亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        魚感應(yīng)流速對(duì)體長(zhǎng)的響應(yīng)及在過魚設(shè)施流速設(shè)計(jì)中的應(yīng)用

        2018-02-28 06:09:09王偉營(yíng)王海龍胡望斌侯軼群陳勝利
        關(guān)鍵詞:過魚體長(zhǎng)水流

        蔡 露,王偉營(yíng),王海龍,胡望斌,趙 萍,趙 娜,侯軼群,陳勝利,陳 豪,張 鵬

        ?

        魚感應(yīng)流速對(duì)體長(zhǎng)的響應(yīng)及在過魚設(shè)施流速設(shè)計(jì)中的應(yīng)用

        蔡 露1,王偉營(yíng)2,王海龍3,胡望斌1,趙 萍1,趙 娜1,侯軼群1,陳勝利2,陳 豪3,張 鵬1※

        (1. 水利部中國(guó)科學(xué)院水工程生態(tài)研究所,水利部水工程生態(tài)效應(yīng)與生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室,武漢 430079; 2. 中國(guó)電建集團(tuán)昆明勘測(cè)設(shè)計(jì)研究院有限公司,昆明 650051; 3. 華能瀾滄江水電股份有限公司,昆明 650206)

        該研究測(cè)試并分析了瀾滄江5種魚類(體長(zhǎng)bl的范圍0.095~0.342 m)的感應(yīng)流速。測(cè)試方法:首先測(cè)量魚的長(zhǎng)度,然后將其放于魚類行為學(xué)裝置內(nèi)的游泳區(qū)中,并使其適應(yīng)2 h。然后讓魚的頭部朝著游泳區(qū)后端,以遞增流速法調(diào)整裝置內(nèi)水流速度。當(dāng)魚類調(diào)轉(zhuǎn)方向運(yùn)動(dòng)時(shí),記錄此時(shí)裝置內(nèi)水流速度,該水流速度即為魚類感應(yīng)流速。研究結(jié)果:1)在水溫為11.1~22.6 ℃條件下,魚類感應(yīng)流速范圍為(0.40~1.18)bl/s,即(0.07~0.23)m/s;2)魚類相對(duì)感應(yīng)流速和體長(zhǎng)總體呈負(fù)相關(guān)關(guān)系,魚類絕對(duì)感應(yīng)流速和體長(zhǎng)總體呈正相關(guān)關(guān)系,該相關(guān)關(guān)系對(duì)于較難捕獲測(cè)試樣本或僅可捕獲極個(gè)別樣本的魚類游泳特性的定性預(yù)測(cè)研究具有一定指導(dǎo)作用;3)擬合了趨流率與水流速度的相關(guān)關(guān)系,可為尋求滿足魚類游泳需求和工程流速設(shè)計(jì)上的平衡提供參考,若僅考慮過魚設(shè)施運(yùn)行效率,則瀾滄江上游某水電工程過魚設(shè)施內(nèi)最低設(shè)計(jì)流速至少為0.2 m/s。該研究結(jié)果可為魚類行為學(xué)提供基礎(chǔ)資料并為過魚設(shè)施流速設(shè)計(jì)提供參考。

        流速;設(shè)施;水力學(xué);游泳能力;游泳特性;趨流性

        0 引 言

        水利水電工程近年來呈現(xiàn)出全球性的爆發(fā)增長(zhǎng)趨勢(shì)[1],然而水利水電工程破壞了河流連通性[2-3],影響了魚類的洄游和種群之間的基因交流[4-7]。此外,水利水電工程的水頭落差不論是高還是低,均會(huì)使得魚類的洄游進(jìn)程被迫推遲[8]。為此,人們?cè)O(shè)計(jì)并建造了一些過魚設(shè)施用于幫助魚類洄游[9]。將水力學(xué)和生態(tài)學(xué)進(jìn)行有機(jī)結(jié)合便形成了一門新興學(xué)科生態(tài)水力學(xué)[10],過魚設(shè)施(如技術(shù)型魚道、升魚機(jī)、集運(yùn)魚船等)的設(shè)計(jì)不僅與水力學(xué)相關(guān)[11-13],而且與生態(tài)中的魚類行為學(xué)緊密相關(guān)[14-16]。

        根據(jù)河流破碎化指數(shù)預(yù)測(cè),瀾滄江(即湄公河上游)生態(tài)系統(tǒng)即將承受嚴(yán)重的衰退[17]。且中國(guó)瀾滄江流域水利水電工程開發(fā)相關(guān)資料顯示:該流域已建、正在建和規(guī)劃了一定量的高壩。這些高壩帶來的河流破碎化問題將對(duì)本地魚種的洄游造成嚴(yán)重影響?;谏鷳B(tài)水力學(xué)的過魚設(shè)施流速和流態(tài)設(shè)計(jì)可以有效吸引魚類并保持魚類行進(jìn)在正確的洄游路徑上[10,13,18]。

        魚類游泳特性研究數(shù)據(jù)可應(yīng)用于過魚設(shè)施流速設(shè)計(jì)。目前國(guó)內(nèi)外已存在一定量的魚類爆發(fā)游泳速度和耐久游泳速度(含臨界游泳速度)的研究[19-23]。Brett[19]開創(chuàng)了基于遞增流速法和水槽設(shè)備條件下的魚類游泳特性研究的先河;Katopodis & Gervais[22]研究、搜集并報(bào)道了大量魚類游泳爆發(fā)游泳速度和臨界游泳速度,并將生態(tài)水力學(xué)原理引入,將魚類游泳速度和水力學(xué)相結(jié)合進(jìn)行歸納分析;鄭鐵剛等[12]將魚類臨界游泳速度與水力學(xué)相結(jié)合,探討了魚道進(jìn)口位置的選擇方法;龐旭等[23]報(bào)道了饑餓和溫度對(duì)魚類爆發(fā)游泳速度的影響。魚類爆發(fā)游泳速度和耐久游泳速度與過魚設(shè)施較高流速區(qū)的設(shè)計(jì)緊密相關(guān),魚類感應(yīng)流速與過魚設(shè)施較低流速區(qū)的設(shè)計(jì)緊密相關(guān)[24-26],但關(guān)于較低流速區(qū)的設(shè)計(jì)研究并不多見。

        本研究根據(jù)魚類洄游習(xí)性、保護(hù)等級(jí)、經(jīng)濟(jì)價(jià)值等相關(guān)因素選取了5種魚類,測(cè)試了魚類的感應(yīng)流速。以期提供魚類游泳能力研究的基礎(chǔ)數(shù)據(jù),并為過魚設(shè)施流速設(shè)計(jì)提供參考。

        1 材料與方法

        1.1 測(cè)試魚

        測(cè)試魚為鯉科魚類(鯉科為瀾滄江主要魚類之一),主要為:光唇裂腹魚(),瀾滄裂腹魚(),云南裂腹魚(),灰裂腹魚(),后背鱸鯉()。在總數(shù)量約200尾的魚類中隨機(jī)選取其中健康的50尾(各10尾)進(jìn)行研究,魚類的體質(zhì)量為9.6~588.3 g,全長(zhǎng)為11.4~40.0 cm,體長(zhǎng)為9.5~34.2 cm。其中光唇裂腹魚、瀾滄裂腹魚來源于云南省蘭坪縣瀾滄江江段,云南裂腹魚、灰裂腹魚和后背鱸鯉來源于當(dāng)?shù)佤~類養(yǎng)殖基地(循環(huán)水養(yǎng)殖)。獲取測(cè)試魚后,將其暫養(yǎng)于魚類增殖放流站養(yǎng)殖間的環(huán)形水缸1周(水槽直徑2.4 m,深度2.0 m),并投喂魚類增殖放流站內(nèi)的普通魚飼料,水槽內(nèi)的光照為晝夜自然光周期。利用溶氧儀(YSI DO200A,Yellow Springs,USA)測(cè)試水中的溫度和溶解氧含量。測(cè)試發(fā)現(xiàn)水槽內(nèi)溶解氧含量未曾低于7.0 mg/L,水溫范圍為11.1~22.6 ℃。

        1.2 研究設(shè)備

        研究所用設(shè)備為Steffensen式魚類游泳測(cè)試水槽(圖1),主要由變頻器、電機(jī)、螺旋槳、有機(jī)玻璃板等構(gòu)成[27]。

        圖1 Steffensen式魚類游泳測(cè)試水槽的示意圖

        魚類游泳區(qū)容積28 L(70 cm×20 cm×20 cm),環(huán)形槽道容積95 L,裝置最外部的矩形儲(chǔ)水池容積252 L(143 cm× 63 cm×28 cm)。變頻器(變頻范圍0~50 Hz,最小變頻幅度0.05 Hz,變頻器也稱調(diào)速器)控制電機(jī)轉(zhuǎn)速,從而產(chǎn)生不同水流速度,水可在裝置內(nèi)循環(huán)流動(dòng)。在游泳區(qū)前端放置穩(wěn)流器,進(jìn)而可使流態(tài)接近層流。游泳區(qū)末端放置格柵,可避免魚類游離游泳區(qū)。利用旋槳式流速儀(LGY-II,南京)測(cè)量不同變頻器頻率下的水流速度,繼而可標(biāo)定不同頻率下的流速。魚類感應(yīng)流速測(cè)試在魚類增殖放流站養(yǎng)殖間內(nèi)進(jìn)行,光照為晝夜自然光周期,測(cè)試用水和魚類暫養(yǎng)水槽的來源相同。利用溶氧儀監(jiān)測(cè)試驗(yàn)期間的水溫和溶解氧含量,測(cè)試發(fā)現(xiàn)水槽內(nèi)溶解氧含量未曾低于7.0 mg/L,水溫范圍為11.1~22.6 ℃。

        1.3 測(cè)試方法

        利用遞增流速法測(cè)試魚類感應(yīng)流速(induced flow speed,ind),每種魚選取10尾健康個(gè)體逐一進(jìn)行測(cè)試。測(cè)試過程如下:1)首先測(cè)試一尾魚的體長(zhǎng),然后將其放置于試驗(yàn)水槽魚類游泳區(qū)中,以0.5 bl/s(bl為測(cè)試魚的體長(zhǎng))的水流適應(yīng)2 h;2)然后將流速調(diào)至0,讓魚的頭部朝著游泳區(qū)后端(即朝著格柵方向),并讓魚穩(wěn)定5 s;3)然后以將調(diào)速器調(diào)至1.2 Hz(即此時(shí)游泳區(qū)內(nèi)初始速度約為0.06 m/s),以0.2 Hz為遞增量(即遞增速度約為0.01 m/s),5 s為遞增時(shí)間,調(diào)整設(shè)備內(nèi)水流速度。當(dāng)魚類調(diào)轉(zhuǎn)方向運(yùn)動(dòng)時(shí)(即魚類逆流運(yùn)動(dòng)時(shí)),記錄此時(shí)設(shè)備的水流速度,該水流速度即為魚類感應(yīng)流速。4)將魚類移除研究設(shè)備,測(cè)量魚類的全長(zhǎng)及體質(zhì)量。然后換其他魚進(jìn)行依次的往復(fù)測(cè)試。

        1.4 數(shù)據(jù)分析

        利用Origin software package 9.0(OriginLab Corporation, Northampton, USA)對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析以及線性相關(guān)性函數(shù)擬合分析。利用最小信息準(zhǔn)則(akaike information criterion,AIC)[28]對(duì)函數(shù)擬合模型結(jié)果進(jìn)行評(píng)價(jià),從而避免出現(xiàn)過度擬合但也保持?jǐn)?shù)據(jù)擬合的優(yōu)良性,僅保留最佳的函數(shù)模型。

        2 結(jié)果與分析

        表1展示了本研究中和參考文獻(xiàn)中的魚類感應(yīng)流速及測(cè)試水溫等基礎(chǔ)背景數(shù)據(jù)。由表1可見,在水溫為11.1~22.6 ℃條件下,本研究中的5種鯉科魚類(體長(zhǎng)范圍0.095~0.342 m)的感應(yīng)流速范圍為(0.40~1.18)bl/s,即(0.07~0.23)m/s。參考文獻(xiàn)中,除了瓦氏黃顙魚(鲿科魚類)的感應(yīng)流速較大(1.20~5.16)bl/s,即(0.15~0.55)m/s以外,其他文獻(xiàn)中的魚類感應(yīng)流速范圍大體上為(0.4~1.5)bl/s,即(0.05~0.15)m/s。

        表1 本研究以及參考文獻(xiàn)中的魚種、水溫、規(guī)格及感應(yīng)流速Uind

        注:bl為體長(zhǎng),m。 Note: bl is body length, m.

        由于測(cè)試所用的后背鱸鯉的體長(zhǎng)范圍較小,其感應(yīng)流速變化也較小,因而對(duì)其進(jìn)行擬合分析的意義不大,暫未對(duì)其進(jìn)行擬合。對(duì)另外的4種鯉科魚類分別擬合相對(duì)感應(yīng)流速、絕對(duì)感應(yīng)流速和體長(zhǎng)之間的關(guān)系,如圖2。除了灰裂腹魚以外,光唇裂腹魚、瀾滄裂腹魚、云南裂腹魚的相對(duì)感應(yīng)流速(bl/s)均隨著體長(zhǎng)增大而減?。▓D 2a);除了瀾滄裂腹魚以外,光唇裂腹魚、云南裂腹魚、灰裂腹魚的絕對(duì)感應(yīng)流速(m/s)均隨著體長(zhǎng)增大而增大(圖2b)。

        將5種鯉科魚類統(tǒng)一作為整體分別擬合相對(duì)感應(yīng)流速、絕對(duì)感應(yīng)流速和體長(zhǎng)之間的關(guān)系,如圖3所示。魚類相對(duì)感應(yīng)流速(bl/s)隨著體長(zhǎng)的增大而減小(圖3a),絕對(duì)感應(yīng)流速(m/s)隨著體長(zhǎng)的增大而增大(圖3b)。

        將魚類趨流率定義為:在某一特定流速條件下,能感應(yīng)到水流方向并作出逆流運(yùn)動(dòng)的魚類的數(shù)量占總魚數(shù)量的比率[29]。Brett[30]報(bào)道了魚類耐久游泳運(yùn)動(dòng)時(shí)的疲勞率分析方法,本研究發(fā)現(xiàn)魚類趨流率與水流速度的相關(guān)關(guān)系和Brett報(bào)道的疲勞率相關(guān)關(guān)系類似,因而本研究采用Brett所報(bào)道的擬合方式進(jìn)行曲線擬合(圖4)。從回歸曲線可以看出,隨著水流速度的增大,魚類趨流率呈加速升高的趨勢(shì),當(dāng)?shù)竭_(dá)一定水流速度時(shí)(例如本研究圖4中約0.15 m/s的位置),這種趨勢(shì)開始放緩,并緩慢接近100%。當(dāng)需要使更多的魚類(例如總魚量的95%)在該過魚設(shè)施內(nèi)朝著正確方向洄游,則可在圖4中找到趨流率為95%所對(duì)應(yīng)的橫坐標(biāo)水流速度為0.2 m/s,即過魚設(shè)施內(nèi)最低流速應(yīng)設(shè)計(jì)至少應(yīng)為0.2 m/s。

        圖4 所有測(cè)試魚類的趨流率(Per)與水流速度(V)的相關(guān)關(guān)系

        3 討 論

        在與過魚設(shè)施相關(guān)的魚類行為研究領(lǐng)域內(nèi),美國(guó)、加拿大、挪威等發(fā)達(dá)國(guó)家的研究水平在全球具有領(lǐng)先地位,中國(guó)在該領(lǐng)域尚有較大發(fā)展需求。中國(guó)過去的許多過魚設(shè)施主要是通過借鑒其他國(guó)家過魚設(shè)施而建造,但不同地方的過魚對(duì)象并不相同,因而,中國(guó)現(xiàn)在需要開展更多的魚類游泳行為相關(guān)研究,以便使得過魚設(shè)施設(shè)計(jì)和建造更適應(yīng)當(dāng)?shù)佤~類的實(shí)際情況。本研究開展于春季(魚類洄游季節(jié)),測(cè)試了瀾滄江5種魚類的感應(yīng)流速,分析討論了魚類感應(yīng)流速和體長(zhǎng)、趨流率和水流速度之間的相關(guān)關(guān)系。

        本研究中的測(cè)試魚來源于云南省蘭坪縣瀾滄江江段以及當(dāng)?shù)佤~類養(yǎng)殖基地。雖然某一魚種會(huì)存在不同種群,并且它們可能有著不同的生活史(洄游型和定居型種群),但是有研究表明美洲紅點(diǎn)鮭的不同種群表現(xiàn)出了類似的游泳能力[31]。因而本研究結(jié)果也可從一定程度上反映出分布在其他流域的該種魚的感應(yīng)流速。

        由表1可見,在水溫為11.1~22.6 ℃條件下,本研究中的5種鯉科魚類的感應(yīng)流速范圍(0.40~1.18 bl/s,0.07~0.23 m/s)和文獻(xiàn)[25-26,29]中的鯉科魚類感應(yīng)流速范圍(0.4~1.5 bl/s,0.05~0.15 m/s)類似。趙希坤和韓楨鍔報(bào)道鯽、鯉、梭魚等9種魚類(體長(zhǎng)0.06~0.60 cm)的感應(yīng)流速范圍為0.2~0.3 m/s[24],該研究結(jié)果與表1中研究結(jié)果存在一定差異,考慮到該研究為1980年附近的測(cè)試結(jié)果,鑒于過去的儀器測(cè)量技術(shù)等相比于現(xiàn)在精確度不高,因而此差異可能是由儀器精確度等誤差造成。白艷勤等報(bào)道發(fā)現(xiàn)瓦氏黃顙魚的感應(yīng)流速(0.15~0.55 m/s)[25]顯著高于其他已報(bào)道的魚類,該原因可能和瓦氏黃顙魚形態(tài)學(xué)上具有的扁平胸腹部特征有關(guān),因?yàn)樵撔螒B(tài)學(xué)特征可以使得魚類更易于貼合水底,受到更小的水流推動(dòng)力,從而展現(xiàn)出更大的感應(yīng)流速。

        本研究中,不管是單獨(dú)考慮某魚種還是統(tǒng)一考慮所有測(cè)試魚種,魚類相對(duì)感應(yīng)流速和體長(zhǎng)均總體呈現(xiàn)出負(fù)相關(guān)關(guān)系(圖2a和圖3a),魚類絕對(duì)感應(yīng)流速和體長(zhǎng)均總體呈現(xiàn)出正相關(guān)關(guān)系(圖2b和圖3b),這和王博等[26]報(bào)道的相對(duì)、絕對(duì)感應(yīng)流速和體長(zhǎng)的相關(guān)關(guān)系類似,也和魚類相對(duì)、絕對(duì)爆發(fā)游泳速度和耐久游泳速度分別與體長(zhǎng)所呈現(xiàn)出的負(fù)相關(guān)和正相關(guān)關(guān)系類似[32-33]。魚類有著與生俱來的逆流而動(dòng)習(xí)性,當(dāng)魚類將要或已經(jīng)被順?biāo)苿?dòng)下行移動(dòng)時(shí),魚類可通過側(cè)線器官感受到,并開始試圖逆流運(yùn)動(dòng)[34-36]。根據(jù)流體力學(xué)原理,在流速一定條件下,體積越大的類似形狀的物體(即本研究中的魚體),其單位質(zhì)量所受到水流推動(dòng)力越小,即本研究中體長(zhǎng)較小的魚,在單位質(zhì)量條件下所受到的水流推進(jìn)力越大,因而體長(zhǎng)較小的魚更易被水流推動(dòng),從而表現(xiàn)出更小的絕對(duì)感應(yīng)流速,即魚類絕對(duì)感應(yīng)流速和體長(zhǎng)呈現(xiàn)出正相關(guān)關(guān)系。以此類推,當(dāng)魚類聚集時(shí)(即魚群),其感應(yīng)流速可能比單獨(dú)個(gè)體魚的感應(yīng)流速更小。相對(duì)感應(yīng)流速和體長(zhǎng)呈負(fù)相關(guān)的原因有待進(jìn)一步生理學(xué)研究分析,但這可能與魚類在生長(zhǎng)階段中的側(cè)線器官感受能力的變化有關(guān)。本研究測(cè)試結(jié)果的相關(guān)關(guān)系對(duì)于較難捕獲測(cè)試樣本或僅可捕獲極個(gè)別樣本的魚類游泳特性預(yù)測(cè)具有一定指導(dǎo)作用。但白艷勤等報(bào)道稱研究發(fā)現(xiàn)草魚、鰱、瓦氏黃顙魚的感應(yīng)流速與體長(zhǎng)并無顯著相關(guān)關(guān)系[25],這可能是由于該研究中體長(zhǎng)差異不夠大或魚種差異造成。

        將所有測(cè)試魚作為統(tǒng)一來看,假設(shè)本研究樣本魚游泳特性可以代表瀾滄江上游某水電工程影響區(qū)的過魚設(shè)施目標(biāo)過魚對(duì)象游泳特性。通過擬合和計(jì)算魚類趨流率(圖4),可以對(duì)該過魚設(shè)施內(nèi)最低流速設(shè)計(jì)提供參考。一般來說,過度的降低或者提高過魚設(shè)施內(nèi)的流速設(shè)計(jì)則會(huì)過度的增加工程設(shè)計(jì)難度以及施工成本,因而研究趨流率與流速的關(guān)系,可為尋求滿足魚類需求和流速設(shè)計(jì)的平衡提供參考。若不考慮工程設(shè)計(jì)難度以及施工成本,僅考慮過魚設(shè)施運(yùn)行效率,基于本研究感應(yīng)流速測(cè)試結(jié)果,為了理論上能使95%魚類在該過魚設(shè)施內(nèi)朝著正確方向洄游,本過魚設(shè)施內(nèi)最低流速應(yīng)設(shè)計(jì)至少應(yīng)為0.2 m/s(圖4)。但需要指出的是,如果需要滿足更大規(guī)格的魚類通過該過魚設(shè)施,則最低流速設(shè)計(jì)可根據(jù)本研究提出的趨流率曲線適當(dāng)提高。

        輔助魚類上行的升魚機(jī)及集運(yùn)魚系統(tǒng)類型的過魚設(shè)施通常會(huì)在遠(yuǎn)離壩址處的江河上游設(shè)立魚類放流點(diǎn),若放流點(diǎn)的流速過小,則魚類很難識(shí)別方向以至于迷路甚至返回下游,這樣極大的降低了過魚設(shè)施運(yùn)轉(zhuǎn)魚類上溯的價(jià)值。因此,在選擇這類過魚設(shè)施放流點(diǎn)的時(shí)候,宜選擇主流流速大于放流魚類感應(yīng)流速的地方。同理,如需增殖放流上溯的成魚(含親魚)時(shí),也應(yīng)遵循上述放流點(diǎn)的選擇方法。并且,輔助魚類上行的技術(shù)型魚道、仿自然通道、魚閘等過魚設(shè)施的出口選址也應(yīng)遵循上述放流點(diǎn)選擇方法。因此,魚類的感應(yīng)流速相關(guān)數(shù)據(jù)對(duì)過魚設(shè)施較低流速區(qū)域的設(shè)計(jì)有著較為重要的參考意義。

        4 結(jié) 論

        本研究中魚類相對(duì)感應(yīng)流速和體長(zhǎng)均總體呈負(fù)相關(guān)關(guān)系,絕對(duì)感應(yīng)流速和體長(zhǎng)均總體呈正相關(guān)關(guān)系,該相關(guān)關(guān)系可對(duì)其他魚類游泳特性的定性預(yù)測(cè)提供參考。本研究擬合了趨流率與水流速度的相關(guān)關(guān)系,可為尋求滿足魚類需求和流速設(shè)計(jì)的平衡提供參考,若僅考慮過魚設(shè)施運(yùn)行效率,則瀾滄江上游某水電工程過魚設(shè)施內(nèi)最低設(shè)計(jì)流速至少為0.2 m/s。

        [1] Zarfl C, Lumsdon A E, Berlekamp J, et al. A global boom in hydropower dam construction[J]. Aquatic Science, 2015, 77(1): 161-170.

        [2] Nilsson C, Reidy C A, Dynesius M, et al. Fragmentation and flow regulation of the world’s large river systems[J]. Science, 2005, 308(5720): 405-408.

        [3] Grill G, Lehner B, Lumsdon A E, et al. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales[J]. Environmental Research Letter, 2015, 10(1): 015001.

        [4] Fausch K D, Torgersen C E, Baxter C V, et al. Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes[J]. BioScience, 2002, 52(6): 483-498.

        [5] 陳凱麒,常仲農(nóng),曹曉紅,等. 我國(guó)魚道的建設(shè)現(xiàn)狀與展望[J]. 水利學(xué)報(bào),2012,43(2):182-188.

        Chen Kaiqi, Chang Zhongnong, Cao Xiaohong, et al. Status and prospection of fish pass construction in China[J]. Journal of Hydraulic Engineering, 2012, 43(2): 182-188. (in Chinese with English abstract)

        [6] Chen K Q, Tao J, Chang Z N, et al. Difficulties and prospects of fishways in China: An overview of the construction status and operation practice since 2000[J]. Ecological Engineering, 2014, 70(3): 82-91.

        [7] Shi X, Kynard B, Liu D, et al. Development of fish passage in China[J]. Fisheries, 2015, 40(4): 161-169.

        [8] Gardner C J, Reesjones J, Morris G, et al. The influence of sluice gate operation on the migratory behaviour of Atlantic salmon(L.) smolts[J]. Journal of Ecohydraulics, 2016, 1(1/2), 90-101.

        [9] Katopodis C, Williams J G. The development of fish passage research in a historical context[J]. Ecological Engineering, 2012, 48(7): 8-18.

        [10] Casasmulet R, King E, Hoogeveen D, et al. Two decades of ecohydraulics: Trends of an emerging interdiscipline[J]. Journal of Ecohydraulics, 2016, 1(1/2): 16-30.

        [11] 劉德富,黃鈺鈴,王從峰. 水工學(xué)的發(fā)展趨勢(shì)-從傳統(tǒng)水工學(xué)到生態(tài)水工學(xué)[J]. 長(zhǎng)江流域資源與環(huán)境,2007,16(1):92-96.

        Liu Defu, Huang Yuling, Wang Congfeng. Development trend of hydraulic engineering-Transformation from traditional hydraulic engineering to eco-hydraulic engineering[J]. Resources and Environment in the Yangtze Basin, 2007, 16(1): 92-96. (in Chinese with English abstract)

        [12] 鄭鐵剛,孫雙科,柳海濤,等. 基于魚類行為學(xué)與水力學(xué)的水電站魚道進(jìn)口位置選擇[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(24):164-170.

        Zheng Tiegang, Sun Shuangke, Liu Haitao, et al. Location choice of fishway entrance in hydropower project based on fish behavioristics and hydraulics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 164-170. (in Chinese with English abstract)

        [13] Costa M J, Lennox R J, Katopodis C, et al. Is there evidence for flow variability as an organism-level stressor in fluvial fish[J]. Journal of Ecohydraulics, 2017, 2(1): 68-83.

        [14] Gregory S, Li H, Li J. The conceptual basis for ecological responses to dam removal: Resource managers face enormous challenges in assessing the consequences of removing large dams from rivers and evaluating management options[J]. Bioscience, 2002, 52(8): 713-723.

        [15] Katopodis C. Developing a toolkit for fish passage, ecological flow management and fish habitat works[J]. Journal of Hydraulic Research, 2005, 43(5): 451-467.

        [16] Thiem J D, Binder T R, Dawson J W, et al. Behaviour and passage success of upriver-migrating lake sturgeonin a vertical slot fishway on the Richelieu River, Quebec, Canada[J]. Endangered Species Research, 2011, 15(1): 1-11.

        [17] Grill G, Dallaire C O, Chouinard E F, et al. Development of new indicators to evaluate river fragmentation and flow regulation at large scales: A case study of Mekong River[J]. Ecological Indicators, 2014, 45(5): 148-159.

        [18] Pavlov D S. Structures Assisting the Migrations of Non-salmonid Fish: USSR[M]. FAO Fisheries Technical Paper, 1989, 308: 1-97.

        [19] Brett J R. The respiratory metabolism and swimming performance of young sockeye salmon[J]. Journal of the Fisheries Board of Canada, 1964, 21(5): 1183-1226.

        [20] 鄭金秀,韓德舉,胡望斌,等. 與魚道設(shè)計(jì)相關(guān)的魚類游泳行為研究[J]. 水生態(tài)學(xué)雜志,2010,3(5):104-110.

        Zheng Jinxiu, Han Deju, Hu Wangbin, et al. Fish swimming performance related to fishway design[J]. Journal of Hydroecology, 2010, 3(5): 104-110. (in Chinese with English abstract)

        [21] 蔡露,房敏,涂志英,等. 與魚類洄游相關(guān)的魚類游泳特性研究進(jìn)展[J]. 武漢大學(xué)學(xué)報(bào):理學(xué)版,2013,59(4):363-368.

        Cai Lu, Fang Min, Tu Zhiying, et al. Research progress on the fish swimming performance related to migration[J]. Journal of Wuhan University: Natural Science Edition, 2013, 59(4): 363-368. (in Chinese with English abstract)

        [22] Katopodis C, Gervais A R. Fish Swimming Performance Database and Analyses[M]. Fisheries and Oceans, Ecosystems and Oceans Science. 2016.

        [23] 龐旭,付世建,曹振東,等. 饑餓和溫度馴化對(duì)中華倒刺鲃靜止代謝和游泳能力的影響[J]. 生態(tài)學(xué)報(bào),2016,36(7):1854-1860.

        Pang Xu, Fu Shijian, Cao Zhendong, et al. The effects of fasting and acclimation temperature on the resting metabolism and swimming performance in qingbo ()[J]. Acta Ecologica Sinica, 2016, 36(7): 1854-1860. (in Chinese with English abstract)

        [24] 趙希坤,韓楨鍔. 魚類克服流速能力的試驗(yàn)[J]. 水產(chǎn)學(xué)報(bào),1980,4(1):31-37.

        Zhao Xikun, Han Zhen’e. Experiments on the current overcoming ability of some freshwater fishes[J]. Journal of Fisheries of China, 1980, 4(1): 31-37. (in Chinese with English abstract)

        [25] 白艷勤,路波,羅佳,等. 草魚、鰱、瓦氏黃顙魚幼魚感應(yīng)流速的比較[J]. 生態(tài)學(xué)雜志,2013,32(8):2085-2089.

        Bai Yanqin, Lu Bo, Luo Jia, et al. Induction velocity of juvenile grass carp, silver carp, and darkbarbel catfish[J]. Chinese Journal of Ecology, 2013, 32(8): 2085-2089. (in Chinese with English abstract)

        [26] 王博,石小濤,周琛琳,等. 北盤江兩種魚感應(yīng)流速[J]. 北華大學(xué)學(xué)報(bào):自然科學(xué)版,2013,14(2):223-226.

        Wang Bo, Shi Xiaotao, Zhou Chenlin, et al. Induced velocity of two species of fishes in Beipan River[J]. Journal of Beihua University: Natural Science, 2013, 14(2): 223-226. (in Chinese with English abstract)

        [27] Cai L, Liu G, Taupier R, et al. Effect of temperature on swimming performance of juvenile[J]. Fish Physiology and Biochemistry, 2014, 40(2): 491-498.

        [28] Burnham K P, Anderson D R, Huyvaert K P. AIC model selection and multimodel inference in behavioral ecology: Some background, observation, and comparisons[J]. Behavioral Ecology and Sociobiology, 2011, 65(1): 23-35.

        [29] 張碩,陳勇. 黑鮶幼魚趨流性的初步研究[J]. 上海水產(chǎn)大學(xué)學(xué)報(bào),2005,14(3):282-287.

        Zhang Shuo, Chen Yong. Preliminary study on the rheotaxis of juvenile[J]. Journal of Shanghai Fisheries University, 2005, 14(3): 282-287. (in Chinese with English abstract)

        [30] Brett J R. Swimming performance of sockeye salmon () in relation to fatigue time and temperature[J]. Journal of the Fisheries Research Board of Canada, 1967, 24(8): 1731-1741.

        [31] Crespel A, Dupontprinet A, Bernatchez L, et al. Divergence in physiological factors affecting swimming performance between anadromous and resident populations of brook charr[J]. Journal of Fish Biology, 2017, 90(5): 2170-2193.

        [32] Hammer C. Fatigue and exercise tests with fish[J]. Comparative Biochemistry & Physiology Part A, 1995,112(1): 1-20.

        [33] Verhille C E, Poletto J B, Cocherell D E, et al. Larval green and white sturgeon swimming performance in relation to water-diversion flows[J]. Conservation Physiology, 2014, 2(1): 31.

        [34] Sullivan C M. Temperature reception and responses in fish[J]. Journal of the Fisheries Research Board of Canada, 1954: 11(2): 153-170.

        [35] Arnold G P. Rheotropism in fishes[J]. Biological reviews, 1974, 49(4): 515-576.

        [36] Montgomery J C, Macdonald J A. Sensory tuning of lateral line receptors in antarctic fish to the movements of planktonic prey[J]. Science, 1987, 235(4785): 195-197.

        Response of induced flow speed to fish body length and its application in flow design of fish passage facilities

        Cai Lu1, Wang Weiying2, Wang Hailong3, Hu Wangbin1, Zhao Ping1, Zhao Na1, Hou Yiqun1, Chen Shengli2, Chen Hao3, Zhang Peng1※

        (1.,,430079,;2.650051,; 3.,650206,)

        There is a global boom in dams. Although dams bring a huge economic benefit, they obstruct fish migrations and gene exchange. Fish passages are being designed and constructed to mitigate the influence of the dams on fish migration and gene exchange. Fish behavior researches are useful to the design of fish passages. A large amount of research about critical swimming speed and burst speed, which were related to velocity design in the high velocity region of fish passages such as the entrance, was reported worldwide. However the reports about velocity design in the low velocity region of fish passages were limited. To study fish behavior and provide information for the velocity design in the low velocity region, induced flow speed of 5 fishes in the Lancang River was investigated with the fish behavior measurement equipment and a stepped velocity test was carried out in spring when fish migrated. Before testing, fish body length was measured and the test fish was allowed to adapt to experimental conditions at 0.5 bl/s (bl meant body length of fish) for 2 h. At the initial flow velocity (approximately 0.06 m/s), the fish was nearly motionless along the flow direction. The water velocity was increased by approximately 0.01 m/s at 5 s interval and, when the fish was no longer able to hold station and began to swim actively, the flow velocity was reported as induced flow speed. Results included: 1) The induced flow speedof the fish ranged from 0.40 to 1.18 bl/s (or from 0.07 to 0.23 m/s) at 11.1-22.6 ℃, which was similar to other references (0.4-1.5 bl/s or 0.05-0.15 m/s). 2) Lateral line receptors detected small changes in flow, and swimming was induced in fish when the stimulus from lateral line receptors was sufficient. The relatively induced flow speed(bl/s) was negatively correlated with fish body length and the absolutely induced flow speed(m/s) was positively correlated with fish body length, whether each species was considered individually or all species were considered together. The above relationships were consistent to both the relationship between critical swimming speed and body length, and the relationship between burst speed and body length. The relationship could be used to forecast swimming performance of fishes that were captured with difficulty or had small quantity. 3) Overmuch decreasing or increasing the designed velocity of fish passages would increase the difficulties for the engineering design and increase the cost for construction. The relationship between percentage of fish swimming trend and flow speed was obtained in this study, which could provide the reference to balance the fish demand and flow design. Based on the data of fish induced flow speed, the designed minimum velocity of the fish passages should be more than 0.2 m/s in order that 95% of fish could pass the passages successfully, if both the difficulties for the engineering design and the cost of construction were neglected, and if the effectiveness of fish passages was considered uniquely. The release site for the fish lifting machine and fish transport boats was set in the upstream, far away the dam site. If the velocity at the release site was too low, the fish lost orientation even went back to the downstream, resulting in the fail of fish passages. Therefore, the site where the velocity is higher than fish induced flow speed should be selected for releasing fish. The principle can be also applied to the selection of exit site in fish passages.

        flow velocity; facilities; hydrodynamics; swimming capability; swimming performance; rheotaxis

        10.11975/j.issn.1002-6819.2018.02.024

        Q958; TV61

        A

        1002-6819(2018)-02-0176-06

        2017-08-24

        2017-12-13

        國(guó)家自然科學(xué)基金(51609155,51609157)、中國(guó)電建集團(tuán)昆明勘測(cè)設(shè)計(jì)研究院有限公司項(xiàng)目(HD2015/S12)、中國(guó)電力建設(shè)股份有限公司項(xiàng)目(DJ-ZDXM-2014-04)、中國(guó)電建集團(tuán)貴陽勘測(cè)設(shè)計(jì)研究院有限公司“水電工程過魚設(shè)施關(guān)鍵技術(shù)研究”子課題“魚類游泳能力測(cè)試及趨流性實(shí)驗(yàn)”。

        蔡 露,男,湖北武漢人,助理研究員,主要從事魚類行為和過魚設(shè)施研究。Email:tyzhcl@hotmail.com

        張 鵬,男,湖北孝感人,博士,副研究員,主要從事魚類研究。Email:zhang860214@foxmail.com

        蔡 露,王偉營(yíng),王海龍,胡望斌,趙 萍,趙 娜,侯軼群,陳勝利,陳 豪,張 鵬. 魚感應(yīng)流速對(duì)體長(zhǎng)的響應(yīng)及在過魚設(shè)施流速設(shè)計(jì)中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):176-181. doi:10.11975/j.issn.1002-6819.2018.02.024 http://www.tcsae.org

        Cai Lu, Wang Weiying, Wang Hailong, Hu Wangbin, Zhao Ping, Zhao Na, Hou Yiqun, Chen Shengli, Chen Hao, Zhang Peng. Response of induced flow speed to fish body length and its application in flow design of fish passage facilities[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 176-181. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.02.024 http://www.tcsae.org

        猜你喜歡
        過魚體長(zhǎng)水流
        脖子占體長(zhǎng)一半的巨龍——新疆巨龍
        史上最長(zhǎng)恐龍
        哪股水流噴得更遠(yuǎn)
        基于PIT遙測(cè)技術(shù)的豎縫式魚道過魚效率及魚類行為分析
        外泌體長(zhǎng)鏈非編碼RNA在膀胱癌中的研究進(jìn)展
        能俘獲光的水流
        中國(guó)過魚設(shè)施數(shù)據(jù)庫框架設(shè)計(jì)初步研究
        我只知身在水中,不覺水流
        文苑(2020年6期)2020-06-22 08:41:56
        國(guó)內(nèi)外過魚設(shè)施運(yùn)行效果評(píng)估與監(jiān)測(cè)技術(shù)研究綜述
        假如人過魚的生活
        大桥未久av一区二区三区| 久久久高清免费视频| 白白白色视频在线观看播放| 小13箩利洗澡无码免费视频 | 手机在线看片| 欧美大屁股xxxxhd黑色| 久久久亚洲欧洲日产国产成人无码 | 看国产亚洲美女黄色一级片 | 乱码一二三入区口| 国产高清天干天天视频| 中文字幕有码在线亚洲| 无码小电影在线观看网站免费| 人妻无码久久一区二区三区免费| 亚洲AV秘 无码一区二区三| 女主播国产专区在线观看| av无码一区二区三区| 国产成人精品成人a在线观看| 国产成人精品aaaa视频一区| 久久亚洲免费精品视频| 国产精久久一区二区三区| 精品人体无码一区二区三区 | 色婷婷丁香综合激情| 最新国产激情视频在线观看| 日本无码欧美一区精品久久 | 日韩无码电影| 伊人久久亚洲精品中文字幕| 少妇熟女天堂网av| 熟女人妇交换俱乐部| 日韩国产成人精品视频| 免费女女同黄毛片av网站| 国产不卡在线视频观看| 在线高清理伦片a| 91产精品无码无套在线| av男人天堂网在线观看| 欧美肥婆性猛交xxxx| 精品一品国产午夜福利视频| 国产激情视频免费观看| 国产精品自拍盗摄自拍| 尤物在线精品视频| 亚洲午夜精品久久久久久一区| 国产三级在线观看高清|