王秋菊,劉 峰,常本超,新家憲,劉艷霞,姜 輝,焦 峰
?
稻殼深施改良蘇打堿土理化性質(zhì)長(zhǎng)期效應(yīng)
王秋菊1,2,劉 峰1,常本超1,新家憲3,劉艷霞4,姜 輝5,焦 峰6※
(1. 黑龍江省農(nóng)業(yè)科學(xué)院土壤肥料與資源環(huán)境研究所,哈爾濱 150086; 2. 黑龍江省土壤環(huán)境與植物營(yíng)養(yǎng)重點(diǎn)實(shí)驗(yàn)室, 哈爾濱 150086; 3. 日本NICH研究所,日本札幌 079-01; 4. 黑龍江省農(nóng)業(yè)科學(xué)院遙感技術(shù)中心,哈爾濱 150086; 5. 黑龍江省農(nóng)業(yè)科學(xué)院科研處,哈爾濱 150086; 6. 黑龍江八一農(nóng)墾大學(xué),大慶 163319)
鹽漬土是中國(guó)重要耕地土壤,由于土壤中鹽基離子含量高,影響植物生育,為此改良鹽漬土意義重大。該研究以黑龍江省蘇打堿土為供試土壤,采用土層置換犁將稻殼埋于20~30cm土層中,以單獨(dú)的機(jī)械耕作不埋稻殼為對(duì)照,田間作業(yè)8 a后再次調(diào)查土壤理化性質(zhì),研究結(jié)果:土壤有機(jī)碳、速效氮、磷、鉀含量與對(duì)照比有增加趨勢(shì),各層土壤pH值降低0.37~0.41,Na+降低40.68~212.35 mg/kg;土壤固相率約40%,與對(duì)照比下降了3.68%~8.86%,土壤總孔隙度增加到57.38%~60.58%之間,有效孔隙比例大,占總孔隙的22.7%~26.8%,對(duì)照有效孔隙占總孔隙的19.0%~23.7%;土壤通氣、透水性分別是對(duì)照的10~121 5倍和118~173 5倍,0~30 cm土層水庫(kù)容量高于對(duì)照18.58 mm;速效水庫(kù)容高于對(duì)照10.71 mm;稻殼深施持續(xù)后效長(zhǎng),改善蘇打堿土比單一機(jī)械耕作有效,是適合鹽漬土改良的一項(xiàng)技術(shù),而且可以通過(guò)機(jī)械手段得以實(shí)現(xiàn)。
耕作;土壤;鹽分;蘇打堿土;稻殼;深施;孔隙
鹽漬土是中國(guó)重要土壤資源。據(jù)《中國(guó)鹽漬土》記述[1],中國(guó)鹽漬土的面積為9.91×107hm2。在中國(guó)東北地區(qū)(遼寧、吉林、黑龍江、內(nèi)蒙古),鹽漬土面積約為8.05×106hm2,占全國(guó)鹽漬土總面積的7.12%或7.19%[2]。鹽漬土按照自然條件可以分為內(nèi)陸鹽漬土和濱海鹽漬土[3]。黑龍江省鹽漬土屬于內(nèi)陸型鹽漬土,包括鹽土、堿土,總面積2.43×106hm2,已墾為耕地的面積為1.6×106hm2,占第二次土壤普查鹽漬土總面積的66.03%。主要分布在松嫩平原的安達(dá)、肇東、肇源、大慶、富裕、杜蒙等市縣,以及三江平原也有零星分布[4]。各級(jí)政府和科研部門(mén)非常重視鹽漬土的改良,先后提出了各種改良鹽漬土的技術(shù)與方法。在鹽漬土改良中主要采用施有機(jī)肥、石膏、土壤調(diào)理劑進(jìn)行改良[5-6];耕作改土方面以深松技術(shù)為主,但后效短[7-8];在有的地方采用暗管排鹽工程技術(shù)[9-11],效果雖好,成本高,推廣難;在鹽漬土利用方面東北地區(qū)種植水稻的效果明顯[12],但受到水源等因素制約。稻殼深施技術(shù)是作者所在課題組提出的一種改良鹽漬土的技術(shù)[13]。選用稻殼為改土物料,一是利用稻殼二氧化硅(10%~21%)、纖維素和半纖維素(34%~42%、16%~22%)以及木質(zhì)素(21%~26%)含量高,耐腐爛和通氣透水性好的特性[14-16],可以促進(jìn)土壤形成穩(wěn)定大孔隙,利于土壤排鹽和降低毛管力,減輕鹽分表聚;二是稻殼來(lái)源廣、成本低,資源豐富[17],利于大面積推廣應(yīng)用。
為探索改良鹽漬土的新途徑,筆者等在蘇打堿土上開(kāi)展了稻殼機(jī)械深施試驗(yàn),結(jié)果證明,稻殼深施區(qū)在降低土壤容重、增加通透性、改善三相比的效果明顯;連續(xù)2a調(diào)查苜蓿產(chǎn)量,稻殼深施區(qū)比對(duì)照平均增產(chǎn)25.4%~33.2%[13]。但其持續(xù)的改土后效尚未見(jiàn)報(bào)道。本文在上述改土試驗(yàn)區(qū)上繼續(xù)開(kāi)展土壤理化性質(zhì)調(diào)查,意圖通過(guò)比較改土后第8年的改土區(qū)與對(duì)照區(qū)土壤理化性質(zhì)變化,明確稻殼深施的持續(xù)效果,為鹽漬土改良提供可靠技術(shù)參考。
試驗(yàn)設(shè)在黑龍江省蘭西縣遠(yuǎn)大鄉(xiāng)勝利村黑龍江省農(nóng)業(yè)科學(xué)院草業(yè)研究所試驗(yàn)基地院內(nèi)的撂荒農(nóng)田進(jìn)行(125°28′24″E,46°32′17″N)。研究區(qū)為溫帶大陸性季風(fēng)氣候,近10a平均降雨量450mm,年平均氣溫3.1 ℃,≥10 ℃有效活動(dòng)積溫2 760 ℃[18]。
供試土壤為蘇打堿土,黑土層厚度為20~25 cm,表層疏松,下層為緊實(shí)的柱狀結(jié)構(gòu),具備典型的蘇打堿土剖面構(gòu)造。試驗(yàn)地土壤基本性質(zhì)如表1。
表1 試驗(yàn)地土壤基本性質(zhì)
試驗(yàn)2個(gè)處理,分別為深耕和稻殼深施處理,試驗(yàn)區(qū)采用大區(qū)對(duì)比研究,每區(qū)面積2 000 m2。
深耕區(qū)(對(duì)照):采用土層置換犁,將0~20 cm表層土與下面的20~40 cm心土層進(jìn)行土層置換,耕深40 cm。
稻殼深施區(qū):采用土層置換犁將鋪在地表稻殼深施作業(yè),總耕深約40 cm。首先在試驗(yàn)區(qū)表面平鋪約10 cm厚稻殼(100 t/hm2),然后根據(jù)土層置換犁作業(yè)原理將稻殼翻埋到25~30 cm土層中。
試驗(yàn)處理時(shí)間為2009年11月10-15日,2010年4月下旬用組合耙交叉耙2次,平整土地。在播種前施肥硫酸銨(含N 21%)100 kg/hm2、過(guò)磷酸鈣(P2O514%)1 000 kg/hm2,之后耙平,播種苜蓿,2014年秋草地更新,2015年改種玉米(先玉335),2016、2017年種植大豆(黑農(nóng)48),施肥及田間管理同一般大田。
在實(shí)施改土后第2年和第3年分別對(duì)處理土壤進(jìn)行了物理、化學(xué)性質(zhì)調(diào)查。本次調(diào)查是在改土后第8年(2017年)進(jìn)行。調(diào)查項(xiàng)目與方法如下:
土壤化學(xué)樣品取樣方法:按照0~10、>10~20、>20~30 cm土層土壤隨機(jī)取樣,每個(gè)處理取樣5點(diǎn),混合后按四分法留500 g左右?guī)Щ貙?shí)驗(yàn)室風(fēng)干、備用。
圖1 稻殼深施田間作業(yè)
化學(xué)指標(biāo)分析方法:土壤全氮含量測(cè)定采用凱氏定氮法測(cè)定;全磷含量采用HF-硝酸混合消煮,鉬銻藍(lán)比色法測(cè)定;全鉀含量采用HF-硝酸混合消煮,原子吸收分光光度法測(cè)定;堿解氮含量采用擴(kuò)散吸收法測(cè)定;速效磷含量測(cè)定采用碳酸氫鈉提取-鉬銻抗比色法測(cè)定[19];速效鉀含量測(cè)定采用乙酸銨浸提-原子吸收分光光度法測(cè)定;土壤有機(jī)質(zhì)采用重鉻酸鉀外加熱法測(cè)定;水溶性鉀、鈣、鈉、鎂離子采用原子吸收分光光度法測(cè)定;氯離子采用硝酸銀滴定法測(cè)定;碳酸根和碳酸氫根采用雙指示劑滴定法測(cè)定,硫酸根采用硫酸鋇比濁法測(cè)定[20];土壤pH值采用pH指示劑法測(cè)定。
土壤物理樣品取樣方法:參照日本的《土壌および作物の診斷基準(zhǔn)-分析法》一書(shū)[21],在取化學(xué)樣品的各點(diǎn)中,選取有代表性的一點(diǎn)挖長(zhǎng)、寬、高為60 cm×60 cm×60 cm土壤剖面,用100mL環(huán)刀分層取原狀土樣測(cè)定土壤物理性質(zhì)。取樣層次分別為0~10、>10~20、>20~30 cm土層,每個(gè)土層取3個(gè)重復(fù)樣品,環(huán)刀樣扣蓋后用膠帶密封,帶回實(shí)驗(yàn)室備用。
土壤物理指標(biāo)測(cè)定方法:土壤容重采用環(huán)刀稱重法測(cè)定;土壤通氣系數(shù)采用DIK-5001土壤透氣性測(cè)定儀測(cè)定;飽和導(dǎo)水率采用DIK-4012土壤透水性測(cè)定儀測(cè)定;土壤三相比采用DIK-1130土壤三相測(cè)定儀測(cè)定[22];土壤孔隙分布測(cè)定方法:采用砂柱和壓力膜儀測(cè)定不同壓力下土壤水分含量,得出土壤水分-吸力關(guān)系曲線,根據(jù)該曲線求得土壤孔隙當(dāng)量直徑(=3/),得出不同當(dāng)量直徑孔隙(%),即土壤不同孔隙的分布,注:為孔隙當(dāng)量直徑(mm),為水柱高度(cm)。
各個(gè)土層土壤儲(chǔ)水量計(jì)算方法如下
=×××10 (1)
式中為儲(chǔ)水量,mm;為土壤容重,g/cm3;為土層厚度,cm;為土壤質(zhì)量含水量,%[23]。
土壤儲(chǔ)水量劃分標(biāo)準(zhǔn)為:
重力水含水量(%)=飽和含水量(%)?田間持水量(%,水吸力:63 cm) (2)
速效水含水量=田間持水量(%)?初期凋萎含水量(%,水吸力:6 618 cm) (3)
遲效水含水量=初期凋萎含水量(%)?永久凋萎含水量(%,水吸力:16 544 cm) (4)
無(wú)效水含水量為水吸力超過(guò)16 544 cm以上的植物不能吸收的土壤水分[24]。上述數(shù)據(jù)均可通過(guò)土壤水分—吸力關(guān)系曲線求得。
從表2中看出,稻殼深施土壤有機(jī)質(zhì)含量高于對(duì)照;各土層土壤速效氮、磷、鉀含量高于對(duì)照;稻殼深施可以降低土壤pH值,土壤pH值降低0.37~0.41。
表2 不同處理土壤養(yǎng)分
從圖2中看出,蘇打堿土鹽基離子組成以Na+為主,稻殼深施增加了土壤大孔隙比例,改善了土壤通透性和排水能力,降低了土體中的鹽基離子總量,特別是降低了土體中的Na+和HCO3-濃度,其中Na+質(zhì)量濃度降低40.68~212.35 mg/kg,HCO3-也有明顯降低的趨勢(shì)。由于土壤pH值與Na+和HCO3-離子濃度呈正相關(guān)[25-26],因此認(rèn)為土壤pH值降低主要是Na+濃度降低帶來(lái)的結(jié)果。
圖2 不同土層鹽基離子含量
從圖3中看出,稻殼深施處理8 a后,土壤固相率約40%,明顯低于對(duì)照,與對(duì)照比土壤固相率下降3.68%~8.86%;氣相率高達(dá)20%,也明顯高于對(duì)照,說(shuō)明土壤通氣性良好;土壤總孔隙度,稻殼深施區(qū)為57.38%~60.58%之間,對(duì)照僅為48.52%~56.89%。
圖3 不同處理土壤三相
從土壤孔隙組成看(圖4),0~10、>10~20、>20~30 cm土壤通氣孔隙(>0.05 mm)占總孔隙比例分別為28.34%、16.36%和20.76%,分別是對(duì)照的5.91倍和9.52倍;有效孔隙(0.000 2~0.05 mm)比例分別占總孔隙的26.8%、25.6%、22.7%,對(duì)照有效孔隙分別占總孔隙比例的22.2%、23.7%、19.0%,稻殼深施可以增加土壤有效孔隙比例,降低無(wú)效孔隙(<0.000 2 mm)比例。土壤大孔隙和有效孔隙增加,可以促進(jìn)水分的流動(dòng),利于土壤洗鹽。
從表3看出,稻殼深施區(qū)土壤容重比對(duì)照低0.16~0.23 g/cm3,其中20~30 cm土層降低幅度最大。土壤的通氣系數(shù),稻殼深施區(qū)165×10-6~243×10-6cm/s,比對(duì)照高10~1 215倍。土壤飽和導(dǎo)水率,稻殼深施區(qū)是對(duì)照的118~1 735倍,>10~20和>20~30 cm的土層差異明顯。
圖4 不同處理土壤孔隙分布
表3 土壤容重、通氣、透水性
不同處理區(qū)0~30 cm土壤水庫(kù)容儲(chǔ)水測(cè)定結(jié)果如圖5所示,稻殼深施區(qū)總儲(chǔ)水庫(kù)容164.06 mm,比對(duì)照高18.58 mm;其中有效儲(chǔ)水庫(kù)容41.14 mm,比對(duì)照高9.6 mm。稻殼深施增加速效水庫(kù)容,為33.19 mm,高于對(duì)照10.71 mm,保證了土壤的供水能力增強(qiáng)。
圖5 不同處理土壤水庫(kù)容
稻殼深施技術(shù)是通過(guò)機(jī)械將稻殼這種不宜腐爛的物質(zhì)鋪在25~30 cm土層土壤中,在土壤中構(gòu)建穩(wěn)定的大孔隙,形成阻隔層,在提高土壤排水能力同時(shí),切斷上土層的水力聯(lián)系。剖面調(diào)查看出,稻殼不易腐爛,即使是施入土壤8 a后仍保持原來(lái)狀態(tài)(圖6),由此可見(jiàn),稻殼是可以保證改土具有長(zhǎng)期效果的資源。稻殼深施8a后調(diào)查結(jié)果,土壤有機(jī)質(zhì)、速效氮、磷、鉀含量均比對(duì)照高(表1)。由于稻殼在土壤中分解程度比較低,因此表1中土壤有機(jī)質(zhì)含量的差異可能來(lái)源是機(jī)械作業(yè)精度差導(dǎo)致的取樣誤差或是苜蓿根系量的差異所致,有待于進(jìn)一步研究。另一方面稻殼自身養(yǎng)分含量低,土壤速效養(yǎng)分增加可能不是稻殼腐解釋放養(yǎng)分的結(jié)果,最大的可能性是由于土壤通氣性提高增強(qiáng)了土壤微生物活性,促進(jìn)了土壤養(yǎng)分有效化[27-29]。稻殼深施區(qū)比對(duì)照土壤水溶性鹽基離子總量低,尤其是土壤中Na+和HCO3-降低是改善土壤pH的重要原因,前期試驗(yàn)表明,稻殼深施技術(shù)可以保持土壤形成大孔隙,使深層緊實(shí)的土壤變得疏松,增加土壤由上向下的透水能力[13];8a后調(diào)查結(jié)果,土壤孔隙度、通氣、透水性仍明顯高于對(duì)照。早年采用深松改良鹽漬土[30],后效短,需要連年深松;也有研究認(rèn)為深松效果可持續(xù)2 a[31],深松等深耕技術(shù)改良蘇打堿土的持續(xù)后效短與這類土壤高分散特性有關(guān)。蘇打堿土鈉離子含量高,土壤以單粒存在,土壤在擾動(dòng)后會(huì)很快恢復(fù)原狀[4]。所以單一的機(jī)械耕作對(duì)蘇打堿土改良效果不理想,需要一定的介質(zhì)為改土物料。改良鹽漬土的材料也很多,如石膏、腐殖酸、秸稈、有機(jī)肥等,都可作為改良鹽漬土的材料[32-34],但這些材料或存在成本較高問(wèn)題或效果不明顯或改良土壤時(shí)期長(zhǎng)的問(wèn)題。稻殼也是一種有機(jī)物料,無(wú)污染,不易腐爛,成本低,利用稻殼為介質(zhì),埋入土壤后可以在土壤中長(zhǎng)時(shí)間保持原狀態(tài),擾動(dòng)后土壤恢復(fù)性差,能長(zhǎng)時(shí)間改變土壤的結(jié)構(gòu),從而調(diào)節(jié)土壤的水、氣、熱等環(huán)境,改變土壤的不良性狀和障礙因子,從而達(dá)到適合植物生長(zhǎng)的環(huán)境,改土8a后土壤緊實(shí)度仍低于對(duì)照處理,大孔隙和有效孔隙數(shù)量占有比例大,土壤儲(chǔ)水容高,可被植物吸收利用的有效水分多,能保證植物生長(zhǎng)對(duì)水分的需求。稻殼深施技術(shù)是一項(xiàng)工省效宏的鹽堿地治理技術(shù)。
圖6 稻殼深施后土壤剖面
另外,研究區(qū)物理性質(zhì)具有比較大的穩(wěn)定性,空間變異小,故本文原狀土取樣方法參照文獻(xiàn)[21]挖取一個(gè)剖面,取樣缺少重復(fù)性可能會(huì)對(duì)研究結(jié)果產(chǎn)生一定誤差,今后對(duì)土壤原狀土田間取樣過(guò)程和方法會(huì)適當(dāng)進(jìn)行改進(jìn),增加取樣位點(diǎn)。
本研究是在大田條件下采用機(jī)械作業(yè)的田間對(duì)比試驗(yàn),由于機(jī)械作業(yè)存在不均一性,不如小區(qū)模擬試驗(yàn)精準(zhǔn),測(cè)定的數(shù)據(jù)誤差較大是本研究的缺憾,但總的規(guī)律是真實(shí)可信的,試驗(yàn)結(jié)果更能反映生產(chǎn)實(shí)際情況。為了避免田間機(jī)械作業(yè)的精確度差的問(wèn)題,在今后的研究中,應(yīng)采用大田機(jī)械作業(yè)試驗(yàn)與人工模擬相結(jié)合的方式,以提高研究的精確度。
稻殼深施技術(shù)是一項(xiàng)有效的改良鹽漬土不良狀態(tài)的改土技術(shù),改土后效長(zhǎng),效果好。
1)與深耕對(duì)照相比,稻殼深施土壤有機(jī)碳、速效氮、磷、鉀含量增加,10~30 cm的土層鹽基離子總量、土壤pH值及Na+降低,稻殼深施8 a后效果依然明顯。
2)稻殼深施可降低土壤固相比率,土壤固相達(dá)40%左右,土壤總孔隙度增加、有效孔隙比例大,達(dá)總孔隙的22.7%~26.8%,土壤通氣、透水性明顯高于對(duì)照,土壤貯水能力增加,0~30 cm土層水庫(kù)容量高于對(duì)照18.58 mm;速效水分供給量大,為33.19 mm,高于對(duì)照10.71 mm。
3)稻殼深施一次作業(yè)后,比單一的機(jī)械作業(yè)后效期長(zhǎng),改善土壤效果明顯,即可改善土壤物理性質(zhì),又可調(diào)節(jié)土壤化學(xué)性質(zhì),是一項(xiàng)綜合改良土壤的技術(shù)。
[1] 王遵親. 中國(guó)鹽漬土[M]. 北京:科學(xué)出版社,1993.
[2] 中國(guó)科學(xué)院林業(yè)土壤研究所. 中國(guó)東北土壤[M]. 北京:科學(xué)出版社,1980.
[3] 中國(guó)科學(xué)院南京土壤研究所.中國(guó)土壤[M]. 北京:科學(xué)出版社,1980.
[4] 黑龍江省土地管理局,黑龍江省土壤普查辦公室. 黑龍江土壤[M]. 北京:農(nóng)業(yè)出版社,1992.
[5] 張密密,陳誠(chéng),劉廣明,等. 適宜肥料與改良劑改善鹽堿土壤理化特性并提高作物產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(10):91-98.
Zhang Mimi, Chen Cheng, Liu Guangming, et al. Suitable utilization of fertilizer and soil modifier to ameliorate physicochemical characteristics of saline-alkali soil and increase crop yields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(10): 91-98. (in Chinese with English abstract)
[6] 張玉鳳,林海濤,王江濤,等. 鹽堿土壤調(diào)理劑對(duì)玉米生長(zhǎng)及土壤的改良效果[J].中國(guó)土壤與肥料,2017(1):133-138.
Zhang Yufeng, Lin Haitao, Wang Jiangtao, et al. Effects of saline-alkaline soil conditioner on growth of maize and improvement of soil[J]. Chinese Soil and Fertility, 2017(1): 133-138. (in Chinese with English abstract)
[7] 徐璐. 耕作和石膏對(duì)蘇打鹽堿土改良作用研究[J]. 北京:中國(guó)科學(xué)院,2012.
[8] 司鎮(zhèn)江,張忠學(xué),黃彥. 大慶市鹽堿土深松改良生態(tài)修復(fù)試驗(yàn)研究[J]. 土壤通報(bào),2010,41(4):952-956.
Si Zhenjiang, Zhang Zhongxue, Huang Yan. Analysis of improvement and ecology restoration effect for peripheral alkali-saline grassland in Daqing[J]. Chinese Journal of Soil Science,2010,41(4):952-956. (in Chinese with English abstract)
[9] 劉子義. 新疆內(nèi)陸干旱重鹽堿地區(qū)暗管排水技術(shù)的應(yīng)用[J]. 農(nóng)田水利與小水電,1994(7):9-13.
Liu Ziyi. Application of subsurface drains in the inland and arid and heavy saline area of the Xinjiang uygur autonomous region[J]. Farmland Water Conservancy and Small Hydropower Stations, 1994(7): 9-13. (in Chinese with English abstract)
[10] 王濤,安豐華,竇森,等. 暗管條件下深松對(duì)蘇打草甸堿土理化性質(zhì)的影響[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,34(5):545-552.
Wang Tao, An Fenghua, Dou Sen, et al. Effect of subsoiling on physical and chemical properties of soda meadow alkaline with buried subsurface pipe[J]. Journal of Jilin Agricultural University, 2012, 34(5): 545-552. (in Chinese with English abstract)
[11] 王濤,竇森,安豐華,等. 大安市暗管改堿水稻示范區(qū)地下水位與水質(zhì)變化研究[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,34(6):645-649.
Wang Tao, Dou Sen, An Fenghua, et al. Changes of groundwater table and quality in Da’an rice-planting demonstration plot with subsurface drainage alkali-amending[J]. Journal of Jilin Agricultural University, 2012, 34(6): 645-649. (in Chinese with English abstract)
[12] 張梅,王宇,趙蘭坡,等. 蘇打鹽堿土種稻改良的水資源高效利用田間試驗(yàn)研究[J]. 灌溉排水學(xué)報(bào),2014,33(1):132-134.
Zhang Mei, Wang Yu, Zhao Lanpo, et al. Experiment research of water resources utilization on soda saline-alkali soil improvement by planting rice in the field[J]. Journal of Irrigation and Drainage, 2014, 33(1): 132-134. (in Chinese with English abstract)
[13] 高中超,劉峰,王秋菊,等. 稻殼深施對(duì)堿土物理性質(zhì)和苜蓿產(chǎn)量的影響[J]. 土壤通報(bào),2014,45(4):990-995.
Gao Zhongchao, Liu Feng, Wang Qiuju, et al. Effects of deep application of rice husk on physical properties and alfalfa yield in alkali soil[J]. Chinese Journal of Soil Science, 2014, 45(4): 990-995. (in Chinese with English abstract)
[14] Cheng Y, Lu M, Li J S, et al. Synthesis of MCM-22 zeolite using rice husk as a silica source under varying-temperature conditions[J]. Journal of Colloid and Interface Science, 2012, 369(1): 388-394.
[15] 王允圃,劉玉環(huán),阮榕生,等. 微波吸收劑輔助吸波快速熱解稻殼的氣化特性[J]. 化工進(jìn)展,2015,34(8):3183-3187.
Wang Yunpu, Liu Yuhuan, Ruan Rongsheng, et al. Fast microwave assisted pyrolysis of rice husk for syngas production using microwave absorbent[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3183-3187. (in Chinese with English abstract)
[16] 何文修,張智亮,計(jì)建炳. 稻殼生物質(zhì)資源利用技術(shù)研究進(jìn)展[J]. 化工進(jìn)展,2016,35(5):1366-1376.
He Wenxiu, Zhang Zhiliang, Ji Jianbing. Research progress of rice husk utilization technologies[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1366-1376. (in Chinese with English abstract)
[17] 楊貝貝,余有貴,曾豪,等. 釀造用稻殼的研究現(xiàn)狀及發(fā)展趨勢(shì)[J]. 食品與機(jī)械,2016,32(2):202-204.
Yang Beibei, Yu Youhui, Zeng Hao, et al. Research status and development tendency of liquor-making rice husk[J]. Food and Machinery, 2016, 32(2): 202-204. (in Chinese with English abstract)
[18] 黑龍江省統(tǒng)計(jì)局. 黑龍江省統(tǒng)計(jì)年鑒[M]. 北京:中國(guó)統(tǒng)計(jì)出版社,2006-2016.
[19] 鮑士旦. 土壤農(nóng)化分析[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2005:30-165.
[20] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析[M]. 北京:中國(guó)農(nóng)業(yè)科技出版社,1999.
[21] 北海道立中央農(nóng)業(yè)試驗(yàn)場(chǎng). 土壌および作物の診斷基準(zhǔn)-分析法[M].北海道,1992.
[22] 翁德衡. 土壤物理性測(cè)定法[M]. 重慶:科學(xué)技術(shù)文獻(xiàn)出版社重慶分社,1979.
[23] 中國(guó)科學(xué)院南京土壤研究所土壤物理研究室. 土壤物理性質(zhì)測(cè)定法[M]. 北京:科學(xué)出版社,1978.
[24] 藤原俊六郎、安西徹郎,加藤哲郎. 土壌診斷の方法と活用[M]. 東京:農(nóng)山漁村文化協(xié)會(huì),2006.
[25] 匡恩俊,中本和夫,劉峰,等. 黑龍江省蘇打堿土pH和EC與鹽分組成的關(guān)系[J]. 黑龍江農(nóng)業(yè)科學(xué),2011(5):37-41.
Kuang Enjun, Kazuo Nakamoto, Liu Feng, et al. Relationship of pH, EC and composition of salt of sodic soil in Heilongjiang province[J]. Heilongjiang Agricultural Sciences, 2011(5): 37-41. (in Chinese with English abstract)
[26] 王秋菊,焦峰,劉峰,等. 有機(jī)物料深耕還田改善石灰性黑鈣土化學(xué)性質(zhì)提高玉米產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(14):110-115.
Wang Qiuju, Jiao Feng, Liu Feng, et al. Organic materials returning to field and deep tillage improving chemical properties of calcic chernozem and increasing crop yield[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of CSAE), 2015, 31(14): 110-115. (in Chinese with English abstract)
[27] Wang Y J, Chen Z, Liu P P, et al. Arsenic modulates the composition of anode-respiring bacterial community during dry-wet cycles in paddy soils[J]. Journal of Soils and Sediments, 2016, 16(6): 1745-1753.
[28] 孫冰潔,張曉平,賈淑霞. 農(nóng)田土壤理化性質(zhì)對(duì)土壤微生物群落的影響[J]. 土壤與作物,2013,2(3):139-144.
Sun Bingjie, Zhang Xiaoping, Jia Shuxia. The effect of soil physical and chemical properties on soil microbial community in agro-ecosystem[J]. Soil and Crop, 2013, 2(3): 139-144. (in Chinese with English abstract)
[29] 龐緒,何文清,嚴(yán)昌榮,等. 耕作措施對(duì)土壤水熱特性和微生物生物量碳的影響[J]. 生態(tài)學(xué)報(bào),2013,33(4):1308-1316.
Pang Xu, He Wenqing, Yan Changrong, et al. Effect of tillage and residue management on dynamic of soil microbial biomass carbon[J]. Acta Ecologica Sinica, 2013, 33(4): 1308-1316. (in Chinese with English abstract)
[30] 郝新宇,滕云,黃彥. 振動(dòng)深松改良蘇打鹽堿土效果研究[J]. 現(xiàn)代農(nóng)業(yè)科技,2012(22):210-215.
Hao Xinyu, Teng Yun, Huang Yan. Study on soda alkali-saline soil improvement effect by deeply vibrating- loosen measure[J]. Modern Agricultural Science and Technology, 2012(22): 210-215. (in Chinese with English abstract)
[31] 司振江,張忠學(xué),黃彥. 大慶市鹽堿土深松改良生態(tài)修復(fù)試驗(yàn)研究[J]. 土壤通報(bào),2010,41(4):952-956.
Si Zhenjiang, Zhang Zhongxue, Huang Yan. Analysis of improvement and ecology restoration effect for peripheral alkali-saline grassland in Daqing[J]. Chinese Journal of Soil Science, 2010, 41(4): 952-956. (in Chinese with English abstract)
[32] 閆治斌,秦嘉海,王愛(ài)勤,等. 鹽堿土改良材料對(duì)草甸鹽土理化性質(zhì)與玉米生產(chǎn)效益的影響[J]. 水土保持通報(bào),2011,31(2):123-127.
Yan Zhibin, Qin Jiahai, Wang Aiqin, et al. Effect of improvement materials on meadow saline soil properties and corn productive benefits[J]. Bulletin of Soil and Water Conservation, 2011, 31(2): 123-127. (in Chinese with English abstract)
[33] 張偉華. 腐殖酸在鹽堿土改良中的應(yīng)用及前景[C]//第八屆全國(guó)綠色環(huán)保肥料(農(nóng)藥)新技術(shù)、新產(chǎn)品交流會(huì),2009.
[34] 王金滿,楊培嶺,白中科. CaSO4改良蘇打堿土的離子吸附交換過(guò)程分析與數(shù)值模擬[J]. 水土保持學(xué)報(bào),2008,22(1):43-47.
Wang Jinman, Yang Peiling, Bai Zhongke. Ion adsorption- exchange and numerical simulation in process of reclaiming sodic soils with CaSO4[J]. Journal of Soil and Water Conservation, 2008, 22(1): 43-47. (in Chinese with English abstract)
Long-term effect of deep application of rice husk improving physical and chemical properties of soda alkaline soil
Wang Qiuju1,2, Liu Feng1, Chang Benchao1, Ken Araya3,Liu Yanxia4, Jiang Hui5, Jiao Feng6※
(1.,,150086,; 2150086,; 3.079-01,; 4.150086,; 5.150086,; 6,163319,)
Saline soil is an important soil resource in China. The area of saline soil in China is 9.91×106 hm2. The total area of saline soil in Heilongjiang province is 2.43×106 hm2, and the area cultivated for cultivated land is 1.6×106 hm2. The saline soil in Heilongjiang province is mainly distributed in Anda, Zhaodong, Zhaoyuan, Daqing in the Songnen Plain, and the Sanjiang plain also has a small amount of distribution. Because of the high content of exchange base in saline soil, it is harmful to the growth of crops. Therefore, governments at all levels and scientific research departments have spent great amount of resources to the improvement of saline soil, and have developed various techniques and methods for improving saline soil, such as subsoiling, gypsum, soil conditioner, salt pipe disposal and so on. However, there are some problems with these methods. Rice husk deep application technology is the technology for improving saline soil developed by our research group for many years. Rice husk has many advantages, such as ample source of material, low cost and resistance to decay. In this study, soda alkaline soil of Heilongjiang province was used as test soil, and rice husk was embedded in 20-30 cm soil layer by a special machine, and the single mechanical tillage without rice husk was used as the control. The results of two years’ investigation showed that rice husk deep application had significant effects on improving soil physical and chemical properties and forage yield. Based on that, field with rice husk amendment conducted eight years ago was investigated for soil physical and chemical properties. The results showed that after eight years of deep application of rice husks, the effects on the physical and chemical properties of the modified soda alkaline soil were still obvious. The soil organic carbon, available nitrogen, phosphorus and potassium content of rice hull deep application showed an increasing trend compared with treatments without rice husk applications. The total amount of exchange base decreased in 0 - 30 cm soil layer, and the pH value of each layer decreased by 0.37-0.41, and the content of Na+decreased by 40.68 - 212.35 mg/kg soil. After eight years of deep application of rice husk, the soil solid phase rate was still in a downward trend, the solid phase of soil was about 40% and decreased 3.68% - 8.86% than control soil. The total soil porosity increased between 57.38% - 60.58%. The proportion of effective pores is large, accounting for 22.7%-26.8% of the total porosity. The soil aeration and water permeability were obviously higher than those of control, and were 10-1 215 times and 118-1 735 times as much as those of the control. The reservoir capacity of 0-30 cm soil layer was increased, 18.58 mm higher than that of the control. The available reservoir capacity was 33.19 mm, 10.71 mm higher than that of the control. Rice hull deep application has long lasting effect, and the improved effect of soda alkaline soil is obvious. The effectiveness of rice husk application with single mechanical tillage is a technique suitable for the improvement of saline soil and can be achieved by mechanical means.
cultivation; soils; salts; soda alkaline soil; rice husk; deep application; pore
10.11975/j.issn.1002-6819.2018.02.020
S156.4
A
1002-6819(2018)-02-0147-06
2017-08-30
2017-12-20
公益性行業(yè)專項(xiàng)(201303126-7),科技支撐項(xiàng)目(2014BAD11B01-A027),省招標(biāo)項(xiàng)目(GA14B101-A04)
王秋菊,博士,副研究員,從事土壤改良研究。Email:bqjwang@126.com
焦 峰,博士,副研究員,從事土壤和作物營(yíng)養(yǎng)生理研究。Email:jiaofeng1980@163.com
王秋菊,劉 峰,常本超,新家憲,劉艷霞,姜 輝,焦 峰. 稻殼深施改良蘇打堿土理化性質(zhì)長(zhǎng)期效應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):147-152. doi:10.11975/j.issn.1002-6819.2018.02.020 http://www.tcsae.org
Wang Qiuju, Liu Feng, Chang Benchao, Ken Araya, Liu Yanxia, Jiang Hui, Jiao Feng. Long-term effect of deep application of rice husk improving physical and chemical properties of soda alkaline soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 147-152. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.02.020 http://www.tcsae.org