姜 越,潘 婷,惠竹梅,2,*
模擬葡萄汁中可同化氮和還原糖對(duì)酵母發(fā)酵特性的影響
姜 越1,潘 婷1,惠竹梅1,2,*
(1.西北農(nóng)林科技大學(xué)葡萄酒學(xué)院,陜西 楊凌 712100;2.陜西葡萄與葡萄酒工程中心,陜西 楊凌 712100)
為研究葡萄汁中可同化氮和還原糖對(duì)酵母發(fā)酵特性的影響,設(shè)計(jì)150、240、330、420、500 mg/L可同化氮質(zhì)量濃度和170、200、230 g/L還原糖質(zhì)量濃度,共計(jì)15 個(gè)處理,測(cè)定了模擬葡萄汁酒精發(fā)酵過(guò)程中酵母生長(zhǎng)、還原糖消耗和可同化氮消耗的變化。結(jié)果表明,模擬汁中可同化氮質(zhì)量濃度過(guò)低(150 mg/L)則不能充分滿足酵母生長(zhǎng)的需要,同時(shí)限制了酵母的還原糖消耗速率,通過(guò)提高初始還原糖質(zhì)量濃度至200 g/L可促進(jìn)酒精發(fā)酵進(jìn)行;酵母在初始可同化氮質(zhì)量濃度高于240 mg/L的模擬汁中可以正常生長(zhǎng),此時(shí)初始還原糖、可同化氮質(zhì)量濃度對(duì)酵母生長(zhǎng)量均無(wú)顯著影響,還原糖含量最直接影響釀酒酵母菌株的發(fā)酵特性,決定發(fā)酵時(shí)間長(zhǎng)短,表現(xiàn)為在初始還原糖質(zhì)量濃度較低(170 g/L)的模擬汁中,酵母生長(zhǎng)速率隨著模擬汁初始可同化氮質(zhì)量濃度的升高而加快,在初始還原糖質(zhì)量濃度較高(200~230 g/L)的模擬汁中,酵母生長(zhǎng)速率不受初始可同化氮質(zhì)量濃度的影響;當(dāng)模擬汁初始可同化氮質(zhì)量濃度高于330 mg/L時(shí),酵母對(duì)可同化氮的消耗開(kāi)始出現(xiàn)剩余,剩余量隨著模擬汁初始可同化氮質(zhì)量濃度的升高而增加,此時(shí)可同化氮質(zhì)量濃度能夠充分滿足酵母可同化氮代謝的需要,且酵母對(duì)可同化氮消耗量隨著初始還原糖質(zhì)量濃度的增加而略有減少。
模擬葡萄汁;可同化氮;還原糖;釀酒酵母;發(fā)酵特性
葡萄汁中含有多種含氮的分子,包括無(wú)機(jī)氮和有機(jī)氮,但只有銨態(tài)氮、游離α-氨基酸(脯氨酸除外)和小分子多肽能夠被酵母同化,這類氮被稱為可同化氮[1-3]??赏墙湍妇凭l(fā)酵最重要的營(yíng)養(yǎng)物質(zhì),可同化氮缺乏會(huì)影響酵母細(xì)胞的生長(zhǎng)和發(fā)酵效率,最終影響葡萄酒中風(fēng)味代謝物的形成,可同化氮的缺乏還易使葡萄酒發(fā)生微生物腐敗[4-7]。葡萄汁中可同化氮質(zhì)量濃度一般在60~500 mg/L(以N計(jì)),釀造葡萄酒時(shí),對(duì)于可同化氮質(zhì)量濃度低于150 mg/L的葡萄汁,通常認(rèn)為酵母在發(fā)酵中會(huì)受到氮源限制,因此會(huì)添加氮源以防止因氮素缺乏對(duì)酵母酒精發(fā)酵帶來(lái)的不利影響[3,8]。
葡萄汁中的糖對(duì)酵母來(lái)說(shuō)非常重要,酵母發(fā)酵其他底物的能力有限,最重要的營(yíng)養(yǎng)物質(zhì)和新陳代謝所需能量大部分來(lái)自糖,糖為酵母的生長(zhǎng)代謝提供能量和構(gòu)建細(xì)胞組成的碳骨架,直接或間接調(diào)節(jié)著所有主要的代謝途徑,這些代謝活動(dòng)會(huì)影響酵母的酒精發(fā)酵,并最終導(dǎo)致包括酸類、酯類、高級(jí)醇、羰基化合物和硫醇等影響葡萄酒香氣的副產(chǎn)物產(chǎn)生[2,9-13]。
目前,國(guó)內(nèi)外學(xué)者關(guān)于葡萄酒釀造中可同化氮對(duì)酵母酒精發(fā)酵的影響研究較多,許多研究結(jié)果表明葡萄汁中可同化氮水平會(huì)影響酵母的酒精發(fā)酵[14-17],但關(guān)于葡萄汁中可同化氮和還原糖兩者對(duì)酵母酒精發(fā)酵的影響研究很少,本研究以模擬葡萄汁為試材,探索不同還原糖質(zhì)量濃度對(duì)酵母利用可同化氮素能力的影響,尋找出有利于酵母酒精發(fā)酵的可同化氮和還原糖質(zhì)量濃度,為不同含糖量的葡萄汁中添加可同化氮素提供一定的理論和參考依據(jù)。
釀酒酵母Lalvin EC1118來(lái)自法國(guó)Laffort公司,性狀穩(wěn)定優(yōu)良。
谷氨酰胺、色氨酸、蘇氨酸、組氨酸和亮氨酸等(均為分析純) 美國(guó)Sigma公司;葡萄糖、蘋果酸、檸檬酸、酒石酸、肌醇、泛酸鈣、煙酸、鹽酸硫胺、鹽酸吡哆醇、生物素和磷酸氫二銨等均為國(guó)產(chǎn)分析純。
UV-1800分光光度計(jì) 日本Shimadzu公司;Centrifuge 5804R離心機(jī) 德國(guó)Eppendorf公司;Rocker 300無(wú)油真空泵 臺(tái)灣洛科儀器股份有限公司;7890/5975B氣相色譜-質(zhì)譜儀 美國(guó)安捷倫公司。
1.3.1 試驗(yàn)設(shè)計(jì)
實(shí)驗(yàn)在西北農(nóng)林科技大學(xué)葡萄酒學(xué)院實(shí)驗(yàn)室進(jìn)行,研究不同質(zhì)量濃度可同化氮和還原糖兩個(gè)因素對(duì)模擬葡萄汁酒精發(fā)酵的影響,共設(shè)15個(gè)處理,具體設(shè)計(jì)見(jiàn)表1。
表1 模擬汁中不同質(zhì)量濃度的可同化氮和還原糖試驗(yàn)設(shè)計(jì)Table 1 Different combinations of YAN and reducing sugar in synthetic grape must
1.3.2 模擬葡萄汁的配制
模擬葡萄汁根據(jù)Beltran[18]和Riou[19]等的方法配制。模擬汁分別由儲(chǔ)液Ⅰ、儲(chǔ)液Ⅱ、儲(chǔ)液Ⅲ和儲(chǔ)液Ⅳ組成,儲(chǔ)液Ⅰ為可同化氮儲(chǔ)液,儲(chǔ)液Ⅱ?yàn)槠咸烟莾?chǔ)液,儲(chǔ)液Ⅲ為有機(jī)酸儲(chǔ)液,儲(chǔ)液Ⅳ為礦物鹽和維生素儲(chǔ)液。將儲(chǔ)液Ⅰ、Ⅱ、Ⅲ和Ⅳ混合后用NaOH調(diào)節(jié)pH值至3.3,0.45 μm濾膜過(guò)濾除菌,現(xiàn)用現(xiàn)配。
1.3.3 指標(biāo)測(cè)定
模擬汁在半?yún)捬鯒l件下進(jìn)行發(fā)酵,發(fā)酵期間(每隔24 h)及發(fā)酵結(jié)束后分別取樣進(jìn)行各項(xiàng)指標(biāo)測(cè)定。
1.3.3.1 發(fā)酵過(guò)程中各指標(biāo)的測(cè)定
酵母生長(zhǎng)量利用分光光度法在600 nm波長(zhǎng)處測(cè)定;還原糖采用斐林試劑熱滴定法測(cè)定[20];測(cè)定可同化氮前取發(fā)酵液于11 000 r/min離心5 min,取上清液,測(cè)定時(shí)采用甲醛滴定法[21]。
1.3.3.2 發(fā)酵后基本指標(biāo)的測(cè)定
總酸和揮發(fā)酸的含量測(cè)定采用NaOH滴定法[20];酒精度的測(cè)定采用比重瓶法[20]。
數(shù)據(jù)采用Excel 2010數(shù)據(jù)處理軟件進(jìn)行分析處理,差異顯著性分析采用Duncan新復(fù)極差法。
2.1.1 模擬汁中可同化氮質(zhì)量濃度對(duì)酵母生長(zhǎng)的影響
圖1 可同化氮質(zhì)量濃度對(duì)模擬汁發(fā)酵中酵母生長(zhǎng)的影響Fig. 1 Effect of different YAN concentrations on the growth of S. cerevisiae
由圖1可知,在3 種還原糖質(zhì)量濃度下,初始可同化氮質(zhì)量濃度為150 mg/L的模擬汁中,酵母生長(zhǎng)量在生長(zhǎng)平穩(wěn)期均顯著低于可同化氮質(zhì)量濃度為240~500 mg/L的模擬汁(P<0.05),且發(fā)酵時(shí)間最長(zhǎng),此時(shí)240~500 mg/L 4 種可同化氮質(zhì)量濃度的模擬汁中酵母生長(zhǎng)量無(wú)顯著差異。在初始還原糖質(zhì)量濃度為170 g/L的模擬汁中,酵母生長(zhǎng)速率隨著模擬汁初始可同化氮質(zhì)量濃度的升高而加快,其中初始可同化氮質(zhì)量濃度為150 mg/L的模擬汁中酵母在發(fā)酵初期存在生長(zhǎng)停滯的風(fēng)險(xiǎn);而在初始還原糖質(zhì)量濃度為200~230 g/L的模擬汁中,處于對(duì)數(shù)生長(zhǎng)期的酵母生長(zhǎng)速率不受初始可同化氮質(zhì)量濃度的影響。說(shuō)明150 mg/L可同化氮質(zhì)量濃度過(guò)低,不能充分滿足酵母生長(zhǎng)的需要;初始可同化氮質(zhì)量濃度為240 mg/L已經(jīng)能完全滿足酵母生長(zhǎng)需要;高于此質(zhì)量濃度時(shí),可同化氮雖然會(huì)提高低糖模擬汁中酵母初期發(fā)酵速率,但對(duì)酵母生長(zhǎng)量無(wú)明顯影響,這與Beltran[22]和Vilanova[23]等的研究一致。可同化氮作為酵母生長(zhǎng)的必須營(yíng)養(yǎng)元素,為酵母蛋白質(zhì)和核苷酸的合成提供前體物質(zhì),較高質(zhì)量濃度可同化氮能夠提高酵母生長(zhǎng)量和代謝活性,刺激發(fā)酵活動(dòng)[24-27]。
2.1.2 模擬汁中還原糖質(zhì)量濃度對(duì)酵母生長(zhǎng)的影響
圖2 還原糖質(zhì)量濃度對(duì)模擬汁發(fā)酵中酵母生長(zhǎng)的影響Fig. 2 Effect of different reducing sugar concentrations on the growth of S. cerevisiae
由圖2可知,當(dāng)初始可同化氮質(zhì)量濃度較低(150~240 mg/L)時(shí),在還原糖質(zhì)量濃度為170 g/L的模擬汁中,酵母在對(duì)數(shù)生長(zhǎng)期的生長(zhǎng)速率顯著低于200 g/L和230 g/L兩種還原糖質(zhì)量濃度的模擬汁,甚至在初始可同化氮質(zhì)量濃度為150 mg/L、初始還原糖質(zhì)量濃度為170 g/L的模擬汁中酵母出現(xiàn)發(fā)酵初期生長(zhǎng)停滯的現(xiàn)象,說(shuō)明在可同化氮缺乏的模擬汁中可以通過(guò)適量提高還原糖質(zhì)量濃度的方法促進(jìn)發(fā)酵進(jìn)行;當(dāng)初始可同化氮質(zhì)量濃度較高(330~500 mg/L)時(shí),還原糖質(zhì)量濃度為230 g/L的模擬汁中酵母對(duì)數(shù)生長(zhǎng)期生長(zhǎng)速率低于其他兩種初始還原糖質(zhì)量濃度的模擬汁,說(shuō)明還原糖和可同化氮質(zhì)量濃度同時(shí)過(guò)高或過(guò)低均不利于酵母生長(zhǎng)。在相同初始可同化氮質(zhì)量濃度的模擬汁中,3 種還原糖質(zhì)量濃度下的酵母在平穩(wěn)期時(shí)生長(zhǎng)量均無(wú)顯著性差異,均可完成發(fā)酵過(guò)程,說(shuō)明在模擬汁中可同化氮源充足的情況下,初始還原糖質(zhì)量濃度對(duì)酵母生長(zhǎng)量無(wú)明顯影響。
2.2.1 模擬汁中可同化氮質(zhì)量濃度對(duì)酵母還原糖消耗的影響
圖3 可同化氮質(zhì)量濃度對(duì)模擬汁發(fā)酵中還原糖消耗的影響Fig. 3 Effect of different YAN concentrations on reducing sugar consumption
由圖3可知,在發(fā)酵過(guò)程中,酵母對(duì)還原糖的消耗速率表現(xiàn)為先快后慢。在3 種初始還原糖質(zhì)量濃度的模擬汁中,酵母在可同化氮質(zhì)量濃度為150 mg/L的模擬汁中完成酒精發(fā)酵的時(shí)間均最長(zhǎng),隨著初始可同化氮質(zhì)量濃度升高,發(fā)酵時(shí)間明顯縮短,說(shuō)明150 mg/L可同化氮質(zhì)量濃度過(guò)低,限制了酵母的還原糖消耗速率,提高模擬汁可同化氮質(zhì)量濃度能夠促進(jìn)酵母的糖代謝過(guò)程[23,28-29]。也有研究表明,在沒(méi)有其他生長(zhǎng)和發(fā)酵限制因素存在的情況下,葡萄汁中的可同化氮質(zhì)量濃度在很大程度上決定了酵母的發(fā)酵速率[2,17]。Torrea等[30]研究表明,在160 mg/L可同化氮質(zhì)量濃度的葡萄汁中,酵母完成發(fā)酵所需時(shí)間為13 d,中等可同化氮質(zhì)量濃度時(shí)(320 mg/L)減少為7 d,高可同化氮質(zhì)量濃度(480 mg/L)時(shí)只需5 d。
2.2.2 模擬汁中還原糖質(zhì)量濃度對(duì)酵母還原糖消耗的影響
圖4 還原糖質(zhì)量濃度對(duì)模擬汁發(fā)酵中酵母還原糖消耗的影響Fig. 4 Effect of different reducing sugar concentrations on sugar consumption
由圖4可知,當(dāng)初始可同化氮質(zhì)量濃度為150 mg/L時(shí),在還原糖質(zhì)量濃度為170 g/L的模擬汁中,酵母在發(fā)酵初期出現(xiàn)還原糖消耗停滯,而酵母在其他兩種還原糖質(zhì)量濃度中糖消耗正常,說(shuō)明當(dāng)模擬汁中可同化氮質(zhì)量濃度低時(shí),酵母需要較高的初始還原糖質(zhì)量濃度才能進(jìn)行正常的酒精發(fā)酵;在240~500 mg/L 4 種初始可同化氮質(zhì)量濃度的模擬汁中,酵母在相同可同化氮質(zhì)量濃度下完成酒精發(fā)酵時(shí)間基本均隨還原糖質(zhì)量濃度升高而延長(zhǎng),說(shuō)明在正常的酒精發(fā)酵中,在可同化氮充足時(shí),還原糖作為葡萄汁發(fā)酵的主要底物,對(duì)釀酒酵母菌株的發(fā)酵特性有著最直接的影響,決定了發(fā)酵時(shí)間的長(zhǎng)短[31]。
2.3.1 模擬汁中可同化氮質(zhì)量濃度對(duì)酵母可同化氮消耗的影響
圖5 可同化氮質(zhì)量濃度對(duì)模擬汁發(fā)酵中可同化氮消耗的影響Fig. 5 Effect of different YAN concentrations on nitrogen consumption
由圖5可知,在初始還原糖質(zhì)量濃度為170 g/L的模擬汁中,當(dāng)初始可同化氮質(zhì)量濃度為150 mg/L時(shí),可同化氮消耗率小于50%,可同化氮消耗異常。在可同化氮正常消耗的14 種模擬汁中,酵母在發(fā)酵0~7 h和發(fā)酵28~45 h可同化氮消耗迅速,在發(fā)酵7~28 h和45~72 h可同化氮消耗緩慢;當(dāng)初始可同化氮質(zhì)量濃度為150~330 mg/L時(shí),可同化氮均在酒精發(fā)酵72 h內(nèi)被完全消耗;當(dāng)初始可同化氮質(zhì)量濃度為420~500 mg/L時(shí),3 種還原糖質(zhì)量濃度的模擬汁在發(fā)酵完成時(shí)均出現(xiàn)可同化氮剩余,剩余量隨著模擬汁初始可同化氮質(zhì)量濃度的升高而增加,并在酒精發(fā)酵72 h后基本保持穩(wěn)定,Mendes-Ferreira[22]和Beran[28]等研究表明酵母在模擬汁發(fā)酵中消耗掉全部可同化氮時(shí)間為48~72 h,與本實(shí)驗(yàn)研究結(jié)果相似,說(shuō)明酵母在發(fā)酵初期對(duì)可同化氮的利用率較高,且420~500 mg/L可同化氮質(zhì)量濃度能夠充分滿足酵母可同化氮代謝的需要。
2.3.2 模擬汁中還原糖質(zhì)量濃度對(duì)酵母可同化氮消耗的影響
圖6 還原糖質(zhì)量濃度對(duì)模擬汁發(fā)酵中酵母可同化氮消耗的影響Fig. 6 Effect of different reducing sugar concentrations on nitrogen consumption
由圖6可知,當(dāng)初始可同化氮質(zhì)量濃度為150 mg/L時(shí),在初始還原糖質(zhì)量濃度為170 g/L的模擬汁中,可同化氮的消耗量遠(yuǎn)小于其他兩個(gè)還原糖質(zhì)量濃度(P<0.05);在其余14 種模擬汁中,當(dāng)初始可同化氮質(zhì)量濃度較低(150~240 mg/L)時(shí),模擬汁中初始還原糖質(zhì)量濃度對(duì)酵母在發(fā)酵中可同化氮消耗量的影響不明顯;當(dāng)初始可同化氮質(zhì)量濃度較高(330~500 mg/L)時(shí),可同化氮剩余量隨著模擬汁中初始還原糖質(zhì)量濃度的增加而升高。Jiranek等[32]研究發(fā)現(xiàn)在酒精發(fā)酵中酵母對(duì)可同化氮的需求量與葡萄汁中還原糖質(zhì)量濃度有關(guān),隨著初始還原糖質(zhì)量濃度的升高,不同的酵母菌株對(duì)可同化氮的利用呈增加或減少的趨勢(shì)。在本實(shí)驗(yàn)中,當(dāng)模擬汁中初始可同化氮充足(330~500 mg/L)時(shí),初始還原糖質(zhì)量濃度對(duì)酵母可同化氮的利用有減少的趨勢(shì),但可同化氮的消耗量無(wú)顯著性差異。
由表2可知,各處理中酒樣的基本指標(biāo)均達(dá)GB/T 15038—2006《葡萄酒、果酒通用分析方法》要求,模擬酒的pH值在3.15~3.36之間,殘?zhí)遣淮笥? g/L。當(dāng)模擬汁中初始還原糖質(zhì)量濃度相同時(shí),發(fā)酵后模擬酒中的總酸隨初始可同化氮質(zhì)量濃度的升高而增加,當(dāng)模擬汁中初始可同化氮質(zhì)量濃度相同時(shí),除240 mg/L可同化氮質(zhì)量濃度外,其他可同化氮質(zhì)量濃度的模擬汁發(fā)酵后的總酸均隨初始還原糖質(zhì)量濃度升高而增加。另外,模擬酒中的酒精度隨還原糖質(zhì)量濃度的升高而增加。
表2 發(fā)酵后各模擬酒基本指標(biāo)Table 2 Quality parameters of fermented synthetic grape musts
本實(shí)驗(yàn)對(duì)不同初始可同化氮和還原糖質(zhì)量濃度的模擬汁中酵母生長(zhǎng)量、還原糖和可同化氮消耗量等發(fā)酵特性進(jìn)行了比較分析,結(jié)果表明:當(dāng)初始可同化氮質(zhì)量濃度為150 mg/L、還原糖質(zhì)量濃度為170 g/L時(shí),酵母在發(fā)酵初期生長(zhǎng)停滯,不能保證正常的酒精發(fā)酵,通過(guò)提高模擬汁中初始還原糖質(zhì)量濃度或者可同化氮質(zhì)量濃度可以防止此類問(wèn)題出現(xiàn);當(dāng)可同化氮質(zhì)量濃度為150 mg/L時(shí),在3 種還原糖質(zhì)量濃度的模擬汁中,酵母的生長(zhǎng)和還原糖消耗速率均受到限制,提高可同化氮質(zhì)量濃度可以顯著促進(jìn)酵母生長(zhǎng)和酒精發(fā)酵(P<0.05);330~500 mg/L可同化氮質(zhì)量濃度能充分滿足酵母酒精發(fā)酵的需要,此時(shí)氮源充足,初始還原糖質(zhì)量濃度對(duì)酵母生長(zhǎng)量無(wú)明顯影響,且發(fā)酵結(jié)束后可同化氮剩余量隨初始可同化氮質(zhì)量濃度升高而增加。
[1] 惠竹梅, 呂萬(wàn)祥, 劉延琳. 可同化氮素對(duì)葡萄酒發(fā)酵香氣影響研究進(jìn)展[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44(24): 5058-5066. DOI:10.3864/j.issn.0578-1752.2011.24.011.
[2] INGLEDEW W M, MAGNUS C A, SOSULSKI F W. Influence of oxygen on proline utilization during the wine fermentation[J].American Journal of Enology and Viticulture, 1987, 38(3): 246-248.
[3] BELL S, HENSCHKE P A. Implications of nitrogen nutrition for grapes, fermentation and wine[J]. Australian Journal of Grape and Wine Research, 2005, 11(3): 242-295. DOI:10.1111/j.1755-0238.2005.tb00028.x.
[4] JúNIOR M M, BATISTOTE M, ERNANDES J R. Glucose and fructose fermentation by wine yeasts in media containing structurally complex nitrogen sources[J]. Journal of the Institute of Brewing, 2008,114(3): 199-204.
[5] BACH B, COLAS S, MASSINI L, et al. Effect of nitrogen addition during alcoholic fermentation on the final content of biogenic amines in wine[J]. Annals of Microbiology, 2011, 61(1): 185-190.DOI:10.1007/s13213-010-0119-z.
[6] JIMéNEZ-MARTí E, ARANDA A, MENDES-FERREIRA A, et al. The nature of the nitrogen source added to nitrogen depleted vinifications conducted by a Saccharomyces cerevisiae strain in synthetic must affects gene expression and the levels of several volatile compounds[J]. Antonie Van Leeuwenhoek, 2007, 92(1):61-75. DOI:10.1007/s10482-006-9135-1.
[7] HANNAM K D, NEILSEN G H, FORGE T, et al. The concentration of yeast assimilable nitrogen in Merlot grape juice is increased by N fertilization and reduced irrigation[J]. Canadian Journal of Plant Science, 2013, 93(1): 37-45. DOI:10.4141/CJPS2012-092.
[8] BRICE C, SANCHEZ I, TESNIèRE C, et al. Assessing the mechanisms responsible for differences between nitrogen requirements of Saccharomyces cerevisiae wine yeasts in alcoholic fermentation[J].Applied and Environmental Microbiology, 2014, 80(4): 1330-1339.DOI:10.1128/AEM.03856-13.
[9] JIRANEK V, LANGRIDGE P, HENSCHKE P A, et al. Amino acid and ammonium utilization by Saccharomyces cerevisiae wine yeasts from a chemically defined medium[J]. Applied and Environmental Microbiology, 1995, 46(1): 75-82.
[10] BAUER F F, PRETORIUS I S. Yeast stress response and fermentation efficiency: how to survive the making of wine: a review[J]. South African Journal for Enology and Viticulture, 2000, 21: 27-51.
[11] SWIEGERS J H, BARTOWSKY E J, HENSCHKE P A, et al. Yeast and bacterial modulation of wine aroma and flavour[J]. Australian Journal of Grape and Wine Research, 2005, 11(2): 139-173.DOI:10.1111/j.1755-0238.2005.tb00285.x.
[12] JACKSON R S. Wine science: principles and applications[M].Academic Press, 2008.
[13] ARROYO-LOPEZ F N, ORLIC S, QUEROL A, et al. Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid[J]. International Journal of Food Microbiology, 2009, 131(2):120-127. DOI:10.1016/j.ijfoodmicro.2009.01.035.
[14] D’AMATO D, CORBO M R, NOBILE M A D, et al. Effects of temperature, ammonium and glucose concentrations on yeast growth in a model wine system[J]. International Journal of Food Science &Technology, 2006, 41(10): 1152-1157. DOI:10.1111/j.1365-2621.2005.01128.x.
[15] CARRAU F M, MEDINA K, FARINA L, et al. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains[J].FEMS Yeast Research, 2008, 8(7): 1196-1207. DOI:10.1111/j.1567-1364.2008.00412.x.
[16] HERNáNDEZ-ORTE P, IBARZ M J, CACHO J, et al. Effect of the addition of ammonium and amino acids to musts of Airen variety on aromatic composition and sensory properties of the obtained wine[J]. Food Chemistry, 2005, 89(2): 163-174. DOI:10.1016/j.foodchem.2004.02.021.
[17] MARTíNEZ-MORENO R, MORALES P, GONZALEZ R, et al. Biomass production and alcoholic fermentation performance of Saccharomyces cerevisiae as a function of nitrogen source[J].FEMS Yeast Research, 2012, 12(4): 477-485. DOI:10.1111/j.1567-1364.2012.00802.x.
[18] BELTRAN G, ESTEVE-ZARZOSO B, ROZES N, et al. Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption[J].Journal of Agricultural and Food Chemistry, 2005, 53(4): 996-1002.DOI:10.1021/jf0487001.
[19] RIOU C, NICAUD J M, BARRE P, et al. Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation[J].Yeast, 1997, 13(10): 903-915. DOI:10.1002/(SICI)1097-0061(199708)13:10<903::AID-YEA145>3.3.CO;2-T.
[20] 王華. 葡萄酒分析檢測(cè)[M]. 楊凌: 西北農(nóng)林科技大學(xué), 2004.
[21] GUMP B H, ZOECKLEIN B W, FUGELSANG K C. Prediction of prefermentation nutritional status of grape juice[M]//Food Microbiology Protocols. Humana Press, 2001: 283-296.
[22] BELTRAN G, NOVO M, ROZES N, et al. Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentation[J].FEMS Yeast Research, 2004, 4(6): 625-632. DOI:10.1016/j.femsyr.2003.12.004.
[23] VILANOVA M, UGLIANO M, VARELA C, et al. Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts[J]. Applied Microbiology and Biotechnology,2007, 77(1): 145-157. DOI:10.1007/s00253-007-1145-z.
[24] HALLINAN C P, SAUL D J, JIRANEK V. Differential utilisation of sulfur compounds for H2S liberation by nitrogen-starved wine yeasts[J]. Australian Journal of Grape and Wine Research, 1999, 5(3):82-90. DOI:10.1111/j.1755-0238.1999.tb00291.x.
[25] BISSON L F, BUTZKE C E. Diagnosis and rectification of stuck and sluggish fermentations[J]. American Journal of Enology and Viticulture, 2000, 51(2): 168-177.
[26] SPIROPOULOS A, TANAKA J, FLERIANOS I, et al.Characterization of hydrogen sulfide formation in commercial and natural wine isolates of Saccharomyces[J]. American Journal of Enology and Viticulture, 2000, 51(3): 233-248.
[27] CASALTA E, CERVI M F, SALMON J M, et al. White wine fermentation: interaction of assimilable nitrogen and grape solids[J].Australian Journal of Grape and Wine Research, 2013, 19(1): 47-52.DOI:10.1111/j.1755-0238.2012.00205.x.
[28] MENDES-FERREIRA A, MENDES-FAIA A, LE?O C. Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry[J]. Journal of Applied Microbiology, 2004, 97(3): 540-545.DOI:10.1111/j.1365-2672.2004.02331.x.
[29] VARELA C, PIZARRO F, AGOSIN E. Biomass content governs fermentation rate in nitrogen-def i cient wine musts[J]. Applied and Environmental Microbiology, 2004, 70(6): 3392-3400. DOI:10.1128/AEM.70.6.3392-3400.2004.
[30] TORREA D, VARELA C, UGLIANO M, et al. Comparison of inorganic and organic nitrogen supplementation of grape juice: effect on volatile composition and aroma profile of a Chardonnay wine fermented with Saccharomyces cerevisiae yeast[J]. Food Chemistry,2011, 127(3): 1072-1083. DOI:10.1016/j.foodchem.2011.01.092.
[31] LEGODI L M. Improving wine yeast for fructose and nitrogen utilization[D]. Cape Town: Stellenbosch University, 2008.
[32] JIRANEK V, LANGRIDGE P, HENSCHKE P A. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen[J]. Applied and Environmental Microbiology, 1995, 61(2): 461-467.
Effect of Assimilable Nitrogen and Reducing Sugar Concentrations of Synthetic Grape Must on the Fermentation Characteristics of Saccharomyces cerevisiae
JIANG Yue1, PAN Ting1, XI Zhumei1,2,*
(1. College of Enology, Northwest A&F University, Yangling 712100, China;2. Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China)
In this study, fifteen combination treatments were designed using five yeast assimilable nitrogen (YAN)concentrations (150, 240, 330, 420, and 500 mg/L) and three reducing sugar concentrations (170, 200, and 230 g/L) to study the effects of different concentrations of assimilable nitrogen and reducing sugar in synthetic grape must on the fermentation characteristics of Saccharomyces cerevisiae. For this purpose, yeast growth, sugar consumption rate and nitrogen consumption were measured. The results showed that 150 mg/L of YAN nitrogen in the synthetic grape must was too low to support yeast growth and simultaneously restricted the consumption rate of reducing sugar by yeast. The rate of alcoholic fermentation was increased by increasing the initial concentration of reducing sugar to 200 g/L. Yeast could grow normally in the synthetic grape must with initial assimilable nitrogen concentrations of higher than 240 mg/L. In this case, initial reducing sugar and assimilable nitrogen concentration had no signif i cant effect on yeast growth, and reducing sugar concentration had the most direct effect on the fermentation characteristics of S. cerevisiae strains, determining the fermentation time. In the synthetic grape must with low initial reducing sugar concentration (170 g/L), the yeast growth rate increased with increasing the initial assimilable nitrogen concentration, while at high initial reducing sugar concentration(200–230 g/L), the yeast growth rate was not affected by the initial assimilable nitrogen concentration. An initial assimilable nitrogen concentration of higher than 330 mg/L was not completely consumed, and the remaining amount increased with the increase in the initial concentration of assimilable nitrogen, providing enough assimilable nitrogen for yeast to grow.Moreover, yeast could decrease assimilable nitrogen consumption with increasing the initial reducing sugar concentration.
synthetic grape must; yeast assimilable nitrogen; reducing sugar; Saccharomyces cerevisiae; fermentation characteristics
10.7506/spkx1002-6630-201802021
TS261.2
A
1002-6630(2018)02-0131-07
姜越, 潘婷, 惠竹梅. 模擬葡萄汁中可同化氮和還原糖對(duì)酵母發(fā)酵特性的影響[J]. 食品科學(xué), 2018, 39(2): 131-137.
DOI:10.7506/spkx1002-6630-201802021. http://www.spkx.net.cn
JIANG Yue, PAN Ting, XI Zhumei. Effect of assimilable nitrogen and reducing sugar concentrations of synthetic grape must on the fermentation characteristics of Saccharomyces cerevisiae[J]. Food Science, 2018, 39(2): 131-137. (in Chinese with English abstract)
10.7506/spkx1002-6630-201802021. http://www.spkx.net.cn
2017-02-14
國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-30);陜西省果業(yè)局專項(xiàng)(K332021412)
姜越(1993—),女,碩士研究生,研究方向?yàn)槠咸雅c葡萄酒學(xué)。E-mail:jiangyuela@nwsuaf.edu.cn
*通信作者簡(jiǎn)介:惠竹梅(1969—),女,教授,博士,研究方向?yàn)槠咸焉砩鷳B(tài)、葡萄與葡萄酒品質(zhì)。E-mail:xizhumei@nwsuaf.edu.cn