李樹朋,陳浩,林曉瑩,林廣宏,趙斌,鐘望濤,李文,馮杜
(1.廣東醫(yī)科大學(xué),廣東 湛江 524001;2.廣東醫(yī)科大學(xué)附屬醫(yī)院神經(jīng)病學(xué)研究所廣東省衰老相關(guān)心腦疾病重點實驗室,廣東 湛江 524001;3.廣東醫(yī)科大學(xué)附屬醫(yī)院神經(jīng)內(nèi)科,廣東 湛江 524001)
·論 著·
利用慢病毒載體構(gòu)建穩(wěn)定干擾AMPKα1的HeLa細(xì)胞系
李樹朋1,陳浩1,林曉瑩1,林廣宏1,趙斌2,鐘望濤3,李文2,馮杜2
(1.廣東醫(yī)科大學(xué),廣東 湛江 524001;2.廣東醫(yī)科大學(xué)附屬醫(yī)院神經(jīng)病學(xué)研究所廣東省衰老相關(guān)心腦疾病重點實驗室,廣東 湛江 524001;3.廣東醫(yī)科大學(xué)附屬醫(yī)院神經(jīng)內(nèi)科,廣東 湛江 524001)
目的建立穩(wěn)定干擾AMPKα1的HeLa細(xì)胞系。方法利用AMPKα1慢病毒干擾質(zhì)粒PLKO.1-puro-AMPKα1轉(zhuǎn)染293T細(xì)胞制備重組慢病毒,然后用重組慢病毒感染HeLa細(xì)胞,熒光顯微鏡觀察病毒感染效率,免疫印跡實驗檢測Sh-AMPKα1病毒感染組的AMPKα1表達(dá)。然后采用嘌呤霉素篩選出穩(wěn)定干擾AMPK α1的HeLa細(xì)胞單克隆,免疫印跡實驗和免疫熒光實驗檢測AMPKα1表達(dá)情況。最后用AMPK激活劑Metformin實驗驗證AMPKα1穩(wěn)定干擾的Hela細(xì)胞中AMPKα1蛋白的表達(dá)以及AMPKα1的生物功能。結(jié)果熒光拍照結(jié)果顯示慢病毒成功感染Hela細(xì)胞;免疫印跡實驗顯示特異性Sh-AMPKα1病毒感染組的AMPKα1表達(dá)[(0.58±0.02)DPI]比WT組[(1.00±0.00)DPI]低,免疫熒光實驗結(jié)果也顯示Sh-AMPKα1病毒感染組中AMPKα1的平均光密度[(0.09±0.01)IOD/area]比WT組[(1.00±0.00)IOD/area]要低,差異均具有顯著統(tǒng)計學(xué)意義(P<0.01);經(jīng)AMPK激活劑Metformin處理后,AMPKα1穩(wěn)定干擾的Hela細(xì)胞中仍無AMPKα1蛋白表達(dá),并且Sh-AMPKα1組中LC3-Ⅱ/Ⅰ/Actin[(1.00±0.00I)DPI]也顯著低于HA-AMPKα1組[(1.62±0.02)DPI],表明病毒感染組細(xì)胞中AMPKα1不能發(fā)揮其生物功能,差異具有顯著統(tǒng)計學(xué)意義(P<0.01)。結(jié)論利用ShRNA-AMPKα1慢病毒篩選出了高效干擾AMPKα1表達(dá)的HeLa細(xì)胞系,為后續(xù)深入研究AMPKα1的生物功能奠定了基礎(chǔ)。
慢病毒載體;AMPKα1;RNA干擾;Hela細(xì)胞;Metformin
AMPK[(Adenosine 5'-monophosphate(AMP)-activa ted protein kinase)]即AMP依賴的蛋白激酶,是真核生物體內(nèi)保守的絲氨酸和蘇氨酸激酶,對于糖、脂肪和蛋白質(zhì)代謝及能量穩(wěn)態(tài)的維持起著關(guān)鍵代謝調(diào)節(jié)酶的作用[1]。AMPK由1個α-催化亞基、1個β-調(diào)節(jié)亞基和1個γ-調(diào)節(jié)亞基組成[2]。研究表明,在低氧、缺血、熱激和營養(yǎng)缺乏的條件下,ATP的濃度水平降低,5'-AMP增多,隨后,5'-AMP和AMPK的γ亞基相互作用,通過激活A(yù)MPKα1(Thr-172)而發(fā)揮生物功能[3]。AMPK調(diào)節(jié)的細(xì)胞能量代謝與線粒體功能關(guān)系密切:線粒體功能障礙能激活A(yù)MPK和自噬來促進(jìn)細(xì)胞存活[4]。另外AMPK也從多方面對線粒體進(jìn)行調(diào)控[5]:當(dāng)線粒體受損時,AMPK通過PGC-1α途徑增加線粒體DNA的合成,以促進(jìn)線粒體膜蛋白的生成[6];AMPK還可以磷酸化線粒體分裂因子MFF,從而誘導(dǎo)動力相關(guān)蛋白DRP-1介導(dǎo)的線粒體分裂[7-8];此外,AMPK可以直接作用于自噬核心激酶ULK1并促使后者磷酸化,進(jìn)而誘導(dǎo)受損線粒體的自噬性清除[9]。另有報道稱,AMPK可以通過調(diào)控線粒體的質(zhì)量,從而在線粒體功能障礙相關(guān)疾病中發(fā)揮調(diào)節(jié)作用[10-11]:例如,Metformin通過活化AMPK進(jìn)而阻止線粒體膜去極化以及線粒體過度的裂變,從而在亨廷頓病的發(fā)病過程中起著保護(hù)作用[12];另外,AMPK也可以和家族性帕金森病連接基因PAKIN共同參與維持神經(jīng)元線粒體穩(wěn)態(tài),在帕金森病的發(fā)病機制中扮演重要角色[13]??傊€粒體的調(diào)控與AMPK關(guān)系密切,而AMPK生物活性的發(fā)揮主要依賴于其α1催化亞基,因此為了進(jìn)一步探索AMPKα1與線粒體質(zhì)量調(diào)控之間的關(guān)系、分析AMPKα1下游新底物以及AMPKα1作用于該底物后對線粒體形態(tài)功能和線粒體相關(guān)疾病的影響,筆者擬采用RNA干擾(RNAinterference,RNAi)技術(shù)沉默AMPKα1基因的表達(dá)[14],利用慢病毒載體和嘌呤霉素篩選構(gòu)建穩(wěn)定干擾AMPKα1的HeLa細(xì)胞系[15],為后續(xù)研究奠定基礎(chǔ)。
1.1 材料 HeLa、293T細(xì)胞為本實驗室所有,PLKO.1-puro-AMPKa1、PLKO.1-puro-vector、HA-AM PKα1、HA-AMPK KD 質(zhì)粒、嘌呤霉素、Metformin、DAPI和LC3抗體購自Sigma公司,Actin抗體、質(zhì)粒提取試劑盒購自北京全式金公司,AMPKα1抗體購自Thermo公司,p-Ampk抗體購自CST公司,HA、P62抗體購自Abcam公司,Lipofectamine 2000購自Invitrogen公司,0.45 μm過濾器購自上海生工,其他試劑為實驗室所有。
1.2 細(xì)胞培養(yǎng) 取HeLa、293T細(xì)胞用含10%胎牛血清的DMEM培養(yǎng)基于37℃含5%CO2的細(xì)胞培養(yǎng)箱培養(yǎng)。待細(xì)胞狀態(tài)最佳且密度大于90%時用胰酶消化傳代,每2~3 d傳代一次。
1.3 慢病毒顆粒的包裝 選擇生長狀態(tài)良好的293T細(xì)胞,待細(xì)胞密度達(dá)90%,用Lipofectamine 2000進(jìn)行如下4種質(zhì)粒的共轉(zhuǎn)染:6.0 μg慢病毒重組質(zhì)粒、3 μg 輔助質(zhì)粒pGag-PoL、1.2 μg pRev和1.8μg pVSVG。轉(zhuǎn)染48 h時,將培養(yǎng)皿中的培養(yǎng)液收集到無菌的50 mL旋蓋離心管中,用封口膜封好后于4℃冰箱保存。再向上述培養(yǎng)皿內(nèi)補加10 mL完全培養(yǎng)基,培養(yǎng)72 h后再次收集培養(yǎng)液,并與上次收集的慢病毒粗液混合。4℃,1 500 r/min離心5 min,吸取上清,再用0.45 μm濾器過濾,即得病毒原液,將該病毒原液凍于-80℃冰箱備用。
1.4 Sh-AMPKα1單克隆細(xì)胞的篩選 用病毒原液感染狀態(tài)較好的HeLa細(xì)胞,實驗設(shè)AMPKα1干擾組(Sh-AMPKα1-1/Sh-AMPKα1-2/Sh-AMPKα1-3),空載體組(VECTOR)和未感染組(WT)。感染48 h后,用含2 μg/mL嘌呤霉素的新鮮培養(yǎng)基替換病毒感染液。待WT組細(xì)胞被嘌呤霉素全部殺死后,將AMPKα 1干擾組存活下來的細(xì)胞轉(zhuǎn)移至6孔板,繼續(xù)用含嘌呤霉素的培養(yǎng)基培養(yǎng)至細(xì)胞密度達(dá)70%時,收集部分細(xì)胞,免疫印跡檢測AMPKα1的干擾效率,選取AMPKα1干擾效率高的細(xì)胞鋪于96孔板進(jìn)行單克隆培養(yǎng),單克隆細(xì)胞個數(shù)為1個/孔,用含嘌呤霉素的培養(yǎng)基持續(xù)培養(yǎng)20 d,選取生長狀態(tài)良好的陽性克隆孔逐級擴大培養(yǎng),收集部分細(xì)胞免疫印跡檢測單克隆細(xì)胞中AMPKα1的干擾效率。
1.5 免疫熒光 細(xì)胞培養(yǎng)皿中放置干凈蓋玻片,分別將未感染組(WT)、空載體組(VECTOR)和干擾效果最好的Hela細(xì)胞組接種于培養(yǎng)皿中,待細(xì)胞密度為60%時用4%多聚甲醛37℃固定細(xì)胞10 min。固定結(jié)束后磷酸鹽緩沖液(PBS)洗3次,每次3 min,棄PBS,加1 mL PBS(含0.1%Triton X-100)室溫打孔15 min。棄溶液,PBS洗3次后棄PBS,再加1%牛血清白蛋白(BSA)室溫封閉30 min。棄封閉液,加一抗室溫孵育1 h。棄一抗,PBS洗3次每次3 min后棄PBS,室溫避光孵育熒光二抗50 min。PBS洗二抗3次每次3 min后棄PBS,室溫染Dapi 5 min后PBS洗三次,于載玻片上加適量抗熒光淬滅劑,將蓋玻片倒扣于載玻片上,指甲油封片后于4℃存放。
1.6 蛋白質(zhì)免疫印跡 細(xì)胞刮刮取細(xì)胞,離心裂解并配平蛋白濃度后變性。取10~20 μg蛋白進(jìn)行SDS-聚丙烯酰胺凝膠電泳,轉(zhuǎn)膜。用含5%脫脂奶粉的PBST液室溫封閉1 h,4℃搖床孵育一抗過夜。次日將目的條帶室溫復(fù)溫1h后,PBST洗3次,每次5 min。室溫孵育二抗1 h后,PBST洗3次每次5 min。然后于曝光房行ECL化學(xué)發(fā)光法顯影。
1.7 統(tǒng)計學(xué)方法應(yīng)用SPSS13.0統(tǒng)計軟件進(jìn)行數(shù)據(jù)分析,對蛋白質(zhì)免疫印跡結(jié)果和熒光圖的光密度統(tǒng)計結(jié)果先行總體方差分析,總體有差異后,再采用LSD-t檢驗進(jìn)行兩兩比較,以P<0.05為差異有統(tǒng)計學(xué)意義,P<0.01為差異有顯著統(tǒng)計學(xué)意義。
2.1 有效Sh-AMPKα1病毒株的篩選 感染慢病毒并用嘌呤霉素篩選48 h后熒光拍照發(fā)現(xiàn),未感染慢病毒的HeLa細(xì)胞(WT組)基本無存活,而感染慢病毒 Sh-VECTOR、Sh-AMPK α 1-1、Sh-AMPK α 1-2 和Sh-AMPKα1-3組的Hela細(xì)胞部分存活(圖1A);免疫印跡實驗發(fā)現(xiàn)和WT組相比,Sh-AMPKα1-2感染的Hela細(xì)胞中,AMPKα1蛋白的干擾效果最為顯著(圖1B),差異具有顯著統(tǒng)計學(xué)意義(P<0.01)(圖1C)。
圖1 有效Sh-AMPKα1病毒株的篩選
2.2 Sh-AMPKα1單克隆細(xì)胞的篩選 免疫印跡結(jié)果顯示,Sh-AMPKα1-2各組細(xì)胞的AMPKα1蛋白表達(dá)水平均降低,且以Sh-AMPKα1-2-6組降低最為顯著,差異具有顯著統(tǒng)計學(xué)意義(P<0.01)(圖2A、2B)。免疫熒光實驗檢測WT、Sh-VECTOR和Sh-AMPKα1-2-6組中AMPKα1的表達(dá),經(jīng)共聚焦顯微鏡拍照和Image J軟件對平均光密度統(tǒng)計分析,發(fā)現(xiàn)AMPKα1蛋白在WT組和Sh-VECTOR組細(xì)胞胞漿均有強表達(dá),而在Sh-AMPKα1-2-6組細(xì)胞內(nèi)表達(dá)明顯降低(圖2C),與WT組比較,差異有顯著統(tǒng)計學(xué)意義(P<0.01)(圖2D)。
圖2 Sh-AMPKα1單克隆細(xì)胞的篩選
2.3 外源過表達(dá)HA-AMPKα1能挽救Sh-AMPK α1 Hela細(xì)胞中被缺失的AMPKα1的生物功能 有報道稱AMPK是自噬的上游分子,Metformin使AMPK活化,活化的AMPK通過激活ULK1促進(jìn)自噬,導(dǎo)致P62表達(dá)下降,LC3-Ⅰ向LC3-Ⅱ轉(zhuǎn)化[16]。筆者在Sh-AMPKα1 Hela細(xì)胞中分別轉(zhuǎn)染HA-AMPKα1、HA-AMPK KD(Thr-172 kinase dead,該位點的失活將阻礙AMPK發(fā)生磷酸化)質(zhì)粒,免疫印跡結(jié)果顯示在HA-AMPKα1組中,Metformin(0.5 mmol/L,4 h)促進(jìn)p-AMPK表達(dá),P62降低和LC3-Ⅱ/LC3-Ⅰ比例增加(圖3A),說明細(xì)胞自噬增強,且灰度分析結(jié)果表明差異具有統(tǒng)計學(xué)意義;而Sh-AMPKα1組和過表達(dá)HA-AMPK KD組,Metformin對p-AMPK的表達(dá)基本無影響,并且P62的降低以及LC3-Ⅰ向LC3-Ⅱ的轉(zhuǎn)換也不如HA-AMPKα1組明顯(圖3B、3C)。以上結(jié)果說明在干擾AMPKα1表達(dá)的HeLa細(xì)胞中,AMPKα1不能發(fā)揮其原有的生物功能,而外源過表達(dá)AMPKα1可以挽救AMPKα1的生物功能,間接說明Sh-AMPKα 1 HeLa細(xì)胞系構(gòu)建成功。
圖3 外源過表達(dá)HA-AMPKα1能挽救Sh-AMPKα1 Hela細(xì)胞中被缺失的AMPKα1的生物功能
AMPK是線粒體穩(wěn)態(tài)的主要調(diào)節(jié)激酶。研究證實AMPK通過直接磷酸化ULK1和抑制mTORC1來觸發(fā)線粒體自噬[9]。另外,AMPK參與線粒體形態(tài)的維持:如在胰腺B細(xì)胞中,AMPK通過磷酸化DRP-1,進(jìn)而減弱棕櫚酸酯誘導(dǎo)的線粒體斷裂[17];AMPK還可以通過磷酸化MFF來促進(jìn)DRP-1介導(dǎo)的線粒體斷裂[18]。AMPK生物活性的發(fā)揮主要依賴于其α1催化亞基,因此AMPKα1是線粒體質(zhì)控的關(guān)鍵激酶。線粒體質(zhì)量控制是線粒體融合、斷裂和自噬的一個動態(tài)過程[19],并且線粒體自噬又與多種神經(jīng)變性疾病的發(fā)病機制有關(guān),如帕金森病、阿爾茲海默病、亨廷頓病等[20-22]。因此,從深入研究AMPKα1在線粒體質(zhì)量控制中的重要性、從挖掘AMPKα1新的下游作用底物以及AMPKα1與該底物之間通過相關(guān)作用調(diào)控自噬的分子機制、從AMPKα1與線粒體相關(guān)疾病發(fā)病機制的相關(guān)性來看,構(gòu)建AMPKα1穩(wěn)定干擾的細(xì)胞株是必要的。
RNAi技術(shù)能夠高效、特異地沉默特定基因的表達(dá),該技術(shù)已經(jīng)得到廣泛應(yīng)用[23-24]。本研究利用慢病毒干擾質(zhì)粒PLKO.1-puro-AMPKα1建立了穩(wěn)定干擾AMPKα1的HeLa細(xì)胞系。通過蛋白質(zhì)免疫印跡實驗和免疫熒光實驗驗證了AMPKα1的干擾情況,并且功能實驗也間接證明了Sh-AMPKα1的干擾效果較好。該Sh-AMPKα1 HeLa細(xì)胞模型,為進(jìn)一步研究AMPKα1在線粒體質(zhì)量控制中的分子機制奠定了基礎(chǔ)。
[1]Hardie DG.AMPK:positive and negative regulation,and its role in whole-body energy homeostasis[J].Curr Opin Cell Biol,2015,33:1-7.
[2]Kurumbail RG,Calabrese MF.Structure and Regulation of AMPK[J].EXS,2016,107:3-22.
[3] Morales-Alamo D,Ponce-Gonzalez JG,Guadalupe-Grau A,et al.Critical role for free radicals on sprint exercise-induced CaMKII and AMPKalpha phosphorylation in human skeletal muscle[J].J Appl Physiol(1985),2013,114(5):566-577.
[4]Zhao B,Qiang L,Joseph J,et al.Mitochondrial dysfunction activates the AMPK signaling and autophagy to promote cell survival[J].Genes Dis,2016,3(1):82-87.
[5]Zhang CS,Lin SC.AMPK promotes autophagy by facilitating mitochondrial fission[J].Cell Metab,2016,23(3):399-401.
[6]Bremer K,Kocha KM,Snider T,et al.Sensing and responding to energetic stress:The role of the AMPK-PGC1alpha-NRF1 axis in control of mitochondrial biogenesis in fish[J].Comp Biochem Physiol B Biochem Mol Biol,2016,199:4-12.
[7]Li J,Wang Y,Wang Y,et al.Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction[J].J Mol Cell Cardiol,2015,86:62-74.
[8]Toyama EQ,Herzig S,Courchet J,et al.Metabolism.AMP-activated protein kinase mediates mitochondrial fission in response to energy stress[J].Science,2016,351(6270):275-281.
[9]Tian W,Li W,Chen Y,et al.Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy[J].FEBS Lett,2015,589(15):1847-1854.
[10]Cai Z,Yan L J,Li K,et al.Roles of AMP-activated protein kinase in Alzheimer's disease[J].Neuromolecular Med,2012,14(1):1-14.
[11]Vingtdeux V,Chandakkar P,Zhao H,et al.Novel synthetic small-molecule activators ofAMPK as enhancers of autophagy and amyloid-beta peptide degradation[J].FASEB J,2011,25(1):219-231.
[12]Jin J,Gu H,Anders NM,et al.Metformin protects cells from mutant huntingtin toxicity through activation of AMPK and modulation of mitochondrial dynamics[J].Neuromolecular Med,2016,18(4):581-592.
[13]Hang L,Thundyil J,Lim KL.Mitochondrial dysfunction and Parkinson disease:a Parkin-AMPK alliance in neuroprotection[M].Ann N YAcad Sci,2015,1350:37-47.
[14]Mohr SE,Smith JA,Shamu CE,et al.RNAi screening comes of age:improved techniques and complementary approaches[J].Nat Rev Mol Cell Biol,2014,15(9):591-600.
[15]Segura MM,Garnier A,Durocher Y,et al.New protocol for lentiviral vector mass production[J].Methods Mol Biol,2010,614:39-52.
[16]Song YM,Lee YH,Kim JW,et al.Metformin alleviates hepatosteatosisby restoring SIRT1-mediated autophagy induction viaan AMP-activated protein kinase-independent pathway[J].Autophagy,2015,11(1):46-59.
[17]Wikstrom JD,Israeli T,Bachar-Wikstrom E,et al.AMPK regulates ER morphology and function in stressed pancreatic beta-cells via phosphorylation of DRP1[J].Mol Endocrinol,2013,27(10):1706-1723.
[18]Ducommun S,Deak M,Sumpton D,et al.Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets:identification of mitochondrial fission factor as a new AMPK substrate[J].Cell Signal,2015,27(5):978-988.
[19]Matic I,Strobbe D,Di Guglielmo F,et al.Molecular biology digest of cell mitophagy[J].Int Rev Cell Mol Biol,2017,332:233-258.
[20]Mouton-Liger F,Jacoupy M,Corvol JC,et al.PINK1/Parkin-dependent mitochondrial surveillance:from pleiotropy to Parkinson's disease[J].Front Mol Neurosci,2017,10:120.
[21]Kerr JS,Adriaanse BA,Greig NH,et al.Mitophagy and Alzheimer's disease:cellular and molecular mechanisms[J].Trends Neurosci,2017,40(3):151-166.
[22]Khalil B,El FN,Aouane A,et al.PINK1-induced mitophagy promotes neuroprotection in Huntington's disease[J].Cell Death Dis,2015,6:e1617.
[23]Subramanya S,Kim SS,Manjunath N,et al.RNA interference-based therapeutics for human immunodeficiency virus HIV-1 treatment:synthetic siRNA or vector-based shRNA?[J].Expert Opin Biol Ther,2010,10(2):201-213.
[24]Charbgoo F,Behmanesh M,Nikkhah M,et al.RNAi mediated gene silencing of ITPA using a targeted nanocarrier:apoptosis induction in SKBR3 cancer cells[J].Clin Exp Pharmacol Physiol,2017,44(8):888-894.
Construction of a AMPKα1 stably interfered Hela cell line by lentiviral vectors.
LI Shu-peng1,CHEN Hao1,LIN Xiao-ying1,LIN Guang-hong1,ZHAO Bin2,ZHONG Wang-tao3,LI Wen2,FENG Du2.1.Guangdong Medical University,Zhanjiang 524001,Guangdong,CHINA;2.Guangdong Key Laboratory of Age-related Cardiac-Cerebral Vascular Disease,Institute of Neurology,the Affiliated Hospital of Guangdong Medical University,Zhanjiang 524001,Guangdong,CHINA;3.Department of Neurology,the Affiliated Hospital of Guangdong Medical University,Zhanjiang 524001,Guangdong,CHINA
ObjectiveTo establish adenosine monophosphate-activated protein kinase α1(AMPKα1)stably interfered Hela cell line.MethodsLentiviral vector PLKO.1-puro-AMPKα1 was transfected into 293T cells to prepare recombinant lentivirus.Then HeLa cells were infected with the recombinant lentivirus,and the efficiency of virus infection was detected by fluorescent photography.The monoclonal Hela cell stably interfered AMPKα1 was screened by puromycin,and Western blot and immunofluorescence were used to detecte the expression of AMPK α 1 in specific Sh-AMPKα1 virus infected group.Finally,the biological function of AMPKα1 in Hela cells stably interfered with AMPKα1 under the treatment of metformin,a AMPK activator,was detected.ResultsThe results of fluorescent photography showed that the virus infection was highly efficient.Immunoblotting results showed that the expression of AMPKα1 was significantly reduced in Hela cells stably interfered with AMPKα1(0.58±0.02)DPI compared with the WT group(1.00±0.00)DPI.Immunofluorescence results also showed that the mean optical density of AMPKα1 was(0.09±0.01)IOD/area in Sh-AMPKα1 virus infected group versus(1.00±0.00)IOD/area in the WT group.All the above differences were statistically significant(P<0.01).After the treatment of metformin,the expression of AMPKα1 in the Sh-AMPKα1 virus infected group was still not expressed.Moreover,the relative ratio of LC3-Ⅱ/Ⅰ/Actinin in the Sh-AMPKα1 group was(1.00±0.00)DPI,which was significantly lower than(1.62±0.02)DPI in the HA-AMPKα1 group,indicating that AMPKα1 could not play its biological function(P<0.01).ConclusionThe above results revealed that AMPKα1 effectively interfered Hela cell line was established by ShRNA-AMPKα1 lentivirus,which laid the foundation for the further research ofAMPKα1 biological function.
Lentiviral vector;Adenosine monophosphate-activated protein kinase α1(AMPKα1);RNA interference;HeLa cells;Metformin
國家自然科學(xué)基金(編號:31401182);廣東省自然科學(xué)基金(編號:2014A030313533);廣東省科技發(fā)展專項資金(編號:2016A020215152);廣東省粵東西北地區(qū)引進(jìn)緊缺拔尖人才“揚帆計劃”人才項目(編號:4YF14007G);廣東醫(yī)科大學(xué)科研基金(編號:M2014024,M2015001)
馮杜。E-mail:feng_du@foxmail.com
R373
A
1003—6350(2017)23—3785—05
10.3969/j.issn.1003-6350.2017.23.001
2017-07-20)