盧丑麗
(山西農(nóng)業(yè)大學信息學院,山西 晉中 030800)
一類積微分方程的加權(quán)偽概自守解*
盧丑麗
(山西農(nóng)業(yè)大學信息學院,山西 晉中 030800)
加權(quán)偽概自守函數(shù)是較偽概自守函數(shù)和漸近概自守函數(shù)更一般的一類函數(shù),在Banach空間中,利用Banach穩(wěn)定點定理和算子理論的相關(guān)知識,得到一定條件下一類積微分方程的加權(quán)偽概自守解的存在性定理.
加權(quán)偽概自守函數(shù),演化族,指數(shù)穩(wěn)定性
S.Bocher教授首次提出概自守函數(shù)理論后,該理論被國內(nèi)外學者廣泛研究[2~7].在文[2]、[3]中,作者給出了概自守函數(shù)的一些重要理論.該理論應(yīng)用于Banach空間微分方程的偽概自守解的存在性和唯一性成了研究熱點[2~6],其中肖體俊,梁進等證明(PAA(X),‖·‖∞) 空間是Banach空間,得到微分方程偽概自守解的存在性和唯一性的充分條件.J.Blot等學者在文[7]中介紹了加權(quán)偽概自守函數(shù)的理論,給出了加權(quán)偽概自守函數(shù)的完備定理和復合定理,以及在微分方程中的一些應(yīng)用.在Banach空間X中,本文研究以下方程
(1)
在初值條件:
u(0)=u0+g(u)
(2)
下的加權(quán)偽概自守解的存在性和唯一性,其中A,B(t)為X中稠定線性算子,u0∈X.
本文中假設(shè)R為實數(shù)集,R+為X中非負子集.B(X)為X中有界線性算子,Cb(R,X)為R到X的全體有界連續(xù)函數(shù),令K?X,T?R,定義Ck(T×X,X)為K上一致連續(xù)函數(shù),即?ε>0,?δ>0,
定義1[5]X上連續(xù)線性算子族{R(t):t≥0}稱為一個演化族.如果滿足以下條件:
(A1)R(0)=I,即為恒等算子;
(A2)對?x∈X,[0,+∞)→X上的映射t→R(t)x連續(xù);
(A3)對?t≥0,R(t)為Y上連續(xù)算子,且對?y∈Y,映射t→R(t)y在集合C([0,+∞),Y)∩C1([0,+∞),X)中,滿足:
其中?t≥0,Y=D(A)=D(B(t)),其范數(shù)為圖像范數(shù).
如果方程(1)的演化族R(·)存在,則定義其溫和解如下:
注1: 概自守函數(shù)Rf={f(t):t∈R}在X中是相對緊集,因此依范數(shù)有界.
定義4 如果有界函數(shù)f:R×Ω→X對任意t∈R,x∈K,f(t,x)為概自守函數(shù),其中K為X中有界子集,則稱為概自守函數(shù),記為AA(R×Ω,X).
對?ρ∈U∞,定義
定義5 有界函數(shù)f:R→X(f:R×X→X)稱為加權(quán)偽概自守函數(shù),如果滿足f=g+φ,其中g(shù)∈AA(X)(g∈AA(R×X,X),φ∈PAA0(R(R×X),X).記WPAA(R,X)(WPAA(R×X,X))為加權(quán)偽概自守函數(shù)集.
注2: 若ρ=1,則WPAA(R,X)(WPAA(R×X,X))為偽概自守函數(shù)集.
引理2 若ρ∈Ub,令‖f‖WPAA(R,ρ)=supt∈R|f(t)|,則(WPAA(R,ρ),‖·‖WPAA(R,ρ))是Banach空間.
為了方便得出結(jié)論,先做以下假設(shè):
(B1)方程(1)存在指數(shù)穩(wěn)定的演化族R(·),即?M,ω>0,s.t.‖R(t)‖≤Me-ω t.
(B2)f=g+φ∈WPAA(R×X,ρ),且對任意t∈R,函數(shù)f(t,x),g(t,x)在有界子集K?X上一致連續(xù).
(B3) 存在函數(shù)Lf:R+→R+使得對任意的t∈R+,r≥0,‖u‖,‖v‖≤r,有:
‖f(t,u)-f(t,v)‖≤Lf(r)‖u-v‖.
(B4)函數(shù)g:C(R+,X)→X滿足李普希茲條件,即存在函數(shù)Lg:R+→R+使得對任意的r≥0,‖u‖,‖v‖≤r,有‖g(u)-g(v)‖≤Lg(r)‖u-v‖.
證明:注意到f是加權(quán)偽概自守函數(shù)且滿足條件(B2),由文獻[7]中引理2.10可得f(t,x(t))∈WPAA(R,ρ).令f(t,x(t))=h(t)+φ(t),其中h∈AA(X),φ∈PAA0(R,ρ),則:
根據(jù)文獻[5]中引理3.1和標注3.3可知,G(t)為概自守函數(shù).
為了證明F(t)∈WPAA(R,ρ),需驗證H(t)∈PAA0(R,ρ),也即證明:
定理1 假設(shè)(B1)~(B5)均成立,則方程(1)、(2)存在唯一的加權(quán)偽概自守解.
證明:由條件(B5)可得,存在常數(shù)r>0滿足
(3)
令E={u∈WPAA(R+,ρ);‖u‖≤r},則E為WPAA(R+,ρ)的一個閉子集.定義E上一個算子V,即
下面來驗證V為WPAA(R+,ρ)上的一個映射.
易知V連續(xù),再由引理3,有
接下來,對于任意給定的u∈E,證明Vu∈E,也就是充分的說明‖Vu‖≤r,
即對任意t≥0,有‖Vu‖≤r.
對任意的u,v∈E,t≥0,有:
所以V是E上的壓縮映射,由引理2,WPAA(R+,ρ)完備.因此根據(jù)Banach穩(wěn)定點定理,方程(1)、(2)存在唯一的加權(quán)偽概自守解.證畢.
證明:注意到
ω(‖u0‖+‖g(0)‖+sups∈R‖f(s,0)‖<+∞
又根據(jù)定理1的證明,可得方程(1)、(2)存在唯一的加權(quán)偽概自守解u(t)∈WPAA(R+,ρ).
例考慮下面方程的加權(quán)偽概自守解的存在性:
(4)
其初值條件為u(t,0)=u(t,π)=0
D(A)={u∈X:u''∈X,u(0)=u(π)=0},
則方程(4)可以重新改寫成方程(1),從而方程(4)存在唯一的加權(quán)偽概自守解.
[1] Bochner.S. A new approach to almost-periodicity [J]. Proc.Natl.Acad.Sci.USA, 1962, 48: 2039-2043.
[2] XIAO Ti-jun, Jin Liang, Zhang Jun. Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces [J].Semigroup Forum, 2008, 76: 518-524.
[3] XIAO Ti-jun, ZHU X.X., LIANG Jin.. Pseudo-almost automorphic mild solutions to nonautonomous differential equations and applications [J]. Nonlinear Anal, 2009, 70: 4079-4085.
[4] DING Hui-Sheng., XIAO Ti-Jun., LIANG Jin. Asymptotically almost automorphic solutions for some integrodifferential equations with nonlocal initial conditions [J].Journal of Mathematical analysis and applications,2008,338: 141-151.
[5] LIU Jing-huai, SONG Xiao-qiu. Almost automorphic and weighted pseudo almost automorphic solutions of semilinear evolution equations[J]. Journal of Function analysis, 2010, 11: 196-207.
[6] LIU Jing-huai, SONG Xiao-qiu, LU Feng-ling. Almost automorphic and pseudo almost automorphic solutions of semilinear evolution equations[J]. Acta Analysis Functionalis Applicata , 2009, 258: 294-300.
[7]Blot, J Mophou G.M., Guerekata G.M.N, et al. Weighted pseudo almost automorphic functions and applications to abstract differential equations [J]. Nonlinear Anal. ,2009, 71: 903-909.
[8]A.Pazy. Semigroups of linears Operators and Appliations to partial differential equations [M].Springer-Verlag, Newyork, Berlin, Heidelberg, Tokyo,1983.
[9]T.Diagana. Weighted pseudo almost periodic functions and applications [J]. C.R.Acad.Paris.ser.I,2006, 343(10): 643-646.
[10]T.Diagana. Weighted pseudo almost periodic solutions to some differential equations [J]. Nonlinear Anal.,2008, 68: 2250-2260.
[11]T.Diagana. Existence of weighted pseudo almost periodic solutions to some classes of hyperbolic evolu-tion equations [J]. J.Math Anal.Appl., 2009, 350: 18-28.
[12]T.Diagana. Weighted pseudo almost periodic solutions to a neutral delay integral equation of advanced type [J]. Nonlinear Anal.. 2009, 70: 298-304.
[13]ZHANG L., XU Y.. Weighted pseudo-almost periodic solutions of a class of abstract differential equa- tions [J]. Nonlinear Anal.,2009, 71: 3705-3714.
[14]LU chouli, SONG xiao-qiu,ZHANG rongjuan, Almost automorphic and weighted pseudo almost automorphic solutions to some semilinear differential equations[J].南京大學學報(數(shù)學半年刊),2012,29(2):105-114.
AClassofWeightedPseudoAlmostAutomorphicSolutiontoIntegroDifferentialEquations
LU Chou-li
(College of Information, Shanxi Agricultural University,Jinzhong Shanxi 030800,China)
Weighted pseudo almost automorphic function is more general than pseudo almost automorphic function and asymptotically almost automorphic function. Using Banach stable point theorem and operator theory knowledge, it gets a class of existence theorem of integro differential equations in Banach space.
weighted almost automorphic function; evolution family; exponential stability
1673-2103(2017)05-0011-05
2017-06-29
盧丑麗(1985-),女,山西忻州人,講師,碩士,研究方向:應(yīng)用泛函分析及算子理論.
O177.5
A