shè)備是否出現(xiàn)故障。另外,Ecological模型通過和的取值判定生豬養(yǎng)殖企業(yè)是否在不適宜時(shí)間排放。
若待處理數(shù)據(jù)為,上述模型可以通過具體的函數(shù)形式表示,Eco可表達(dá)為:
式中表示Full方法,用于判斷沼液池是否存在滿溢現(xiàn)象;表示State方法用于判斷電機(jī)狀態(tài),函數(shù)表示總流量與各終端流量之和的關(guān)系;表示Time方法,用于判斷養(yǎng)殖污水是否在不正確的時(shí)間(雨天或夜間)排放;下面對(duì)以上提到的處理方法做具體的解釋:
系統(tǒng)采用水平衡方程[26]確定雨季期間污水排放時(shí)間間隔()。其公式為
式中表示某次降雨總量,mm;sw為土壤有效儲(chǔ)水量,mm;K為作物系數(shù);ET0為參考作物蒸發(fā)蒸騰量,mm/d;為地下水補(bǔ)給量,mm/d;為降水入滲系數(shù),指有效降雨量與相應(yīng)降雨總量的比值。一般取值表4所示[27]。
表4 降水入滲系數(shù)
式中為作物根系活動(dòng)層深度,m;為土壤干容重,t/m3;0和FC分別為土壤初始含水率和土壤實(shí)時(shí)含水率(占干土質(zhì)量的百分比);G為作物適宜灌溉的土壤水分下限指標(biāo),占田間持水率的百分比;為地下水補(bǔ)給系數(shù),與土壤特性、作物類型有關(guān);WD為地下水埋深,m。
ET0根據(jù)Penman-Monteith公式計(jì)算得出,該公式以能量平衡和水汽擴(kuò)散化理論為基礎(chǔ),同時(shí)考慮作物生理特征和動(dòng)力學(xué)、輻射項(xiàng)參數(shù)的變化[28],具有扎實(shí)的理論基礎(chǔ)和較高的計(jì)算精度,在蒸散研究中被廣泛應(yīng)用[29-30]。Penman-Monteith公式為
式(10)中Δ為飽和水氣壓溫度曲線上的斜率,kPa/℃;R為冠層表面凈輻射,MJ/(m2·d);為土壤熱通量,MJ/(m2·d);為濕度計(jì)常數(shù),kPa/℃;為2 m高度處平均溫度,℃;2為離地面2 m高處的風(fēng)速,m/s;e和e分別為飽和水氣壓和空氣實(shí)際水氣壓,kPa。其中Δ,R,,2,e和e可以通過氣象資料計(jì)算和用戶輸入的消納地信息獲得,運(yùn)用參考作物蒸發(fā)蒸騰量模型,計(jì)算出ET0。
系統(tǒng)采用Visual C#語(yǔ)言,在Microsoft.NET平臺(tái)框架下進(jìn)行開發(fā),采用Microsoft Visual Studio2015作為界面設(shè)計(jì)和開發(fā)工具,該工具使得系統(tǒng)具有較高的可維護(hù)性和可擴(kuò)展性。系統(tǒng)首頁(yè)和監(jiān)管界面如圖7所示。圖7a是生豬養(yǎng)殖業(yè)污水智慧監(jiān)管系統(tǒng)首頁(yè),圖7b是浙江省金華市某養(yǎng)殖企業(yè)某天污水排放監(jiān)管的實(shí)時(shí)數(shù)據(jù)信息。圖7c是本系統(tǒng)對(duì)該養(yǎng)殖企業(yè)污水排放監(jiān)管的預(yù)警結(jié)果,其中包括預(yù)警時(shí)間、預(yù)警類型的判斷、警報(bào)等級(jí)以及本次預(yù)警是否被監(jiān)管人員處理等信息。
2017年9月-11月對(duì)生豬養(yǎng)殖污水排放進(jìn)行模擬試驗(yàn)。使用1.2節(jié)中提及的傳感器進(jìn)行數(shù)據(jù)采集,測(cè)試系統(tǒng)的誤差及穩(wěn)定性。系統(tǒng)監(jiān)測(cè)了6種違規(guī)排污現(xiàn)象,對(duì)違規(guī)排污現(xiàn)象進(jìn)行300組模擬監(jiān)測(cè),計(jì)算每種違規(guī)排污類型預(yù)警的平均準(zhǔn)確度、誤差時(shí)間、誤差排污量。其中準(zhǔn)確度為系統(tǒng)推送警報(bào)的次數(shù)與實(shí)際模擬試驗(yàn)中違規(guī)排污次數(shù)的比值,誤差時(shí)間為實(shí)際違規(guī)排污時(shí)間與系統(tǒng)違規(guī)預(yù)警時(shí)間的差值,誤差排污量為因系統(tǒng)警報(bào)延遲造成的養(yǎng)殖污水違規(guī)排污量。表5為試驗(yàn)統(tǒng)計(jì)結(jié)果。試驗(yàn)結(jié)果表明,系統(tǒng)預(yù)警平均準(zhǔn)確度為96.17%,平均誤差時(shí)間為33.22 s,因誤差時(shí)間造成的每種違規(guī)排污量平均值為15.77 L,能夠滿足污水監(jiān)測(cè)部門的監(jiān)管要求,且提高了污水違規(guī)排放監(jiān)管效率。
a. 生豬養(yǎng)殖業(yè)污水智慧監(jiān)管系統(tǒng)首頁(yè)
a. Home page of smart supervisory system for swine effluent
b. 某生豬養(yǎng)殖企業(yè)實(shí)時(shí)數(shù)據(jù)信息
b. Effluent discharging real-time data of swine farming
c. 生豬養(yǎng)殖企業(yè)污水排放預(yù)警分析結(jié)果
表5 模擬試驗(yàn)結(jié)果
本文分析了生豬養(yǎng)殖企業(yè)污水治理的實(shí)際情況和排放流程,制定3種治理模式下生豬養(yǎng)殖污水智慧監(jiān)管策略,設(shè)計(jì)并實(shí)現(xiàn)了基于畜牧業(yè)物聯(lián)網(wǎng)的生豬養(yǎng)殖污水智慧監(jiān)管系統(tǒng)。
1)本系統(tǒng)實(shí)現(xiàn)了對(duì)不同污水治理方式的生豬養(yǎng)殖企業(yè)的統(tǒng)一監(jiān)管,通過信息采集終端模塊監(jiān)聽與收集養(yǎng)殖污水排放的實(shí)時(shí)信息,實(shí)現(xiàn)養(yǎng)殖污水實(shí)時(shí)數(shù)據(jù)的監(jiān)測(cè)、視頻監(jiān)控、預(yù)警管理、站點(diǎn)管理等功能。
2)工業(yè)治理監(jiān)管策略基于模糊推理理論,對(duì)監(jiān)管因子進(jìn)行模糊化及邏輯推理,分別制定了不同監(jiān)管因子的監(jiān)管規(guī)則及策略,建立5個(gè)具有雙輸入變量的模糊監(jiān)管子系統(tǒng)。能根據(jù)排放污水中污染物含量的監(jiān)測(cè)值判定養(yǎng)殖企業(yè)是否違規(guī)排污以及違規(guī)排污等級(jí)。
3)針對(duì)污水生態(tài)治理,本文提出了Ecological模型,利用定性與定量的分析方法對(duì)該治理模式下傳感器實(shí)時(shí)數(shù)據(jù)進(jìn)行監(jiān)管,實(shí)現(xiàn)對(duì)可能存在的養(yǎng)殖污水偷排漏排、滿溢、不適宜時(shí)間排放等違規(guī)現(xiàn)象的監(jiān)管。
通過試驗(yàn)結(jié)果表明,系統(tǒng)預(yù)警平均準(zhǔn)確度為96.17%,平均誤差時(shí)間為33.22 s,因誤差時(shí)間造成的每種違規(guī)排污量平均值為15.77 L,能夠滿足養(yǎng)殖污水排放監(jiān)管要求,對(duì)提高監(jiān)管效率具有重要意義。但由于養(yǎng)殖污水對(duì)傳感器存在不同程度的侵蝕及由傳感器精度造成的誤差,使得本策略在實(shí)施過程中仍存在許多問題。
[1] 祁茂彬,王永行,王忠民. 規(guī)模養(yǎng)豬場(chǎng)糞便和污水治理模式的調(diào)查與思考[J]. 現(xiàn)代畜牧醫(yī),2014(1):48-50.
Qi Maobin, Wang Yonghang, Wang Zhongmin. Investigation and thinking of the management mode of feces and sewage in large scale pig farms[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2014(1): 48-50. (in Chinese with English abstract)
[2] 孟祥海,張俊飚,李鵬,等. 畜牧業(yè)環(huán)境污染形勢(shì)與環(huán)境治理政策綜述[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2014,30(1):1-8.
Meng Xianghai, Zhang Junbiao, Li Peng, et al. Summary of livestock environmental pollution and environmental management polcies[J]. Journal of Ecology and Rural Environment, 2014, 30(1): 1-8. (in Chinese with English abstract)
[3] 趙海濤,李宗宇,顏志俊,等. 填料碳種類對(duì)蚯蚓生物工程床凈化畜禽養(yǎng)殖污水的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(15):213-218.
Zhao Haitao, Li Zongyu, Yan Zhijun, et al. Effects of different types of carbon based filter materials on purification of livestock wastewater by earthworm bioengineering bed[J]. Transaction of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2016, 32(15): 213-218. (in Chinese with English abstract)
[4] Patricia Bilotta, Ricardo Luiz Radis Steinmetz, Airton Kunz, et al. Swine effluent post-treatment by alkaline control and UV radiation combined for water reuse[J]. Journal of Cleaner Production, 2017, 140: 1247-1254.
[5] 黃美玲,何慶,黃夏子,等. 小球藻處理養(yǎng)殖污水及其資源化利用研究[J]. 中山大學(xué)學(xué)報(bào),2010,49(增刊1):89-93.
Huang Meiling, He Qing, Huang Xiazi, et al. Aquaculture wastewater treatment and resource utilizing by chlorella[J]. Acta Scientiarum Naturalium Universitatis Sunyatyeni, 2010, 49(Supp.1): 89-93. (in Chinese with English abstract)
[6] 于濤,成水平,賀鋒,等. 基于復(fù)合垂直流人工濕地的循環(huán)水養(yǎng)殖系統(tǒng)凈化養(yǎng)殖效能與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(2):188-193.
Yu Tao, Cheng Shuiping, He Feng, et al. Performance and optimization of recrirculating aquaculture system combined with integrated vertical-flow constructed wetland[J]. Transaction of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2008, 24(2): 188-193. (in Chinese with English abstract)
[7] 張世羊,常軍軍,高毛林,等. 曝氣對(duì)垂直流濕地水產(chǎn)養(yǎng)殖廢水脫氮的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(9):235-241.
Zhang Shiyang, Chang Junjun, Gao Maolin, et al. Impact of artificial aeration on nitrogen removal from aquaculture wastewater treated by vertical-flow constructed wetland[J]. Transaction of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2015, 31(9): 235-241. (in Chinese with English abstract)
[8] 何金成,楊祥龍,王立人,等. 基于近紅外光譜法的廢COD、BOD5、PH的快速測(cè)量[J]. 環(huán)境科學(xué)學(xué)報(bào),2007,27(12):2105-2108.
He Jincheng, Yang Xianglong, Wang Liren, et al. Rapid determination of chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and PH in wastewater using near infrared spectroscopy[J]. Acta Scientiae Circumstantiae, 2007, 27(12): 2105-2108. (in Chinese with English abstract)
[9] 郭勁松,林佳琪,方芳,等. 屏蔽氯離子干擾高鹽榨菜廢水中COD的測(cè)定方法[J]. 重慶大學(xué)學(xué)報(bào),2014,37(1):117-122.
Guo Jingsong, Lin Jiaqi, Fang Fang, et al. The chloride mask in COD determination of pickled mustard wastewater with high salt[J]. Journal of Chongqing University, 2014, 37(1): 117-122. (in Chinese with English abstract)
[10] 王俊榮,韓永紅,劉宗斌. 銀鹽沉淀-鉻酸鹽法測(cè)定高氯離子水樣中化學(xué)需氧量[J]. 冶金分析,2008,28(3):43-45.
Wang Junrong, Han Yonghong, Liu Zongbin. Determination of chemical oxygen demand of high concentration chloride water samples by silver precipitation and dichromate method[J]. Metallurgical Analysis, 2008, 28(3): 43-45. (in Chinese with English abstract)
[11] Matcalf, Eddy, Inc. Wastewater Engineering: Treatment, Disposal, Reuse[M]. 3rd Ed. New York, USA: McGraw-Hill, 1991.
[12] 韓紅桂,陳治遠(yuǎn),喬俊飛,等. 基于區(qū)間二型模糊神經(jīng)網(wǎng)絡(luò)的出水氨氮軟測(cè)量[J]. 化工學(xué)報(bào),2017,68(3):1032-1040.
Han Honggui, Chen Zhiyuan, Qiao Junfei, et al. Soft-sensor method for effluent ammonia nitrogen based on interval type-2 fuzzy neural networks[J]. CIESC Journal, 2017, 68(3): 1032-1040. (in Chinese with English abstract)
[13] 許玉格,劉莉,曹濤. 基于Fast-RVM的在線軟測(cè)量預(yù)測(cè)模型[J]. 化工學(xué)報(bào),2015,66(11):4540-4545.
Xu Yuge, Liu Li, Cao Tao. On-line soft measuring model based on Fast-RVM[J]. CIESC Journal, 2015, 66(11): 4540-4545. (in Chinese with English abstract)
[14] 叢秋梅,苑明哲,王宏. 基于穩(wěn)定Hammerstein模型的在線軟測(cè)量建模方法及應(yīng)用[J]. 化工學(xué)報(bào),2015,66(4):1380-1387.
Cong Qiumei, Yuan Mingzhe, Wang Hong. On-line soft sensor based on stable Hammerstein model and its applications[J]. CIESC Journal, 2015, 66(4): 1380-1387. (in Chinese with English abstract)
[15] Li Tianling, Winnel Melissa, Lin Hao, et al. A reliable sewage quality abnormal event monitoring system[J]. Waster Research, 2017, 121: 248-257.
[16] 熊本海,楊振剛,楊亮,等. 中國(guó)畜牧業(yè)物聯(lián)網(wǎng)技術(shù)應(yīng)用研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊1):237-246.
Xiong Benhai, Yang Zhengang, Yang Liang, et al. Review on application of Internet of Things technology in animal husbandry in China[J]. Transactions of the Chinese Society of Agricultural Engineering(Transaction of the CSAE), 2015, 31(Supp.1): 237-246. (in Chinese with English abstract)
[17] Li Hualong, Li Miao, Zhan Kai, et al. Intelligent monitoring system for laminated henhouse based on Internet of Things[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2015, 31(Supp.2): 210-215.
[18] 段玉瑤,馬麗,劉剛. 基于物聯(lián)網(wǎng)的生豬運(yùn)動(dòng)行為及豬舍環(huán)境遠(yuǎn)程監(jiān)控系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊2):216-221.
Duan Yuyao, Ma Li, Liu Gang. Remote monitoring system of pig motion behavior and piggery environment based on Internet of Things[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2015, 31(Supp.2): 216-221. (in Chinese with English abstract)
[19] 朱虹,李爽,鄭麗敏,等. 生豬養(yǎng)殖場(chǎng)無線傳感器網(wǎng)絡(luò)路徑損耗模型的建立與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):205-212.
Zhu Hong, Li Shuang, Zheng Limin, et al. Modeling and validation on path loss of WSN in pig breeding farm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2017, 33(2): 205-212. (in Chinese with English abstract)
[20] 陳長(zhǎng)喜,許曉華. 基于物聯(lián)網(wǎng)的肉雞可追溯與監(jiān)管平臺(tái)設(shè)計(jì)與應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(5):224-231.
Chen Changxi, Xu Xiaohua. Design and application of traceability and supervision platform for broiler based on Internet of Things[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2017, 33(5): 224-231. (in Chinese with English abstract)
[21] 李慧,劉星橋,李景,等. 基于物聯(lián)網(wǎng)Android平臺(tái)的水產(chǎn)養(yǎng)殖遠(yuǎn)程監(jiān)控系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(13):175-181.
Li Hui, Liu Xingqiao, Li Jing, et al. Aquaculture remote monitoring system based on IOT Android platform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2013, 29(13): 175-181. (in Chinese with English abstract)
[22] 馬從國(guó),趙德安,王建國(guó),等. 基于無線傳感器網(wǎng)絡(luò)的水產(chǎn)養(yǎng)殖池塘溶解氧智能監(jiān)控系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(7):193-200.
Ma Congguo, Zhao Dean, Wang Jianguo, et al. Intelligent monitoring system for aquaculture dissolved oxygen in pond based on wireless sensor network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2015, 31(7): 193-200. (in Chinese with English abstract)
[23] 謝秋菊,蘇中濱,Ni Ji-Qin, 等. 密閉式豬舍多環(huán)境因子調(diào)控系統(tǒng)設(shè)計(jì)及調(diào)控策略[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(6):163-170.
Xie Qiuju, Su Zhongbin, Ni Ji-Qin, et al. Control system design and control strategy of multiple environmental factors in confined swine building[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2017, 33(6): 163-170. (in Chinese with English abstract)
[24] 張偉,何勇,裘正軍,等. 基于無線傳感網(wǎng)絡(luò)與模糊控制的精細(xì)灌溉系統(tǒng)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(增刊2):7-12.
Zhang Wei, He Yong, Qiu Zhengjun, et al. Design of precision irrigation system based on wireless sensor network and fuzzy control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2009, 25(Supp.2): 7-12. (in Chinese with English abstract)
[25] 張伶鳦,王潤(rùn)濤,張長(zhǎng)利,等. 基于調(diào)虧理論和模糊控制的寒地水稻智能灌溉策略[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(13):52-58.
Zhang Lingyi, Wang Runtao, Zhang Changli, et al. Intelligent irrigation strategy based on regulated deficit theory and fuzzy control for rice in cold region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2016, 32(13): 52-58. (in Chinese with English abstract)
[26] 余國(guó)雄,王衛(wèi)星,謝家興,等. 基于物聯(lián)網(wǎng)的荔枝園信息獲取與智能灌溉專家決策系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(20):144-152.
Yu Guoxiong, Wang Weixing, Xie Jiaxing, et al. Information acquisition and expert decision system in litchi orchard based on internet of things[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2016, 32(20): 144-152. (in Chinese with English abstract)
[27] 丁加麗,彭世彰,徐俊增,等. 基于Penman-Monteith方程的節(jié)水灌溉稻田蒸散量模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(4):31-35.
Ding Jiali, Peng Shizhang, Xu Junzeng, et al. Estimation of rice evapotranspiration under controlled irrigation by using Penman-Monteith method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2010, 26(4): 31-35. (in Chinese with English abstract)
[28] Gong Xuwen, Liu Hao, Sun Jingsheng, et al. A proposed surface resistance model for Penman-Monteith formula to estimate evapotranspiration in a solar greenhouse[J]. Journal of Arid Land, 2017, 9(4): 530-546.
[29] 符娜,宋孝玉,夏露,等. 云南省不同生態(tài)水文分區(qū)參考作物蒸散量算法適用性評(píng)價(jià)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(5):209-217.
Fu Na, Song Xiaoyu, Xia Lu, et al. Adaption evaluation for reference evaportranspiration calculation methods in different eco-hydrological regionalization of Yunnan province[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(5): 209-217. (in Chinese with English abstract)
[30] 符娜,李闖,劉艷偉,等. 基于灌溉需求指數(shù)的滇中地區(qū)烤煙需水量時(shí)空變化分析[J].農(nóng)業(yè)機(jī)械學(xué),2016,47(4):155-161.
Fu Na, Li Chuang, Liu Yanwei, et al. Temporal and spatial variation analysis of water requirement of tobacco in Middle of Yunnan Province Based on Irrigation Requirement Index[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 155-161. (in Chinese with English abstract)
Design and implementation of smart supervisory system for sewage emission in swine breeding industry
Wu Xinmei, Xu Aijun, Zhou Suyin※
(1.,311300,;2.,311300,)
Swine effluent poses not only serious threats to the environment and soil but also affect the sustainable development of livestock industry. So the treatment and supervision of swine sewage is imperative. In this paper, we divided the swine treatment methods into ecological treatment, industrial treatment and centralized treatment. To realize the remote monitoring and illegal discharge warning of swine effluent disposed by the three treatment methods, a smart supervisory system and real time data supervisory strategy was designed and proposed. Based on Internet, the newly developed system collected and monitored the effluent information such as rainfall, level, flow, location, chemical oxygen demand and biochemical oxygen demand in water, ammonia concentration and so on through data acquisition system. The system was mainly comprised of sensors, microprocessors, and GPRS wireless transmission module. The collected data were transmitted to the cloud server as real-time data for the entire supervisory system. According to the change rules of data and the practical demand of supervision, real-time data was obtained every 10 minutes. In addition, to determine the credit rating of the industries and push the alarm information in different conditions, the system would select the principle identity as the primary index of warning decision, while for the real-time warning, industry credit rating, alarm grade, and alarm processing time as the secondary indexes were used. Furthermore, the index system of warning-push was proposed in this paper. Combing the real time data and index system of warning-push, the system could realize functions of real time data monitoring, video monitoring, site management, equipment management, data statistic and early warning management. A lower inter-module coupling and a higher cohesion between the functions were designed to improve its scalability and flexibility, and to ensure that the modules could be interrelated in the logical structure and independent in the physical structure. In the centralized treatment, the system used the GPS data and basic information of sewagedisposalplant to judge whether the tank car took the sewage to the designated place to discharge it or not. Based on fuzzy reasoning theory, the supervisory system of industrial treatment with five monitoring subsystems, which had two inputs and one output variables, was established. In this fuzzy supervisory system, suspended solid difference, ammonia-nitrogen difference, biochemicaloxygendemand difference, chemical oxygen demand difference, total phosphorus difference and its variation rate were selected as input variables, and corresponding warning rank as an output variables. Also, symmetry triangle was selected as the membership function of input and output variables to ensure the sensitivity and robustness of the system. According to the effluent discharge standards of the livestock and poultry industry, fuzzy reasoning rules of the subsystem can be generated. To monitor the ecological treatment of swine effluent, in this paper, we constructed the corresponding supervision strategy and ecological mathematical model. Based on the principle of the supervisory strategy, the model predicted and analyzed the real-time data by qualitative and quantitative method to calculate the discharging interval during rainy days and to judge whether there existed the phenomenon of night discharge, stealing and leaking, overflowing and so on. Through the simulation test, the results showed that the system’s average warning accuracy reached 96.17%, the average error time was 33.22 s, the illegal discharge capacity caused by error time was 15.77 L. Therefore, this supervisory system could meet the requirements of swine effluent discharge regulation and improve the supervision efficiency significantly.
sewage; emission control; design; swine production; fuzzy reasoning; smart supervision; supervisory system
10.11975/j.issn.1002-6819.2018.02.031
S818.9
A
1002-6819(2018)-02-0226-09
2017-09-11
2017-12-29
浙江省“三農(nóng)六方”科技協(xié)作項(xiàng)目(CTZB-F160728AWZ-SNY1,生豬養(yǎng)殖污染治理智慧監(jiān)控技術(shù)模式研究與應(yīng)用)
武新梅,從事資源與環(huán)境信息系統(tǒng)研究。Email:xinmeiw@foxmail.com
周素茵,講師,從事電子電路的分析與設(shè)計(jì)及物聯(lián)網(wǎng)方向的研究。Email:zsy197733@163.com
武新梅,徐愛俊,周素茵. 生豬養(yǎng)殖業(yè)污水排放智慧監(jiān)管系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):226-234. doi:10.11975/j.issn.1002-6819.2018.02.031 http://www.tcsae.org
Wu Xinmei, Xu Aijun, Zhou Suyin. Design and implementation of smart supervisory system for sewage emission in swine breeding industry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 226-234. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.02.031 http://www.tcsae.org