亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        冗余鋪絲機(jī)械手自運(yùn)動流形分析及優(yōu)化

        2017-11-23 05:58:08徐朋趙東標(biāo)應(yīng)明峰李奎
        航空學(xué)報 2017年1期
        關(guān)鍵詞:芯模流形位姿

        徐朋,趙東標(biāo)*,應(yīng)明峰,李奎

        冗余鋪絲機(jī)械手自運(yùn)動流形分析及優(yōu)化

        徐朋,趙東標(biāo)*,應(yīng)明峰,李奎

        南京航空航天大學(xué) 機(jī)電學(xué)院,南京 210016

        針對傳統(tǒng)位姿分離式鋪絲機(jī)械手靈活性不足的特點(diǎn),為了提高航空復(fù)合材料鋪絲過程的靈活性和避障礙能力,提出一種位姿耦合式冗余鋪絲機(jī)械手自運(yùn)動流形的新算法。由于冗余鋪絲機(jī)械手各關(guān)節(jié)之間的強(qiáng)耦合性增加了逆解的求解難度,該算法將冗余鋪絲機(jī)械手的關(guān)節(jié)逆解分解為已知的Paden-Kahan旋量子問題以及由位置關(guān)節(jié)組成的特殊旋量子問題,并針對特殊旋量子問題進(jìn)行求解得到冗余鋪絲機(jī)械手全部逆解,這樣相對于位姿分離式解法有效提高了冗余鋪絲機(jī)械手逆解的求解效率以及求解直觀性。由于冗余鋪絲機(jī)械手的逆解呈現(xiàn)出流形的結(jié)構(gòu),所以根據(jù)冗余鋪絲機(jī)械手自運(yùn)動流形的多維特性,將冗余鋪絲機(jī)械手的自運(yùn)動流形分別映射到位置關(guān)節(jié)空間和姿態(tài)關(guān)節(jié)空間得到其三維仿真曲線。由于冗余鋪絲機(jī)械手逆解流形中的優(yōu)化流形在實際控制中更具應(yīng)用價值,所以在鋪絲機(jī)械手末端執(zhí)行器沿芯模軌跡運(yùn)動速度平穩(wěn)的前提下為了使機(jī)械手各關(guān)節(jié)速度變化最小,提出以冗余鋪絲機(jī)械手關(guān)節(jié)速度組成的約束泛函為目標(biāo)得到相應(yīng)的運(yùn)動學(xué)優(yōu)化流形,并為后續(xù)的最優(yōu)控制奠定了基礎(chǔ)。最后以某型號飛機(jī)S形進(jìn)氣道為例驗證了所提方法的可行性。

        冗余;鋪絲;逆解;旋量;流形

        復(fù)合材料纖維鋪放(Fiber Placement,F(xiàn)P)成型技術(shù)[1-5]是一種精確地復(fù)合材料成型技術(shù),既可以鋪凸面和凹面也可以鋪規(guī)則曲面和自由曲面[6-8],并且大大降低了復(fù)合材料的制造成本,提高了復(fù)合材料性能,在航空航天、武器裝備等方面有著廣泛地應(yīng)用。因此對于復(fù)合材料纖維鋪放成型技術(shù)的工作母機(jī)[9-12]—鋪絲機(jī)械手的研究已經(jīng)成為當(dāng)前先進(jìn)制造技術(shù)一個新的研究方向。鋪絲機(jī)械手的運(yùn)動學(xué)逆解是實現(xiàn)整個鋪絲過程運(yùn)動規(guī)劃和運(yùn)動控制的基礎(chǔ)[13-15],冗余鋪絲機(jī)械手具有無數(shù)多個逆解,所有逆解構(gòu)成了冗余鋪絲機(jī)械手的解流形,解流形構(gòu)成的解空間和末端執(zhí)行器工作空間存在的映射關(guān)系從本質(zhì)上反映了冗余鋪絲機(jī)械手的自運(yùn)動能力[16-17],冗余鋪絲機(jī)械手的冗余特性決定了鋪絲過程的靈活性和避障礙能力大小。

        目前國外在這方面研究比較深入,由于技術(shù)對中國封鎖,很多詳細(xì)的算法、數(shù)據(jù)、鋪絲參數(shù)都不公布,可參考的資料較少,Pierre等[18]給出了包括芯模的七自由度冗余鋪絲機(jī)械手的逆解算法,但是芯模坐標(biāo)系和基座標(biāo)系之間的相對位姿關(guān)系并沒有考慮芯模的瞬時轉(zhuǎn)角,導(dǎo)致鋪絲機(jī)械手失去了冗余特性;Kyle[19]介紹了可以鋪放大型設(shè)備的冗余鋪絲機(jī)械手模型,但是并沒有涉及到逆解及自運(yùn)動流形的研究分析;Long等[20]利用微分幾何學(xué)研究了自由曲面上的鋪絲路徑問題,對于鋪絲機(jī)械手的逆解及控制問題并沒有做詳細(xì)的介紹;國內(nèi)關(guān)于鋪絲機(jī)械手逆解的研究主要包括:邵忠喜等[21]給出了鋪絲機(jī)械手逆解的后置處理算法,提高了鋪絲機(jī)械手的控制精度,但并沒有涉及到逆解的自運(yùn)動流形;葛新鋒和趙東標(biāo)[22]在理論上給出了位姿分離式冗余鋪絲機(jī)械手的自運(yùn)動流形分析,但是當(dāng)芯模鋪絲軌跡給定時鋪絲機(jī)械手將會失去冗余特性,不利于避障礙及逆解的優(yōu)化。在關(guān)于冗余機(jī)械手的自運(yùn)動流形研究方面,Tisius等[23]以8自由度鑿巖機(jī)械臂為研究對象,提出一種基于運(yùn)動軌跡求解多關(guān)節(jié)冗余機(jī)器人運(yùn)動學(xué)逆解方法;Wei等[24]在空間建立了nR機(jī)械手的通用運(yùn)動學(xué)方程,并利用變分法解決了nR機(jī)械手的逆運(yùn)動學(xué)逆解;Galicki[25]通過參數(shù)估計利用反自由控制算法對冗余機(jī)械手的工作空間流形做了詳細(xì)分析,得出了逆解的最大和最小取值范圍;Iqbal和Aized[26]給出了特殊8自由度冗余機(jī)械手的工作空間分析和優(yōu)化,得出了提高機(jī)械手關(guān)節(jié)空間工作效率的有效方法。Moll和Kavraki[27]通過在冗余機(jī)械手的自運(yùn)動流形上尋找最小能量曲線的方法,實現(xiàn)了機(jī)械手的最優(yōu)軌跡規(guī)劃;Burdick[28]給出了平面3R機(jī)構(gòu)和空間4R機(jī)構(gòu)的自運(yùn)動流形,并得出Jacobian矩陣的零空間即是自運(yùn)動流形切空間的結(jié)論;Hsia和Guo[29-30]以機(jī)器人避障作為運(yùn)動學(xué)優(yōu)化性能指標(biāo)來求解逆運(yùn)動學(xué)解,得到了基于避障勢函數(shù)的運(yùn)動學(xué)逆解;趙建文等[31]利用位姿分離式算法得到了特殊結(jié)構(gòu)冗余機(jī)器人參數(shù)化的自運(yùn)動流形,但并沒有具體給出解空間和工作空間之間的流形映射關(guān)系。

        為了提高鋪絲機(jī)械手在鋪絲過程中的靈活性和避障礙能力,本文針對特殊結(jié)構(gòu)的冗余鋪絲機(jī)械手,利用旋量[32-35]和自運(yùn)動流形相結(jié)合的方法給出其逆解流形,在位置工作空間和姿態(tài)工作空間分別進(jìn)行了仿真分析,并以飛機(jī)S形進(jìn)氣道為例進(jìn)行仿真驗證了所得結(jié)論的正確性。最后以冗余機(jī)械手關(guān)節(jié)速度組成的約束泛函為目標(biāo)給出了相應(yīng)的優(yōu)化流形,同時利用目標(biāo)函數(shù)驗證了所得優(yōu)化流形的正確性。

        1 冗余鋪絲機(jī)械手模型

        圖1 為新型冗余鋪絲機(jī)械手結(jié)構(gòu)模型,由單自由度導(dǎo)軌、六自由度(DOF)KUKA機(jī)械手及單自由度旋轉(zhuǎn)芯模組成。

        其中,導(dǎo)軌和六自由度庫卡機(jī)械手組成七自由度冗余鋪絲機(jī)械手,芯模的旋轉(zhuǎn)運(yùn)動構(gòu)成另外一個自由度。相對于位姿分離式鋪絲機(jī)械手,新型冗余鋪絲機(jī)械手模型各個關(guān)節(jié)之間存在強(qiáng)耦合關(guān)系,雖然增加了逆解計算方面的復(fù)雜性,但是靈活性和避障礙能力卻得到了提高,可以適應(yīng)更復(fù)雜的工作環(huán)境及有助于逆解的進(jìn)一步優(yōu)化。由于芯模的轉(zhuǎn)速是由芯模上鋪絲軌跡所決定,而鋪絲軌跡點(diǎn)取決于芯模的形狀,所以當(dāng)芯模上的鋪絲軌跡確定以后,芯模自由度就受到了約束,這時傳統(tǒng)的位姿分離式鋪絲機(jī)械手將會失去冗余特性,解空間中的點(diǎn)將是離散的有限點(diǎn),這樣就喪失了冗余鋪絲機(jī)械手應(yīng)有的靈活性、避障能力及逆解優(yōu)化的效果,而新設(shè)計的冗余鋪絲機(jī)械手模型很好的解決了這一問題。

        2 運(yùn)動學(xué)逆解

        冗余機(jī)械手的位姿分離式算法[31]是一種將位置關(guān)節(jié)和姿態(tài)關(guān)節(jié)強(qiáng)行分開求解的方法,這有利于求解以直線運(yùn)動關(guān)節(jié)組成的位置空間,而當(dāng)位置空間由轉(zhuǎn)動關(guān)節(jié)組成的時候則會產(chǎn)生很大的誤差,因為位置關(guān)節(jié)的變化會影響到鋪絲機(jī)械手腕關(guān)節(jié)姿態(tài)的變化,此時需要附加相應(yīng)的優(yōu)化函數(shù)。所以為了提高冗余鋪絲機(jī)械手逆解求解的精度、效率和直觀性,本文在基于旋量理論基礎(chǔ)之上通過設(shè)定冗余關(guān)節(jié)的方法對鋪絲機(jī)械手涉及到的特殊旋量子問題進(jìn)行求解,然后結(jié)合旋量理論兩個已知的Paden-Kahan子問題得到冗余鋪絲機(jī)械手的全部逆運(yùn)動學(xué)解。冗余鋪絲機(jī)械手的初始狀態(tài)及各連桿間的尺寸參數(shù)如圖2所示。圖2中:{S}為慣性坐標(biāo)系;{T}為工具坐標(biāo)系;ω2~ω7為沿各旋轉(zhuǎn)軸線的單位矢量;v1為沿直線運(yùn)動關(guān)節(jié)方向的單位矢量;r1~r5分別為各旋轉(zhuǎn)軸線上的點(diǎn);ξ1~ξ7為相應(yīng)的單位運(yùn)動旋量;a1~a6為機(jī)械手的尺寸參數(shù);d1為冗余關(guān)節(jié)變量。則初始狀態(tài)下工具坐標(biāo)系和慣性坐標(biāo)系之間的變換矩陣為

        各個關(guān)節(jié)的單位運(yùn)動旋量為

        各旋轉(zhuǎn)軸線上點(diǎn)的表達(dá)式為

        所以相應(yīng)的單位運(yùn)動旋量為

        旋量表示下冗余鋪絲機(jī)械手的正向運(yùn)動學(xué)指數(shù)積公式為

        式中:gst(θ)為鋪絲機(jī)械手的運(yùn)動學(xué)正解;θ2~θ7為相應(yīng)的關(guān)節(jié)轉(zhuǎn)角。式(5)可轉(zhuǎn)化為

        將式(6)兩邊同時右乘向量點(diǎn)r5可得

        式(7)是一個關(guān)于4自由度的旋量子問題,變形可得

        由于d1為冗余關(guān)節(jié)變量,這樣4自由度的旋量子問題轉(zhuǎn)化為兩個軸線平行,且與第三軸線異面垂直的特殊旋量子問題,如圖3所示。

        圖3 中:點(diǎn)q1、q2為ξ2軸上任意選取的兩點(diǎn);點(diǎn)p1、p2為點(diǎn)p到q的過渡點(diǎn);點(diǎn)p與腕點(diǎn)r5重合。根據(jù)位置幾何關(guān)系可得

        分別?。?/p>

        將已知點(diǎn)p2代入式(10),然后根據(jù)已知的Paden-Kahan子問題可以求得θ2、θ3、θ4,其表達(dá)式分別為

        求得了θ2、θ3、θ4,對式(6)變形可得

        將式(14)兩邊右乘點(diǎn)r6可得

        式(15)是一個關(guān)于兩軸相交的Paden-Kahan子問題,通過計算可以得到

        將θ2~θ6代入式(6)可得

        取點(diǎn)r7不在^ξ7軸上,將式(18)兩邊右乘點(diǎn)r7可得

        根據(jù)式(19)可得

        在冗余鋪絲機(jī)械手結(jié)構(gòu)參數(shù)已定的情況下,本文所得到的關(guān)節(jié)逆解θ2~θ7均是以d1為變量的函數(shù),當(dāng)d1值取定時共有八組關(guān)節(jié)逆解。作為冗余機(jī)械手,每個關(guān)節(jié)都可以作為冗余變量,基于不同的冗余變量其運(yùn)動構(gòu)型是一致的,但是不同冗余變量對應(yīng)的自運(yùn)動流形是不同的,本文為了工程上方便測量和計算,以d1作為冗余變量來計算逆解及流形仿真。

        3 仿真驗證

        定義關(guān)節(jié)構(gòu)型空間:

        式中:C1為移動關(guān)節(jié)構(gòu)型空間,C2~C7為庫卡機(jī)械手各轉(zhuǎn)動關(guān)節(jié)構(gòu)型空間,機(jī)器人關(guān)節(jié)所起的作用相當(dāng)于數(shù)學(xué)里的函數(shù),它實現(xiàn)了關(guān)節(jié)構(gòu)型空間和末端執(zhí)行器位姿工作空間之間的映射與逆映射。當(dāng)滑軌運(yùn)動時,冗余鋪絲機(jī)械手逆解將會呈現(xiàn)出流形的結(jié)構(gòu),它包括了冗余鋪絲機(jī)械手的全部逆解。

        冗余鋪絲機(jī)械手具體結(jié)構(gòu)參數(shù)為

        定義臂形標(biāo)志為

        ?。?/p>

        由以上所得數(shù)據(jù)可得在右上臂形不翻腕的情況下關(guān)節(jié)角θ2~θ7基于冗余關(guān)節(jié)d1變化的仿真曲線及冗余鋪絲機(jī)械手的位置構(gòu)型圖,如圖4所示。當(dāng)針對芯模上某一確定鋪絲點(diǎn)時,隨著冗余關(guān)節(jié)的變化,鋪絲機(jī)械手具有無窮多個關(guān)節(jié)逆解,并且呈現(xiàn)出流形的結(jié)構(gòu)。這樣極大增強(qiáng)了鋪絲機(jī)械手在工作空間中的靈活性以及解空間的優(yōu)化性能,然后根據(jù)控制要求和約束函數(shù)找到最優(yōu)逆解。

        其中坐標(biāo)軸x、y、z分別對應(yīng)于慣性坐標(biāo)系{S}的方向,由于自運(yùn)動流形的多維特性,無法在三維空間中直觀展示,所以將冗余鋪絲機(jī)械手的自運(yùn)動流形分別映射到以θ2、θ3、θ4為主的位置關(guān)節(jié)空間和以θ5、θ6、θ7為主的姿態(tài)關(guān)節(jié)空間,如圖5所示。

        圖5中:c1~c8分別表示了鋪絲機(jī)械手的不同臂形標(biāo)志。具體形式為

        在滿足飛機(jī)S形進(jìn)氣道設(shè)計和性能要求基礎(chǔ)之上,通過測量得到一組數(shù)據(jù)點(diǎn),然后利用樣條函數(shù)進(jìn)行擬合得到飛機(jī)S形進(jìn)氣道的期望軌跡。下面以飛機(jī)S形進(jìn)氣道為例進(jìn)行仿真來驗證所得結(jié)論的正確性。

        由圖6可以看到利用旋量結(jié)合參數(shù)方程的方法得到的仿真軌跡與期望軌跡高度吻合,而利用位姿分離法得到的仿真軌跡與期望軌跡吻合度較差,需要進(jìn)一步利用優(yōu)化函數(shù)來提高其精度,這也進(jìn)一步增加了求取逆解的復(fù)雜性。所以本文得到的自運(yùn)動逆解流形不僅是正確的,而且相比于位姿分離法顯著提高了逆解的求解精度、效率及直觀性。

        在實際鋪絲過程中機(jī)械手末端執(zhí)行器沿芯模軌跡運(yùn)動的速度是保持不變的如圖7所示,x為末端執(zhí)行器速度;x0為出絲速度;t1到t2為鋪絲工作時間;t3為鋪絲結(jié)束時間。在此基礎(chǔ)上為了使鋪絲機(jī)械手各關(guān)節(jié)運(yùn)動速度變化最小,提出以關(guān)節(jié)速度為目標(biāo)的優(yōu)化函數(shù):

        式中:θ 為 機(jī)械手 的關(guān) 節(jié) 速 度 ;θi為 機(jī) 械 手 某 一 關(guān)節(jié)的速度。

        約束條件為

        式中:J為冗余機(jī)械手的雅可比矩陣。建立增廣泛函:

        式中:λ為拉格朗日乘子。

        由式(26)可以生成相應(yīng)的控制算法,分配鋪絲機(jī)械手各關(guān)節(jié)的運(yùn)動,使得末端執(zhí)行器沿預(yù)定軌跡運(yùn)動時冗余機(jī)械手各運(yùn)動關(guān)節(jié)速度變化最小。這樣不僅提高了鋪絲工作效率也增強(qiáng)了鋪絲機(jī)械手工作過程中的平穩(wěn)性。由式(23)、式(26)可以得到關(guān)于S的最小值,通常在滿足自運(yùn)動控制要求前提下為了提高鋪絲機(jī)械手的靈活性及避障礙能力,在最小值S附近取S≤S0(S0是與優(yōu)化流形邊界值相關(guān)的參數(shù))來求得相應(yīng)的優(yōu)化逆解,從而得到位置和姿態(tài)自運(yùn)動優(yōu)化仿真流形如圖8所示。

        圖9 所示為鋪絲機(jī)械手處于右上臂形不翻腕情況下鋪絲機(jī)械手各關(guān)節(jié)基于目標(biāo)函數(shù)S的變化曲線,由圖示可知隨著冗余關(guān)節(jié)d1的變化S0以下紅色區(qū)域為對應(yīng)的最優(yōu)化自運(yùn)動流形,同理可以得到其他臂形標(biāo)志下鋪絲機(jī)械手各關(guān)節(jié)隨目標(biāo)函數(shù)的變化曲線,并證明所得優(yōu)化流形的正確性。

        4 結(jié) 論

        1)利用旋量理論結(jié)合參數(shù)方程的方法提出一種求解位姿耦合式冗余鋪絲機(jī)械手自運(yùn)動流形的新算法,并分別得到了相應(yīng)的位置工作空間和姿態(tài)工作空間仿真流形,相比于鋪絲機(jī)械手的位姿分離式算法求解精度更高、直觀性更強(qiáng),并利用飛機(jī)S形進(jìn)氣道為例驗證了所得結(jié)論的正確性。

        2)求取的逆解為冗余鋪絲機(jī)械手的全部逆解,但并不是所有逆解都符合冗余機(jī)械手的實際鋪絲過程,在滿足靈活性、避障礙能力及自運(yùn)動控制的前提下為了使鋪絲機(jī)械手各關(guān)節(jié)速度變化最小提出基于鋪絲機(jī)械手關(guān)節(jié)速度的約束泛函,并在此基礎(chǔ)上得到了最優(yōu)自運(yùn)動流形,為鋪絲過程實現(xiàn)最優(yōu)運(yùn)動控制奠定了基礎(chǔ)。

        [1] BRUYNEEL M,ZEIN S.A modified fast marching method for defining fiber placement trajectories over meshes[J].Computers and Structures,2013,125:45-52.

        [2] 熊文磊,肖軍,王顯峰,等.基于網(wǎng)格化曲面的自適應(yīng)自動鋪放軌跡算法[J].航空學(xué)報,2013,34(2):434-441.XIONG W L,XIAO J,WANG X F,et al.Algorithm of adaptive path planning for automated placement on meshed surface[J].Acta Aeronautica et Astronautica Sinica,2013,34(2):434-441(in Chinese).

        [3] CHEN J H,CHEN-KEAT T,HOJJATI M,et al.Impact of layup rate on the quality of fiber steering/cut-restart in automated fiber placement processes[J].Science and Engineering of Composite Materials,2015,22(2):165-173.

        [4] 陸楠楠,肖軍,齊俊偉,等.面向自動鋪放的預(yù)浸料動態(tài)粘性實驗研究[J].航空學(xué)報,2014,35(1):279-286.LU N N,XIAO J,QI J W,et al.Experimental research on prepreg dynamic tack based on automated placement process[J].Acta Aeronautica et Astronautica Sinica,2014,35(1):279-286(in Chinese).

        [5] WANG Z B,HAN Z Y,LU H,et al.A review of tensioner for automated fiber placement[J].Advanced Materials Research,2013,740:183-187.

        [6] 文立偉,李俊斐,王顯峰,等.基于結(jié)構(gòu)設(shè)計的自調(diào)節(jié)鋪放軌跡規(guī)劃算法[J].航空學(xué)報,2013,34(7):1731-1739.WEN L W,LI J F,WANG X F,et al.Adjustment algorithm based on structural design for automated tape laying and automated fiber placement[J].Acta Aeronautica et Astronautica Sinica,2013,34(7):1731-1739 (in Chinese).

        [7] 趙新明,段玉崗,劉瀟龍,等.低能電子束原位固化樹脂基復(fù)合材料纖維鋪放制造及性能[J].機(jī)械工程學(xué)報,2013,49(11):121-127.ZHAO X M,DUAN Y G,LIU X L,et al.Fabrication and properties of polymer matrix composites by low-energy electron beam in-situ cured fiber placement process[J].Journal of Mechanical Engineering,2013,49(11):121-127(in Chinese).

        [8] 方宜武,王顯峰,顧善群,等.自動鋪絲過程中預(yù)浸料的側(cè)向彎曲[J].材料工程,2015,43(4):47-52.FANG Y W,WANG X F,GU S Q,et al.Lateral bending of prepreg during automated fiber placement[J].Journal of Materials Engineering,2015,43(4):47-52(in Chinese).

        [9] GEORGE M.Automating aerospace composites production with fiber placement[J].Reinforced Plastics,2011,55(3):32-37.

        [10] 段玉崗,董肖偉,葛衍明,等.基于CATIA生成數(shù)控加工路徑的機(jī)器人纖維鋪放軌跡規(guī)劃[J].航空學(xué)報,2014,35(9):2632-2640.DUAN Y G,DONG X W,GE Y M,et al.Robotic fiber placement trajectory planning based on CATIA CNC machining path[J].Acta Aeronautica et Astronautica Sinica,2014,35(9):2632-2640(in Chinese).

        [11] SCHMIDT C,SCHULTZ C,WEBER P,et al.Evaluation of eddy current testing for quality assurance and process monitoring of automated fiber placement[J].Composites Part B:Engineering,2014,56(17):109-116.

        [12] HASENJAEGER B.Programming and simulating automated fiber placement(AFP)CNC machines[J].SAMPE Journal,2013,49(6):7-13.

        [13] CHEN J,XU W J,WANG B,et al.Fuzzy-adaptive PID based tow tension controller for robotic automated fiber placement[J].Applied Mechanics and Materials,2014,643:48-53.

        [14] 文立偉,宋清華,秦麗華,等.基于機(jī)器視覺與UMAC的自動鋪絲成型構(gòu)件缺陷檢測閉環(huán)控制系統(tǒng)[J].航空學(xué)報,2015,36(12):3991-4000.WEN L W,SONG Q H,QIN L H,et al.Defect detection and closed-loop control system for automated fiber placement forming components based on machine vision and UMAC[J].Acta Aeronautica et Astronautica Sinica,2015,36(12):3991-4000(in Chinese).

        [15] HAMID T.Real-time inverse kinematics of redundant manipulators using neural networks and quadratic programming:A Lyapunov-based approach[J].Robotics and Autonomous Systems,2014,62(6):766-781.

        [16] AN H H,CLEMENT W I,REED B.Analytical inverse kinematic solution with self-motion constraint for the 7-DOF restore robot arm[C]/2014IEEE/ASME International Conference on Advanced Intelligent Mechatronics.Besancon:AIM,2014:1325-1330.

        [17] GE X F,ZHAO D B,LU Y H,et al.Study of dynamics performance index of the automated fiber placement robotic manipulator[J].Journal of Information and Computational Science,2011,8(14):2975-2982.

        [18] PIERRE D,HELENE C,EMMANUEL D.Tool path smoothing of a redundant machine:application to automated fiber placement[J].Computer-Aided Design,2011,43:122-132.

        [19] KYLE A J.Enhanced robotic automated fiber placement with accurate robot technology and modular fiber placement head[J].Psychology of Addictive Behaviors,2013,6(2):774-779.

        [20] LONG Y,ZEZHONG C C,YAOYAO S,et al.An accurate approach to roller path generation for robotic fiber placement of free-form surface composites[J].Robotics and Computer Integrated Manufacturing,2014,30(3):277-286.

        [21] 邵忠喜,富宏亞,韓振宇.纖維鋪放設(shè)備機(jī)械手臂末端運(yùn)動軌跡的后置處理技術(shù)研究[J].宇航學(xué)報,2008,29(6):2023-2029.SHAO Z X,F(xiàn)U H Y,HAN Z Y.Post processing technology for fiber placement machine of manipulator terminal motion trajectory[J].Journal of Astronautics,2008,29(6):2023-2029(in Chinese).

        [22] 葛新鋒,趙東標(biāo).7自由度自動鋪絲機(jī)器人參數(shù)化的自運(yùn)動流形[J].機(jī)械工程學(xué)報,2012,48(13):27-31.GE X F,ZHAO D B.Parameterized self-motion manifold of 7-DOF automatic fiber placement robotic manipulator[J].Journal of Mechanical Engineering,2012,48(13):27-31(in Chinese).

        [23] TISIUS M,PRYOR M,KAPOOR C,et al.An empirical approach to performance criteria for manipulation[J].Journal of Mechanisms and Robotics,2009,1(3):1-12.

        [24] WEI Y H,JIAN S Q,HE S,et al.General approach for inverse kinematics of nR robots[J].Mechanism and Machine Theory,2014,75:97-106.

        [25] GALICKI M.Inverse-free control of a robotic manipulator in a task space[J].Robotics and Autonomous Systems,2014,62(2):131-141.

        [26] IQBAL H,AIZED T.Workspace analysis and optimization of 4-links of an 8-DOF haptic master device[J].Robotics and Autonomous Systems,2014,62(8):1220-1227.

        [27] MOLL M,KAVRAKI L E.Path planning for minimal energy curves of constant length[C]/Proceedings of the 2004IEEE International Conference on Robotics and Automation.Piscataway,NJ:IEEE Press,2004(3):2826-2831.

        [28] BURDICK J W.On the inverse kinematics of redundant manipulators:Characterization of the self-motion manifolds[C]/Proceedings of the 1989IEEE International Conference on Robotics and Automation.Piscataway,NJ:IEEE Press,1989:264-270.

        [29] HSIA T C,GUO Z Y.New inverse kinematics algorithms for redundant robot[J].Journal of Robotic Systems,1991,8(1):117-132.

        [30] GUO Z Y,HSIA T C.Joint trajectory generation for redundant robotics in an environment with obstacles[J].Journal of Robotic Systems,1993,10(2):199-215.

        [31] 趙建文,杜志江,孫立寧.7自由度冗余手臂自運(yùn)動流形[J].機(jī)械工程學(xué)報,2007,43(9):132-137.ZHAO J W,DU Z J,SUN L N.Self-motion manifolds of a 7-DOF redundant manipulator[J].Journal of Mechanical Engineering,2007,43(9):132-137(in Chinese).

        [32] 戴建生.機(jī)構(gòu)學(xué)與旋量理論的歷史淵源以及有限位移旋量的發(fā)展[J].機(jī)械工程學(xué)報,2015,51(13):13-26.DAI J S.Historical relation between mechanisms and screw theory and the development of finite displacement screws[J].Journal of Mechanical Engineering,2015,51(13):13-26(in Chinese).

        [33] ZHENG F Y,HUA L,HAN X H.The mathematical model and mechanical properties of variable center distance gears based on screw theory[J].Mechanism and Machine Theory,2016,101:116-139.

        [34] IBRAHIM K,RAMADAN A,F(xiàn)ANNI M,et al.Development of a new 4-DOF endoscopic parallel manipulator based on screw theory for laparoscopic surgery[J].Mechatronics,2015,28:4-17.

        [35] DAI J S.Screw algebra and lie groups and lie algebras[M].Beijing:Higher Education Press,2014:119-149.

        Analysis and optimization for self-motion manifolds of redundant fiber placement manipulator

        XU Peng,ZHAO Dongbiao*,YING Mingfeng,LI Kui
        College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

        Traditional position and posture separated fiber placement manipulator is less flexible.To improve the flexibility and obstacle avoidance capability of the manipulator for aerospace composite material placement,a new algorithm of selfmotion manifolds is proposed for the position and posture coupled redundant fiber placement manipulator model.As the strong coupling between each joint of the redundant fiber placement manipulator can cause increased difficulty in obtaining inverse solutions,the inverse solution for the manipulator joint is decomposed into the known Paden-Kahan screw sub-problem and special screw sub-problem.Solution to the special screw sub-problem is obtained to get the whole inverse solution for the redundant fiber placement manipulator.The efficiency and intuitivity of the inverse solution for the manipulator is thus enhanced.As the inverse solutions for the redundant fiber placement manipulator presents a structure of manifolds,the self-motion manifolds of the redundant fiber placement manipulator are mapped to position joints space and posture joints space to get three-dimensional simulation curve based on the multi-dimensional characteristic of the self-motion manifolds of the redundant fiber placement manipulator.The optimized manifolds are more applicable than the whole general manifolds in the practical control,so the optimized manifolds are obtained by the objective function constituted by joint velocity of the redundant manipulator in order to enable the kinetic energy minimum and various joints velocity to change more smoothly and steadily while the end effector moves along the mandrel trajectory,providing foundation for subsequent optimum control.The method is verified by using the S-shaped inlet simulation.

        redundancy;fiber placement;inverse solutions;screw;manifolds

        2016-01-31;Revised:2016-03-14;Accepted:2016-04-26;Published online:2016-05-31 10:09

        URL:www.cnki.net/kcms/detail/11.1929.V.20160531.1009.002.html

        s:National Natural Science Foundation of China(51175261);National Basic Research Program of China(2014CB046501);Specialized Research Fund for the Doctoral Program of Higher Education of China(20123218110020)

        V261.97

        A

        1000-6893(2017)01-420138-10

        http:/hkxb.buaa.edu.cn hkxb@buaa.edu.cn

        10.7527/S1000-6893.2016.0132

        2016-01-31;退修日期:2016-03-14;錄用日期:2016-04-26;網(wǎng)絡(luò)出版時間:2016-05-31 10:09

        www.cnki.net/kcms/detail/11.1929.V.20160531.1009.002.html

        國家自然科學(xué)基金 (51175261);國家“973”計劃 (2014CB046501);高等學(xué)校博士學(xué)科點(diǎn)專項科研基金 (20123218110020)

        *通訊作者 .E-mail:zdbme@nuaa.edu.cn

        徐朋,趙東標(biāo),應(yīng)明峰,等.冗余鋪絲機(jī)械手自運(yùn)動流形分析及優(yōu)化[J].航空學(xué)報,2017,38(1):420138.XU P,ZHAO D B,YING M F,et al.Analysis and optimization for self-motion manifolds of redundant fiber placement manipulator[J].Acta Aeronautica et Astronautica Sinica,2017,38(1):420138.

        (責(zé)任編輯:李世秋)

        *Corresponding author.E-mail:zdbme@nuaa.edu.cn

        猜你喜歡
        芯模流形位姿
        緊流形上的Schr?dinger算子的譜間隙估計
        淺析現(xiàn)澆混凝土空心樓蓋質(zhì)量控制要點(diǎn)
        迷向表示分為6個不可約直和的旗流形上不變愛因斯坦度量
        擠壓芯模
        鋁加工(2019年4期)2019-03-30 01:53:26
        Nearly Kaehler流形S3×S3上的切觸拉格朗日子流形
        基于共面直線迭代加權(quán)最小二乘的相機(jī)位姿估計
        基于CAD模型的單目六自由度位姿測量
        小型四旋翼飛行器位姿建模及其仿真
        一種橡膠制品模具芯模
        橡膠科技(2016年2期)2016-02-25 03:33:16
        基于多故障流形的旋轉(zhuǎn)機(jī)械故障診斷
        白白色发布视频在线播放 | 日韩亚洲精选一区二区三区| 麻豆精品国产av在线网址| 伊人久久大香线蕉av不卡| 亚洲日韩欧美国产高清αv| 国产福利小视频91| 五月婷婷开心五月激情| 99久久婷婷国产综合亚洲| 久久午夜伦鲁片免费无码| 国产h视频在线观看网站免费| 久久免费精品日本久久中文字幕| 亚洲a∨无码精品色午夜| 东方aⅴ免费观看久久av| 亚洲不卡电影| 黄片免费观看视频播放| 亚洲av无码乱码在线观看牲色| 亚洲av伊人久久综合密臀性色| 久久99久久99精品免观看女同 | 白白在线视频免费观看嘛| 国产精品视频露脸| 在线观看网址你懂的| av高清视频在线麻豆免费观看| 成人区人妻精品一区二区三区| 97se亚洲精品一区| 国产成人丝袜网站在线看| 91精品人妻一区二区三区水蜜桃| 亚洲成av人在线播放无码| 久久艹影院| 亚洲素人av在线观看| 中文无码av一区二区三区| 国内精品伊人久久久久影院对白| 国产一区二区欧美丝袜| 久久99国产综合精品女同| 屁屁影院ccyy备用地址| 永久无码在线观看| 亚洲发给我的在线视频| 无码色av一二区在线播放| 精品无码国产污污污免费| 日本在线中文字幕一区二区| 国99精品无码一区二区三区| 夫妇交换刺激做爰视频|