展小云,郭明航,趙 軍,史海靜,稅軍峰
?
基于粒子成像瞬態(tài)測(cè)量技術(shù)的雨滴微物理特性及降雨動(dòng)能研究
展小云,郭明航※,趙 軍,史海靜,稅軍峰
(1. 西北農(nóng)林科技大學(xué)黃土高原土壤侵蝕與旱地農(nóng)業(yè)國(guó)家重點(diǎn)實(shí)驗(yàn)室,楊凌 712100; 2. 中國(guó)科學(xué)院水利部水土保持研究所,楊凌 712100)
雨滴微物理特性及降雨動(dòng)能是揭示降雨物理本質(zhì)的重要特征量,亦是開(kāi)展侵蝕定量分析與建立侵蝕量預(yù)報(bào)模型的基礎(chǔ)。采用粒子成像瞬態(tài)測(cè)量可視化技術(shù)觀測(cè)自然降雨雨滴,結(jié)合計(jì)算機(jī)視覺(jué)識(shí)別技術(shù)解算雨滴微物理特性參數(shù),同時(shí)采用虹吸式自記雨量計(jì)記錄自然降雨降雨強(qiáng)度。研究表明:該次降雨雨滴以中等粒子為主,雨滴直徑均值為1.52 mm,降落末速度均值為3.47 m/s,其中直徑在1.00~3.00 mm范圍內(nèi)的雨滴占樣本總數(shù)的87.21%。雨滴直徑和降落末速度呈顯著的對(duì)數(shù)關(guān)系?;趯?shí)測(cè)的雨滴微物理特性和降雨強(qiáng)度估算降雨動(dòng)能,該結(jié)果與傳統(tǒng)的經(jīng)驗(yàn)?zāi)P凸浪憬Y(jié)果相對(duì)誤差均值為7.28%。該方法得到的降雨動(dòng)能較以往的經(jīng)驗(yàn)?zāi)P湍芨鎸?shí)的反應(yīng)雨滴降落過(guò)程中的做功大小,為準(zhǔn)確計(jì)算降雨過(guò)程中雨滴所造成的濺蝕量奠定基礎(chǔ)。
侵蝕;圖像處理;物理特性;雨滴;粒子成像;降雨強(qiáng)度;降雨動(dòng)能
雨滴在降落過(guò)程中受到萬(wàn)有引力、空氣浮力、粘滯阻力、科里奧利力等多種因素的影響,使得雨滴在運(yùn)動(dòng)過(guò)程中呈現(xiàn)不同的大小、形狀、組成分布、降落速度和動(dòng)能等微物理特性[1]。在節(jié)水灌溉中,雨滴微物理特性是評(píng)價(jià)噴灌系統(tǒng)工程質(zhì)量的重要指標(biāo)之一,在噴灌過(guò)程中,直徑小的水滴由于飄逸蒸發(fā)損失,降低水分利用效率;直徑大的水滴降落過(guò)程中動(dòng)能較大,從而傷害作物并導(dǎo)致土壤板結(jié),降低土壤入滲性能,加劇土壤濺蝕量[2-3];在水土保持中,雨滴大小和速度是研究土壤水力侵蝕動(dòng)力學(xué)過(guò)程、計(jì)算陸面過(guò)程中降雨侵蝕力以及制定水土保持工程措施的的基本依據(jù)[4-6];在物理學(xué)中,雨滴的形狀和折射率是研究雨滴對(duì)電磁波散射和衰減影響的重要前提[7-8];在氣象科學(xué)中,雨滴的尺度、形狀、速度及其譜分布是評(píng)估人工模擬降雨效果標(biāo)準(zhǔn)之一,亦是了解自然降雨發(fā)展趨勢(shì),揭示降雨機(jī)制的重要參數(shù)[9-10]。如何測(cè)量雨滴物理特性及降雨動(dòng)能成為節(jié)水灌溉、土壤侵蝕、氣象科學(xué)等研究工作的熱點(diǎn)問(wèn)題[11-12]。
早期國(guó)內(nèi)外學(xué)者主要通過(guò)濾紙色斑法、面粉團(tuán)法、浸潤(rùn)法、動(dòng)力學(xué)法等監(jiān)測(cè)雨滴的微物理特性,但是上述方法普遍存在自動(dòng)化程度低,實(shí)際應(yīng)用局限性大等問(wèn)題[13-16]。例如,應(yīng)用較多的濾紙色斑法后期數(shù)據(jù)處理冗繁,并且不能對(duì)雨滴進(jìn)行連續(xù)觀測(cè)。浸潤(rùn)法中由于小粒子無(wú)法沖破表面張力而浸入液體,使得該方法不能監(jiān)測(cè)自然降雨中的小雨滴。19世紀(jì)60年代,Clardy等[17]第一次使用雨滴譜儀測(cè)量雨滴大小和速度。至此人們開(kāi)始利用基于光電、聲電等原理研制的雨滴譜儀進(jìn)行雨滴微物理特性的監(jiān)測(cè),雨滴譜儀得到快速的發(fā)展和應(yīng)用[18-21]。目前應(yīng)用最為廣泛的是Parsivel激光雨滴譜儀和二維雨滴譜儀(2D Vidio Didtromet, 2-DVD)[4,22]。兩者均操作簡(jiǎn)單,并可快速地獲取豐富的雨滴微物理特性信息,但是Parsivel激光雨滴譜儀無(wú)法區(qū)分同時(shí)下落的雨滴粒子,有很大的重疊誤差;2-DVD雨滴譜儀則容易受氣流影響,尤其在強(qiáng)風(fēng)條件下雨滴變形導(dǎo)致雨滴下降速度測(cè)量誤差較大。
可見(jiàn),上述各種方法都存在工作冗繁和誤差較大的問(wèn)題,并且適用于實(shí)驗(yàn)室的各種雨滴特性測(cè)試方法都不能進(jìn)行實(shí)時(shí)測(cè)量。粒子成像瞬態(tài)測(cè)量可視化技術(shù)采樣空間大,測(cè)量誤差小,并且能夠快速、準(zhǔn)確、實(shí)時(shí)地觀測(cè)雨滴大小、運(yùn)動(dòng)速度等雨滴微物理特性。本文利用該技術(shù)和裝置研究自然降雨雨滴微物理特性、降雨動(dòng)能特征,分析雨滴直徑與降落末速度關(guān)系,在此基礎(chǔ)上基于實(shí)測(cè)的雨滴微物理特性估算降雨動(dòng)能,與傳統(tǒng)的統(tǒng)計(jì)模型比對(duì),驗(yàn)證統(tǒng)計(jì)模型的準(zhǔn)確性和適用性。
楊凌地處陜西省關(guān)中平原中西部,東經(jīng)107°59′~108°09′,北緯34°14′~34°24′,海拔418.0~540.1 m,地勢(shì)北高南低。氣候?qū)倥瘻貛О霛駶?rùn)氣候,四季分明,年平均氣溫12.9 ℃,最高氣溫42.0 ℃,最低氣溫?19.4 ℃,全年無(wú)霜期221 d。年均降水量637.6 mm,多集中在7~10月,占多年平均降水量的60%,年平均蒸發(fā)量884 mm。觀測(cè)地點(diǎn)位于中國(guó)科學(xué)院水利部水土保持研究所科研樓。由于試驗(yàn)是在無(wú)風(fēng)條件下進(jìn)行的,風(fēng)速對(duì)雨滴形狀、速度等微物理特性的影響忽略不計(jì)。
采用粒子成像的瞬態(tài)測(cè)量可視化技術(shù)測(cè)量雨滴微物理特性參數(shù)。該技術(shù)主要是利用CCD工業(yè)像機(jī)對(duì)降落雨滴進(jìn)行快拍(曝光時(shí)間短)和慢拍(曝光時(shí)間長(zhǎng))操作,采集同一時(shí)刻的雨滴“靜止”和“拖尾”影像,確定其在特定的時(shí)間序列上的空間位置和形狀,進(jìn)而解算雨滴微物理特性參數(shù)。粒子成像測(cè)量系統(tǒng)主要由3個(gè)子系統(tǒng)組成,即投影系統(tǒng)、采集系統(tǒng)和采集控制系統(tǒng),具體功能結(jié)構(gòu)如圖1所示。
1.投影機(jī)箱 2.點(diǎn)光源 3.固定架 4.菲涅爾透鏡軌道 5.菲涅爾透鏡 6.菲涅爾透鏡固定框 7.投影機(jī)前面板 8.投影機(jī)箱前蓋9.采集機(jī)箱 10.CCD支架 11.幕布框 12.采集機(jī)前面板 13.快拍相機(jī) 14.慢拍相機(jī) 15.投影幕布 16.控制機(jī)箱 17.電路板 18.控制機(jī)下蓋 19.交換機(jī) 20.出線面板 21.光軸 22.雨滴 23.平行光 24.圓形標(biāo)靶
該系統(tǒng)主要包括6個(gè)工作單元,即點(diǎn)光源、菲涅爾透鏡、投影幕布、CCD工業(yè)相機(jī)、相機(jī)同步控制器和計(jì)算機(jī)終端。其中,點(diǎn)光源采用一種色溫為4 300 K左右的飛利浦銀戰(zhàn)士鹵素?zé)?;菲涅爾聚光鏡將光束擴(kuò)束后投射到投影幕布,二者構(gòu)成有效采樣空間;CCD工業(yè)相機(jī)為德國(guó)BASLER acA 1600-20 gm相機(jī),分辨率為1 624 pixels× 1 234 pixels,相機(jī)采集頻率設(shè)定為20 幀/s,曝光時(shí)間分別設(shè)定為1/4 000和1/500 s,CCD工業(yè)相機(jī)將接受到的光強(qiáng)信號(hào)轉(zhuǎn)換為數(shù)字圖像信號(hào);采集控制系統(tǒng)由D-Link千兆五端口交換機(jī)、同步觸發(fā)板、四芯航空接頭、串口轉(zhuǎn)換裝置等組成,實(shí)現(xiàn)圖像數(shù)據(jù)的實(shí)時(shí)采集、管理和高效率傳輸?shù)?;用戶終端可以實(shí)現(xiàn)雨滴形狀、運(yùn)動(dòng)軌跡等的記錄和存儲(chǔ),據(jù)此可以計(jì)算和分析雨滴直徑、雨滴降落末速度等。
光學(xué)測(cè)量單元采用滿畫(huà)幅像素拍攝,像元寬度= 4.1m,用于感應(yīng)點(diǎn)光源產(chǎn)生的平行光。相機(jī)使用焦距為8 mm工業(yè)鏡頭,投影幕布距離相機(jī)中心的距離為320 mm,菲涅爾透鏡有效面積為230 mm × 210 mm,考慮到相機(jī)分辨率則平行光的投影寬度為202.38 mm,同理可以算出平行光的投影高度為266.34 mm。此外,如果投影幕布和菲涅爾透鏡的距離過(guò)大或者過(guò)小,使得發(fā)射到幕布上的平行光強(qiáng)度較弱或者較強(qiáng),最終使得幕布背景過(guò)于黑暗或者亮度過(guò)高,均不能正常顯示雨滴影像,只有保證雨滴在幕布上的影像灰度和幕布本身的灰度差異最大化才能有效獲取雨滴影像。綜合以上2點(diǎn),將系統(tǒng)的平面采樣空間設(shè)置為200 mm × 200 mm,系統(tǒng)在垂直于投影屏幕方向上的開(kāi)口距離也為200 mm。該系統(tǒng)相對(duì)于目前的2-DVD系統(tǒng)采樣空間增大,提高了采樣的代表性,彌補(bǔ)了2-DVD對(duì)大粒子探測(cè)能力較差的缺點(diǎn)。
為了獲取清晰的雨滴影像,目前的研究提出了不同的雨滴微觀特征提取方法[23-24]。本研究針對(duì)上述監(jiān)測(cè)系統(tǒng)設(shè)計(jì)了一套獨(dú)有的雨滴微物理特性提取算法,即采用計(jì)算機(jī)識(shí)別技術(shù)對(duì)原始雨滴影像進(jìn)行數(shù)字影像糾正、計(jì)算機(jī)圖像深度處理等方法剔除噪音,進(jìn)而勾畫(huà)二值化的雨滴影像,在此基礎(chǔ)上匹配快拍和慢拍得到的同名雨滴影像,進(jìn)而為計(jì)算雨滴微物理特性參數(shù)奠定基礎(chǔ)。經(jīng)過(guò)大量的對(duì)比和計(jì)算最終確定獲取的初始雨滴影像中的兩類主要噪音為高斯噪音和尖峰噪音。針對(duì)以上兩類噪音設(shè)計(jì)了一套噪音處理算法并研發(fā)相應(yīng)的軟件解譯系統(tǒng),如圖2所示。
圖2 雨滴影像解譯系統(tǒng)
具體算法為:1)統(tǒng)計(jì)濾波算法剔除絕大部分的背景噪音;2)滾動(dòng)濾波算法剔除影像中孤立的噪音,并最大程度地保留影像細(xì)節(jié);3)鄰域平滑濾波算法剔除少量殘留的噪音;4)全局二值化方法勾畫(huà)二值化的雨滴影像;5)利用定位標(biāo)靶信息進(jìn)行同名雨滴的辨識(shí),噪音剔除的過(guò)程影像如圖3所示。雨滴影像包含豐富的細(xì)節(jié)信息,如圖4所示,基于處理后的清晰的雨滴影像可以得到雨滴的精細(xì)微物理特性。
圖3 噪音剔除過(guò)程影像
1.雨滴陰影區(qū) 2. 雨滴外包絡(luò)線 3.雨滴形態(tài)對(duì)稱軸(運(yùn)動(dòng)方向) 4.雨滴拖尾長(zhǎng)度
為了檢測(cè)上述觀測(cè)裝置的準(zhǔn)確性,進(jìn)行鋼珠灑落試驗(yàn),觀測(cè)鋼珠的直徑和降落末速度,用鋼珠觀測(cè)直徑和降落末速度分別與實(shí)際直徑和理論降落末速度對(duì)比分析以檢測(cè)該方法的準(zhǔn)確性,結(jié)果表明該方法觀測(cè)誤差小,可有效、快速地觀測(cè)雨滴微物理特性[25]。本研究利用上述觀測(cè)系統(tǒng)在陜西楊凌區(qū)進(jìn)行外場(chǎng)觀測(cè)試驗(yàn)采集自然降雨的雨滴影像,共采集得到8 448幀圖像,其中2 762幅有效雨滴圖像,因此雨滴對(duì)完整捕獲概率為32.7%。同時(shí),試驗(yàn)采用上海儀器廠生產(chǎn)的SJ型虹吸式自記雨量計(jì)測(cè)定降雨量,將雨量計(jì)布設(shè)在開(kāi)闊無(wú)遮擋物區(qū)域,避免降雨受到建筑物和高大樹(shù)木的影響。
描述雨滴直徑常用的特征參數(shù)為平均直徑,包括周長(zhǎng)變換平均直徑、軌跡平均直徑、體積平均直徑、等圓平均直徑以及幾何平均直徑。本研究中采用幾何平均直徑,相對(duì)于其他平均直徑的算法而言,幾何平均直徑計(jì)算流程簡(jiǎn)單,在平面上充分利用了幾何均值的特點(diǎn),誤差較小。幾何平均直徑的計(jì)算方法是根據(jù)在“靜止”的雨滴輪廓上尋找距離最遠(yuǎn)的2個(gè)點(diǎn),其連線作為雨滴最大直徑,經(jīng)該直徑的中點(diǎn)做垂線,交于雨滴輪廓上兩點(diǎn),該兩點(diǎn)之間的距離即為雨滴第二直徑,最大直徑和第二直徑的幾何均值即為雨滴幾何平均直徑,如圖5a所示,即
式中為雨滴的幾何平均直徑,mm;1為長(zhǎng)軸的長(zhǎng)度,mm;2為短軸的長(zhǎng)度,mm。
注:1和2分別為長(zhǎng)軸和短軸的長(zhǎng)度,1和2分別為慢拍相機(jī)和快拍相機(jī)的曝光時(shí)間,為雨滴的幾何平均直徑,為雨滴拖尾長(zhǎng)度。
Notes:1and2are length of long axis and short axis,1and2are exposure time of snapshot and slowshot camera,is the geometric mean diameter of raindrop,is the tailed length of raindrop.
圖5 雨滴直徑和移動(dòng)距離算法示意圖
Fig.5 Schematic diagram of diameter and movement distance algorithms of raindrop
雨滴在高空的降落過(guò)程雖然是一個(gè)變加速的過(guò)程,但是由于其受力的復(fù)雜性,導(dǎo)致雨滴在到達(dá)地面之前必然達(dá)到一個(gè)收尾速度,加之本研究采用的是瞬態(tài)粒子成像可視化監(jiān)測(cè)技術(shù),因此,雨滴近地面的運(yùn)動(dòng)可視為勻速運(yùn)動(dòng)。本研究采用外包絡(luò)線提取算法計(jì)算雨滴的降落末速度,即利用“拖尾”雨滴影像與同名“靜止”雨滴影像之間的相位差除以快拍和慢拍相機(jī)的曝光時(shí)間差得到。該算法的計(jì)算原理如圖5b所示,即
式中()為雨滴降落末速度,m/s;為雨滴拖尾長(zhǎng)度,mm;1為慢拍相機(jī)的曝光時(shí)間,s;2為快拍相機(jī)的曝光時(shí)間,s。
雨滴動(dòng)能是根據(jù)雨滴大小及其組成計(jì)算求得。單個(gè)雨滴的動(dòng)能主要取決于雨滴直徑和降落末速度。本文把雨滴視為一個(gè)理想的球體,用下式計(jì)算單個(gè)雨滴的動(dòng)能,即
式中為單個(gè)雨滴的動(dòng)能,J;為標(biāo)準(zhǔn)狀態(tài)下水的密度,kg/mm3。
本研究中采用Marshall等[26]提出的M-P指數(shù)描述雨滴分布,即
式中()為單位尺度間隔、單位體積內(nèi)的雨滴數(shù),個(gè)/(m3·mm);0為約等于8 000的常數(shù);為降雨強(qiáng)度(I, mm/h)的冪函數(shù),表達(dá)為
在靜風(fēng)的條件下,Hall等[27]的研究表明單位時(shí)間單位地表的雨滴數(shù)′()可表達(dá)為降落末速度(())和雨滴譜(())的乘積形式,即
聯(lián)合(3)式、(4)式、(5)式和(6)式可得降雨總動(dòng)能(E())的如下表達(dá)式,即
式中E()為單位時(shí)間內(nèi)單位地表所接收到的降雨總動(dòng)能,J/(m2·min)。
為了描述雨滴微物理特性的統(tǒng)計(jì)特征,首先計(jì)算了樣本的偏度值()和豐度值(),并進(jìn)行K-S檢驗(yàn),結(jié)果表明雨滴直徑和降落末速度均呈偏態(tài)分布(>0.05),對(duì)其取常用對(duì)數(shù)后,則呈正態(tài)分布,說(shuō)明雨滴直徑和降落末速度符合對(duì)數(shù)正態(tài)分布,所以用幾何均值比算術(shù)均值更能真實(shí)地反映樣本的統(tǒng)計(jì)特征。從表1可知,雨滴的直徑和降落末速度存在很大的變異性,其變異系數(shù)分別為1.33%和2.30%。其中,雨滴直徑變化范圍為0.42~4.86 mm,幾何均值為1.52 mm;雨滴降落末速度變化范圍為0.24~9.33 m/s,幾何均值為3.47 m/s,并且雨滴降落末速度分布存在明顯的右偏(=1.20),表明其高值較多。圖6將雨滴直徑和降落末速度從最小值到最大值均分成8類,橫坐標(biāo)為雨滴微物理特性參數(shù),縱坐標(biāo)為每類雨滴所占的百分比。由圖6可知,直徑在1.00~3.00 mm范圍內(nèi)的雨滴占樣本總數(shù)的87.21%,而小雨滴(直徑<1.00 mm)和大雨滴(直徑>3.00 mm)僅占樣本總數(shù)的12.79%,可見(jiàn)本次降雨雨滴尺寸以中等粒子為主。雨滴降落末速度集中在1.00~5.00 m/s,占樣本總數(shù)的67.85%,具有極端降落末速度的雨滴(>7.00 m/s)僅占樣本總數(shù)的2.64%。
表1 雨滴直徑和降落末速度的統(tǒng)計(jì)特征
圖6 雨滴微物理特性參數(shù)分布
雨滴在大氣中受重力、空氣阻力和浮力的綜合作用,其降落過(guò)程是一個(gè)變加速過(guò)程,隨著時(shí)間變化加速度逐漸減小,當(dāng)降落高度足夠大時(shí),雨滴受力達(dá)到一個(gè)平衡狀態(tài),此后做勻速運(yùn)動(dòng),此時(shí)雨滴的速度即為降落末速度[28]。本研究中,根據(jù)最小二乘法原理對(duì)雨滴直徑和降落末速度進(jìn)行回歸分析,得到雨滴降落末速度與雨滴直徑間呈顯著的對(duì)數(shù)關(guān)系(2=0.848,<0.001)(圖7a)??梢?jiàn),雨滴降落末速度隨雨滴直徑的增加先急劇增加,當(dāng)雨滴直徑大于1.5 mm時(shí),雨滴降落末速度的增加趨勢(shì)逐漸平緩(圖7a),這可能是由于較大粒徑的雨滴受到表面張力的影響,改變了其外部形狀,使其所受的空氣阻力增加,從而在一定程度上減弱了雨滴降落速度。圖7b給出了Best模型[29]、Atlas 模型[30]、Uplinger 模型[31]、Gossard[32]模型和Brandes模型[33]及本研究中的實(shí)測(cè)數(shù)據(jù)的對(duì)比情況。由圖7b可知,傳統(tǒng)的經(jīng)驗(yàn)?zāi)P团c本研究中的實(shí)測(cè)數(shù)據(jù)存在較好的一致性,均表現(xiàn)為雨滴降落末速度隨雨滴直徑的增大呈顯著的增加趨勢(shì)。相對(duì)于傳統(tǒng)的經(jīng)驗(yàn)?zāi)P?,本文擬合的速度略小,這可能是由于雨滴飛濺或破碎后經(jīng)過(guò)采樣空間造成的,也可能是由于儀器本身采樣空間較大,在采樣系統(tǒng)和投影系統(tǒng)之間出現(xiàn)擾動(dòng),從而影響雨滴的運(yùn)動(dòng)軌跡,改變了原有的雨滴降落速度。
圖7 雨滴速度譜分布
從表2可以看出,降雨動(dòng)能隨降雨強(qiáng)度的增大呈顯著的增加趨勢(shì),這與國(guó)內(nèi)外基于降雨強(qiáng)度估算降雨動(dòng)能的經(jīng)驗(yàn)?zāi)P褪且恢碌??;趯?shí)測(cè)的降雨動(dòng)能與吳光艷等[34](2011)和周佩華等[35]估算的降雨動(dòng)能十分接近,相對(duì)誤差分別在3.26%~4.84%和1.23%~8.00%之間,但是明顯高于江忠善等[36]得出的降雨動(dòng)能,相對(duì)誤差最大值高達(dá)16.94%,最小相對(duì)誤差也高達(dá)8.00%。圖8為幾種經(jīng)驗(yàn)公式曲線與本研究實(shí)測(cè)數(shù)據(jù)的對(duì)比,可見(jiàn),本研究中降雨強(qiáng)度與降雨動(dòng)能的關(guān)系曲線位于吳光艷等[34]和周佩華等[35]得出的關(guān)系曲線之間,較江忠善等[36]得出的關(guān)系曲線差異明顯。以上幾種基于降雨強(qiáng)度的經(jīng)驗(yàn)關(guān)系曲線多是利用色斑法得出的,該方法中雨滴濺落在濾紙上形成一群形狀極不規(guī)則的帶毛刺的圖案,使得依據(jù)色斑形狀估計(jì)雨滴粒徑在很大程度上依靠主觀經(jīng)驗(yàn),使得該方法的誤差高達(dá)6%~14%,并不能真實(shí)地反映雨滴微物理特性[3]??梢?jiàn),傳統(tǒng)的基于降雨強(qiáng)度估算降雨動(dòng)能的經(jīng)驗(yàn)?zāi)P腿狈ζ者m性,而本研究中基于雨滴直徑和降落末速度估算的降雨動(dòng)能的方法在很大程度上彌補(bǔ)了降雨動(dòng)能統(tǒng)計(jì)模型的不足。
表2 降雨動(dòng)能統(tǒng)計(jì)
圖8 降雨強(qiáng)度與降雨動(dòng)能關(guān)系
1)利用粒子成像瞬態(tài)測(cè)量可視化技術(shù)進(jìn)行外場(chǎng)觀測(cè)試驗(yàn),研究楊凌地區(qū)自然降雨雨滴微物理特性及其降雨動(dòng)能特征。本次降雨強(qiáng)度較小,87.21%以上的雨滴直徑集中在1.00~3.00 mm范圍內(nèi),雨滴的平均直徑為1.52 mm,降落末速度均值為3.47 m/s。
2)通過(guò)擬合雨滴直徑和降落末速度的關(guān)系分析此次自然降雨的速度譜特征,發(fā)現(xiàn)雨滴降落末速度與雨滴直徑間呈顯著的對(duì)數(shù)關(guān)系,相對(duì)于以往的經(jīng)驗(yàn)?zāi)P停疚臄M合的速度略小,但是本文的擬合關(guān)系與以往的經(jīng)驗(yàn)?zāi)P途哂休^好的一致性。究其原因可能是由于較大粒徑的雨滴在降落過(guò)程中受表面張力的影響改變了其外部形狀,使其所受的空氣阻力增加,從而減弱了雨滴降落速度的增加程度。
3)通過(guò)對(duì)降雨強(qiáng)度和雨滴微物理特性的觀測(cè),初步估算了降雨動(dòng)能,并建立了具有本地化特征的降雨動(dòng)能和降雨強(qiáng)度之間的統(tǒng)計(jì)關(guān)系,即k()=26.820.34?;诮涤陱?qiáng)度的降雨動(dòng)能統(tǒng)計(jì)模型具有很大的區(qū)域局限性,通過(guò)實(shí)測(cè)的雨滴微物理特性估算降雨動(dòng)能,能夠檢驗(yàn)統(tǒng)計(jì)模型的準(zhǔn)確性和適用性,為建立侵蝕量預(yù)報(bào)數(shù)學(xué)模型提供有關(guān)降雨侵蝕力的依據(jù)。
[1] Michaelides S. Precipitation: Advances in Measurement, Estimation, and Prediction[M]. Berlin: Springer, 2008.
[2] 鞏興暉,朱德蘭,張林,等. 基于2DVD的非旋轉(zhuǎn)折射式噴頭水滴直徑分布規(guī)律[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(8):128-148.
Gong Xinghui, Zhu Delan, Zhang Lin, et al. Drop size distribution of fixed spray-plate sprinklers with two-dimensional video disdrometer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 128-148. (in Chinese with English abstract)
[3] Mark W S, Timothy R G, James C A. Tillage effects on soil hydraulic properties in space and time: State of the science[J]. Soil and Tillage Research, 2008, 99(1): 4-48.
[4] 朱亞喬,劉元波. 地面雨滴譜觀測(cè)技術(shù)及特征研究進(jìn)展[J]. 地球科學(xué)進(jìn)展,2013,28(6):685-694.
Zhu Yaqiao, Liu Yuanbo. Advances in measurement techniques and statistics features of surface raindrop size distribution[J]. Advances in Earth Science, 2013, 28(6): 685-694. (in Chinese with English abstract)
[5] 付玉,李光錄,鄭騰輝,等. 雨滴擊濺對(duì)耕作層土壤團(tuán)聚體粒徑分布的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):155-160.
Fu Yu, Li Guanglu, Zheng Tenghui, et al. Effects of raindrop splash on aggregate particle size distribution of soil plough layer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 155-160. (in Chinese with English abstract)
[6] 趙龍山,梁心藍(lán),張青峰,等. 裸地雨滴濺蝕對(duì)坡面微地形的影響與變化特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(19):71-77.
Zhao Longshan, Liang Xinlan, Zhang Qingfeng, et al. Variation characteristics and effects of splash erosion on slope micro-relief in bare fields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(19): 71-77. (in Chinese with English abstract)
[7] 劉西川,高太長(zhǎng),劉磊,等. 雨滴微物理特征研究及測(cè)量技術(shù)進(jìn)展[J]. 地球科學(xué)進(jìn)展,2013,28(11):1217-1226.
Liu Xichuan, Gao Taichang, Liu Lei, et al. Advances in microphysical features and measurement techniques of raindrops[J]. Advances in Earth Science, 2013, 28(11): 1217-1226. (in Chinese with English abstract)
[8] 劉西川,高太長(zhǎng),劉磊,等. 基于粒子成像測(cè)速技術(shù)的雨滴微物理特性研究[J]. 物理學(xué)報(bào),2014,63(2):469-475.
Liu Xichuan, Gao Taichang, Liu Lei, et al. Research on microphysical property of raindrops based on particle imaging velocimetry technology[J]. Acta Physica Sinica, 2014, 63(2): 469-475. (in Chinese with English abstract)
[9] Szakall M, DiehlK,Mitra S K, et al. A wind tunnel study on the shape, oscillation, and internal circulation of large raindrops with sizes between 2.5 and 7.5 mm[J]. Journal of Atmospheric Sciences, 2009, 66(3): 755-765.
[10] 劉紅燕,雷恒池. 基于地面雨滴譜資料分析層狀云和對(duì)流云降水的特征[J]. 大氣科學(xué),2006(4):693-702.
Liu Hongyan, Lei Hengchi. Characteristics of rain from stratiform versus convective cloud based on the surface raindrop data [J]. Chinese Journal of Atmospheric Sciences, 2006(4): 693-702. (in Chinese with English abstract)
[11] Martinez-Mena M, Castillo V, Albaladejo J. Relations between interrill erosion processes and sediment particle size distribution in a semiarid Mediterranean area of SE of Spain[J]. Geomorphology, 2002, 45(3): 261-275.
[12] Warrington D N, Mamedov A I, Bhardwag A K, et al. Primary particle size distribution of eroded material affected by degree of aggregate slaking and seal development[J]. European Journal of Soil Science, 2009, 60(1): 84-93.
[13] Bentley W A. Studies of raindrops and raindrop phenomena[J]. Monthly Weather Review, 1904, 32: 450-456.
[14] 李紅,任志遠(yuǎn),袁壽其,等. 高度對(duì)色斑法測(cè)量雨滴粒徑影響的試驗(yàn)研究[J]. 中國(guó)農(nóng)村水利水電,2006(1):16-17.
Li Hong, Ren Zhiyuan, Yuan Shouqi, et al. Experimental study on the height effect on raindrop size in splash method [J]. China Rural Water and Hydropower, 2006(1): 16-17. (in Chinese with English abstract)
[15] 舒若杰,高建恩,吳普特,等. 基于CorelDRAW軟件的小流域模型雨滴測(cè)量試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006, 22(11):44-46.
Shu Ruojie, Gao Jian’en, Wu Pute, et al. Measurement of raindrop distribution of watershed model using CorelDRAW[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(11): 44-46. (in Chinese with English abstract )
[16] 倪際梁,何進(jìn),李洪文,等. 便攜式人工模擬降雨裝置的設(shè)計(jì)與率定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(24):78-84.
Ni Jiliang, He Jin, Li Hongwen, et al. Design and calibration of portable rainfall equipment of artificial simulation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(24): 78-84. (in Chinese with English abstract)
[17] Clardy D E, Tolberrt C W. Electronic disdrometer[J]. Review of Scientific Instruments. 1961, 32(8): 916-920.
[18] Kinnellp I A. Some observations on the Joss-Waldvogel rainfall disdrometer[J]. Journal of Applied Meteorology, 1976, 15(5): 499-502.
[19] Sheppardb E, Joe P I. Comparison of raindrop size distribution measurements by a Joss-Waldvogel Disdrometer, a PMS 2DGSpectrometer,and a POSS Doppler Radar[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11: 874-887.
[20] Wolff D B, Wolff K R. Rain gauge and disdromrter measurements during the Keys Area Microphysics Project (KAMP)[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20: 1460-1477.
[21] 萬(wàn)和躍,濮江平,劉思瑤. 雨滴譜探測(cè)技術(shù)發(fā)展及應(yīng)用概述[J]. 科技創(chuàng)新導(dǎo)報(bào),2015,31:166-167.
[22] 韓文霆,曹培,劉文帥. 人工模擬降雨系統(tǒng)噴頭噴灑雨滴特性測(cè)試[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(2):56-61.
Han Wenting, Cao Pei, Liu Wenshuai. Raindrop characteristics of sprinklers for artificial rainfall system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 56-61. (in Chinese with English abstract)
[23] 朱磊,曹治國(guó),肖陽(yáng),等. 基于圖像自動(dòng)識(shí)別技術(shù)的雨滴譜測(cè)量方法[J]. 計(jì)算機(jī)應(yīng)用研究,2015,32(9):2866-2869,2873.
Zhu Lei, Cao Zhiguo, Xiao Yang, et al. Automatic measurement method of raindrop size distribution based on computer vision[J]. Application Research of Computers,2015, 32(9): 2866-2869, 2873. (in Chinese with English abstract)
[24] 倫向敏,侯一民. 運(yùn)用迭代最大熵算法選取最佳圖像分割閾值[J]. 計(jì)算機(jī)工程與設(shè)計(jì),2015, 36(5):1265-1268,1289.
Lun Xiangmin, Hou Yimin. Optical threshold slection for image segmentation utilizing entropy-max algorithm[J]. Computer Engineering and Design, 2015, 36(5): 1265-1268, 1289. (in Chinese with English abstract)
[25] 郭明航,展小云,趙軍,等. 雨滴物理特性的粒子成像測(cè)量技術(shù)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(9):144-150.
Guo Minghang, Zhan Xiaoyun, Zhao Jun, et al. Measurement of raindrop physical properties with particle imaging measurement technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(9): 144-150. (in Chinese with English abstract)
[26] Marshall J S, Palmer W M. The distribution of raindrops with size[J]. Journal of Meteorology, 1948(5): 165-166.
[27] Hall R L, Calder I R. Drop size modification by forest canopies-measurements using a disdrometer[J]. Journal of Geophysical Research-Atmospheres, 1993, 98(D10): 18465-18470.
[28] 劉雅君. 雨滴下落的收尾速度[J]. 大學(xué)物理,2001,19(4):45-46.
Liu Yajun. Terminal velocity of the falling raindrops[J]. College Physics, 2001, 19(4): 45-46. (in Chinese with English abstract)
[29] Best A C. Empirical formulate for the terminal velocity of water drops falling through the atmosphere[J]. Quarterly Journal of the Royal Meteorologyical Society, 1950, 76: 302-311.
[30] Atlas D, Srivastava R C, Sekhon R S. Doppler radar characteristics of precipitation at vertical incidence[J]. Reviews of Geophysics, 1973, 11(1): 1-35.
[31] Uplinger W G. A new formula for raindrop terminal velocity[C]∥20th Radar Meteorology Conference. Boston: American Meteorological Scoiety, 1977: 389-391.
[32] Gossard E E, Strauch R G, Welsh D C, et al. Cloud layers, particle identification, and rain-rate profiles from ZRVf measurements by clear-air doppler radars[J]. Journal of the Atmospheric and Oceanic Technology, 1992, 9(2): 108-119.
[33] Brandes E A, Zhang G, Vivekanandan J. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment[J]. Journal of Applied Meteorology, 2002,41(6): 674-684.
[34] 吳光艷,吳發(fā)啟,尹武君,等. 陜西楊凌天然降雨雨滴特性研究[J]. 水土保持研究,2011,18(1):48-51.
Wu Guangyan, Wu Faqi, Yin Wujun, et al. Study on characteristics of natural rainfall in Yangling, Shaanxi Province[J]. Research of Soil and Water Conservation,2011,18(1): 48-51. (in Chinese with English abstract)
[35] 周佩華,竇葆璋,孫清芳. 降雨能量的試驗(yàn)研究初報(bào)[J]. 水土保持通報(bào),1981,1(1):51-60
[36] 江忠善,宋文經(jīng),李秀英. 黃土地區(qū)天然降雨雨滴特性研究[J]. 中國(guó)水土保持,1983(3):32-36.
Microphysical features of raindrop and rainfall energy based on particle imaging transient measurement technology
Zhan Xiaoyun, Guo Minghang※, Zhao Jun, Shi Haijing, Shui Junfeng
(1.,,712100,;2.,,712100,)
Microphysical features of raindrop and rainfall energy are the key parameters for study of rainfall physics, which also have great significance in quantitative analysis of soil erosion and in soil erosion prediction model. The existing measurement methods include splash method, immersion method and so on, but most of them have many disadvantages, such as, labor and time consuming, poor real-time response, low precision and so on. Therefore, a new method should be developed urgently. In order to obtain physical properties of raindrops, in this study, the particle imaging transient visual measurement technology, light field and imaging system were designed, image identification, extraction and measurement were investigated, and finally the particle imaging transient visual measurement technology and computer vision identification technology were used to obtain the microphysical features of natural raindrop. The principle of the system could be described as below: a Fresnel lens was installed in the front of the light source. When the lights were passing through the Fresnel lens, the lights from point source would become parallel lights, which would shine on a projecting screen, and then the raindrop would project on the screen during its falling. Specifically, the system consisted of three parts: projection system, image capture system, and image control system. In the image capture system, two cameras were used to capture the raindrop image, one with a fast speed to obtain static image, and the other worked slowly to capture the tailed image. Based on the two images, we calculate the diameter and the fall velocity of raindrops. In order to obtain a clear raindrop image, we must remove the noise in the images. Basically, the image noise removal involved four steps. First, it was statistical filtering; second, the rolling filtering; third, the smooth filtering, and finally, it was the image binarization. Based on the static image and the corresponding tailed image mentioned above, geometric mean value algorithm and outer contour algorithm were used to calculate the diameter and fall velocity of raindrop. In our previous research, we found that the measurement technology had small relative error and it was suitable for the measurement of microphysical features of raindrop. Meanwhile, rainfall intensity was recorded by siphonic pluviograph. The results showed that medium-sized particles were the predominant contributor in the single rainfall. Raindrop diameter and fall velocity in our study were, on average, 1.52 mm and 3.47 m/s, respectively. Specifically, the proportion of raindrops with diameter ranged from 1.00 to 3.00 mm was up to 87.21%. Fall velocity was strong logarithmically related to raindrop diameter, and more precisely, fall velocity grew rapidly with an increase in rainfall diameter when the diameter was below 1.5 mm. As the raindrops fatten, the growth rate of fall velocity was reduced. Moreover, rainfall energy calculated in the present study was compared with the classic statistical model, and the relative error was averaged as 7.28%. In all, microphysical features of raindrop and rainfall energy can be measured precisely by the technique in this study, which sets the basis of estimating rainfall splash erosion.
erosion; image processing; physical properties; raindrop; particle imaging; rainfall intensity; rainfall energy
10.11975/j.issn.1002-6819.2018.02.014
P426; S157
A
1002-6819(2018)-02-0107-07
2017-09-20
2018-01-04
國(guó)家自然科學(xué)基金項(xiàng)目(41571269;41503078);黃土高原土壤侵蝕與旱地農(nóng)業(yè)國(guó)家重點(diǎn)實(shí)驗(yàn)室重要方向創(chuàng)新項(xiàng)目(A314021403-C3)
展小云,女,博士,主要從事水土流失過(guò)程與水土保持研究。Email:zhanxiaoyun2005@163.com
郭明航,男,陜西乾縣人,研究員,主要從事科研信息化與裝備研究。Email:mhguo@ms.iswc.ac.cn
展小云,郭明航,趙 軍,史海靜,稅軍峰. 基于粒子成像瞬態(tài)測(cè)量技術(shù)的雨滴微物理特性及降雨動(dòng)能研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):107-113. doi:10.11975/j.issn.1002-6819.2018.02.014 http://www.tcsae.org
Zhan Xiaoyun, Guo Minghang, Zhao Jun, Shi Haijing, Shui Junfeng. Microphysical features of raindrop and rainfall energy based on particle imaging transient measurement technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 107-113. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.02.014 http://www.tcsae.org