郭 普,喬 艷,李 竟
48株鮑曼不動(dòng)桿菌氨基糖苷類抗生素耐藥基因檢測
郭 普1,喬 艷2,李 竟1
目的了解鮑曼不動(dòng)桿菌氨基糖苷類抗生素耐藥基因分布情況。方法收集蚌埠醫(yī)學(xué)院第一附屬醫(yī)院2015年1月至12月臨床分離的48株泛耐藥鮑曼不動(dòng)桿菌,VITEK 2 Compact進(jìn)行鑒定和藥敏實(shí)驗(yàn)。PCR法檢測12個(gè)氨基糖苷類修飾酶基因和3個(gè)甲基化酶基因以及外排泵基因adeB。結(jié)果在實(shí)驗(yàn)的16個(gè)基因中,共檢出4種氨基糖苷類抗生素耐藥基因aac(6′)-Ib、armA、adeB和ant(3″)-Ia,其中aac(6′)-Ib檢出率為39.6%(19/48),armA基因檢出率為89.6%(43/48),adeB檢出率89.6%(43/48),ant(3″)-Ia檢出率為10.4%(5/48),其余基因均未檢出;存在兩種以上耐藥基因的共39株,檢出率為81.3%(38/48)。結(jié)論aac(6′)-Ib、armA基因以及外排泵adeB是介導(dǎo)我院鮑曼不動(dòng)桿菌氨基糖苷類抗生素耐藥的主要基因。
鮑曼不動(dòng)桿菌;氨基糖苷類抗生素;耐藥
鮑曼不動(dòng)桿菌(Acinetobacterbaumannii)是醫(yī)院感染常見的條件致病菌,其引起的感染已躍居非發(fā)酵菌的首位[1-2]。特別是泛耐藥鮑曼不動(dòng)桿菌引起的感染呈逐年上升的趨勢,給臨床抗感染治療帶來很大的挑戰(zhàn)[3]。氨基糖苷類抗生素可以聯(lián)合舒巴坦、替加環(huán)素等抗生素治療多重耐藥鮑曼不動(dòng)桿菌引起的感染。然而,隨著氨基糖苷類抗生素的臨床應(yīng)用,其耐藥性也有所上升。為探明我院鮑曼不動(dòng)桿菌氨基糖苷類抗生素耐藥機(jī)制,筆者對(duì)我院臨床分離的48株泛耐藥的鮑曼不動(dòng)桿菌進(jìn)行常見的12個(gè)氨基糖苷類修飾酶(aminoglycoside-modifying enzymes, AMEs)基因、3個(gè)16S rRNA甲基化酶基因和1個(gè)外排泵基因進(jìn)行檢測分析?,F(xiàn)報(bào)道如下。
1.1菌株來源 2015年蚌埠醫(yī)學(xué)院第一附屬醫(yī)院臨床分離的48株泛耐藥的鮑曼不動(dòng)桿菌(剔除重復(fù)菌株)。
1.2菌株鑒定和藥敏 采用VITEK 2 compect全自動(dòng)細(xì)菌鑒定藥敏分析儀進(jìn)行細(xì)菌鑒定和藥敏實(shí)驗(yàn),結(jié)果判讀根據(jù)CLSI 2015版標(biāo)準(zhǔn)。
1.3 特異性基因PCR擴(kuò)增和序列分析
1.3.1引物 12個(gè)氨基糖苷類修飾酶基因(ant(2″)-Ia, ant(3″)-Ia, ant(4′)-Ia, aac(3)-I, aac(3)-IIc. aac(6′)-Ib, aac(6′)-II, aph(2″)-Ib, aph(2″)-Ic, aph(2″)-Id, aph(3′)-IIIa, aph(4)-Ia)和3個(gè)甲基化酶基因(rmtB, rmtC, armA)以及外排泵基因adeB參照文獻(xiàn)[4-5],由上海生工生物工程有限公司合成,引物序列及產(chǎn)物大小見表1。
1.3.2PCR擴(kuò)增 PCR反應(yīng)體積為50 μL,反應(yīng)體系:EX Taq酶0.5 μL、dNTP Mixture 4 μL、10×PCR Buffer(Mg2+plus)5 μL、模板DNA 2 μL、上下游引物各1 μL、H2O補(bǔ)足至50 μL。循環(huán)參數(shù):94 ℃預(yù)變性5 min,94 ℃ 30 s、退火30 s(退火溫度見表1)、72 ℃延伸60 s,30個(gè)循環(huán)、最后72 ℃ 10 min、4 ℃恒溫。將擴(kuò)增產(chǎn)物進(jìn)行凝膠電泳,成像,分析結(jié)果,同時(shí)設(shè)空白為陰性對(duì)照,陽性對(duì)照為陽性基因菌株。陽性基因菌株由安徽醫(yī)科大學(xué)第一附屬醫(yī)院沈繼錄博士惠贈(zèng)。
1.4質(zhì)控菌株 ATCC25922大腸埃希菌ATCC25922購自衛(wèi)生部臨檢中心。
表1 各基因型片段引物序列、退火溫度及產(chǎn)物長度
Tab.1 Primer sequences annealing temperature and products size of the genotypes
GenotypesPrimersequences(5′→3′)Annealingtemperature/℃Productssize/bpant(2″)?IaF:GCTCACGCAACTGGTCCAGAR:GGCACGCAAGACCTCAACCT58719ant(3″)?IaF:TCCAAGCAGCAAGCGCGTTAR:CCGACTACCTTGGTGATCTC58887aac(3)?IF:TTACGCAGCAGCAACGATGTR:GTTGGCCTCATGCTTGAGGA58420aac(3)?IIcF:ACGCGGAAGGCAATAACGGAR:TAACCTGAAGGCTCGCAAGA55854ant(4′)?IaF:CTGCTAAATCGGTAGAAGCR:CAGACCAATCAACATGGCACC55172aac(6′)?IbF:CATGACCTTGCGATGCTCTAR:GCTCGAATGCCTGGCGTCTT58490aac(6′)?IIF:TTCATGTCCGCGAGCACCCCR:GACTCTTCCGCCATCGCTCT55178aph(2”)?IbF:CTTGGACGCTGAGATATATGAGCACR:GTTTGTAGCAATTCAGAAACACCCTT55867aph(2”)?IcF:CCACAATGATAATGACTCAGTTCCCR:CCACAGCTTCCGATAGCAAGAG55444aph(2”)?IdF:GTGGTTTTTACAGGAATGCCATCR:CCCTCTTCATACCAATCCATATAACC55641aph(3′)?IIIaF:GGCTAAAATGAGAATATCACCGGR:CTTTAAAAAATCATACAGCTCGCG55278aph(4)?IaF:CTGAACTCACCGCGACGTCTR:TCCACTATCGGCGAGTACTT58977rmtBF:GCTTTCTGCGGGCGATGTAAR:ATGCAATGCGCGGCTCGTAT55173armAF:ATTCTGCCTATCCTAATTGGR:ACCTATACTTTATCGTCGTC55315rmtCF:CGAAGAAGTAACAGCCAAAGR:ATCCCAACATCTCTCCCACT55711adeBF:AAAGACTTCAAAGAGCGGACTAR:ATTGTCACCTTGTGGCAACCCT49273
48株鮑曼不動(dòng)桿菌中共檢出氨基糖苷類修飾酶aac(6′)-Ib19株,檢出率為39.6%(19/48),ant(3″)-Ia5株,檢出率為10.4%。16SrRNA甲基化酶armA基因和外排泵基因adeB各檢出43株,檢出率為89.6%(43/48),其余基因均為陰性,見表2。部分菌株P(guān)CR擴(kuò)增結(jié)果見圖1,2。
表2 48株鮑曼不動(dòng)桿菌氨基糖苷類抗生素耐藥基因陽性率
Tab.2 Identification of resistance genes for aminoglycosides in Acinetobacter baumannii 48 strains
GenePositivestrainsPositiverate/%aac(6′)?Ib1939.6ant(3″)?Ia510.4adeB4389.6armA4389.6armA+adeB3981.3aac(6′)?Ib+armA+adeB1020.8
注:泳道1-5:臨床分離的菌株。Lane1-5: Acinetobacter baumannii isolated from patients圖1 armA基因型PCR檢測結(jié)果Fig.1 PCR analysis of armA genotype
注:泳道1-12:臨床分離的菌株。Lane1-12: Acinetobacter baumannii isolated from patients圖2 adeB基因型PCR檢測結(jié)果Fig.2 PCR analysis of adeB genotype
鮑曼不動(dòng)桿菌是醫(yī)院感染常見重要的條件致病菌,常引起呼吸機(jī)相關(guān)性肺炎、尿路感染、創(chuàng)傷感染、血流感染和繼發(fā)性腦膜炎等[6]。近年來,臨床大量廣譜抗菌素的使用、機(jī)械通氣等侵入性診療活動(dòng)的增加,外科手術(shù)、醫(yī)院內(nèi)的交叉感染等因素,使鮑曼不動(dòng)桿菌感染率逐年增加,耐藥性也不斷上升[3,6]。特別是碳青霉烯類抗菌素耐藥菌株多為多重耐藥或泛耐藥菌株,給臨床抗感染治療帶來極大的挑戰(zhàn)。
2012年中國鮑曼不動(dòng)桿菌感染診治與防控專家共識(shí)指出氨基糖苷類抗生素聯(lián)合舒巴坦或替加環(huán)素等抗生素可以作為多重耐藥鮑曼不動(dòng)桿菌的治療選擇[7]。氨基糖苷類抗生素具有廣譜性、高效性的特點(diǎn),被廣泛應(yīng)用于治療臨床革蘭陰性桿菌所致的感染,其主要是通過作用于細(xì)菌30S核糖體的16SrRNA解碼區(qū)A部位,抑制細(xì)菌蛋白質(zhì)的合成或誘導(dǎo)合成錯(cuò)誤蛋白,抑制已經(jīng)合成蛋白的釋放,而導(dǎo)致細(xì)菌的死亡[8]。近年來,氨基糖苷類抗生素對(duì)鮑曼不動(dòng)桿菌耐藥率也有所上升,2014年中國CHINET耐藥監(jiān)測網(wǎng)數(shù)據(jù)顯示鮑曼不動(dòng)桿菌對(duì)阿米卡星耐藥率為47.4%[2]。喻華等[9]對(duì)四川省2012年細(xì)菌耐藥性研究數(shù)據(jù)顯示鮑曼不動(dòng)桿菌對(duì)于阿米卡星耐藥率為42.9%。郭普等[10]對(duì)蚌埠醫(yī)學(xué)院第一附屬醫(yī)院2014年病原菌耐藥性監(jiān)測研究發(fā)現(xiàn)鮑曼不動(dòng)桿菌對(duì)于阿米卡星的耐藥率為33.7%。
鮑曼不動(dòng)桿菌對(duì)于氨基糖苷類抗生素的耐藥機(jī)制主要為氨基糖苷修飾鈍化酶以及16S rRNA甲基化酶的產(chǎn)生,細(xì)菌外膜蛋白的丟失和外排泵的高表達(dá)也參與了細(xì)菌的耐藥[11]。本研究顯示:我院臨床分離的48株泛耐藥鮑曼不動(dòng)桿菌中檢出2種氨基糖苷類修飾酶,aac(6′)-Ib19株,檢出率為39.6%;ant(3″)-Ia5株,檢出率為10.4%;與唐朝貴等[12]報(bào)道的主要產(chǎn)生aac(2')-Ib、aac(3)-I、aac(6')-Ib、ant(3'')-I、aph(3')-I 型修飾鈍化酶有所不同,這可能是各地區(qū)抗生素選擇壓力不同導(dǎo)致耐藥性的差異。16S rRNA甲基化酶是近年來發(fā)現(xiàn)的一種由質(zhì)粒介導(dǎo)的耐藥機(jī)制,它能甲基化修飾氨基糖苷類藥物的作用靶位16S rRNA,使得藥物無法結(jié)合,導(dǎo)致氨基糖苷類抗生素高水平耐藥,編碼16S rRNA甲基化酶的基因主要是armA、rmtB,其中armA基因主要見于鮑曼不動(dòng)桿菌。本研究的48株菌中armA基因攜帶率達(dá)到了為89.6%(43/48),與劉曉慶等[13]報(bào)道相近,表明其是引起鮑曼不動(dòng)桿菌對(duì)氨基糖苷類藥物耐藥的重要原因。adeB 屬于外排系統(tǒng)的RND超家族,它與 AdeA、AdeC形成三聚體結(jié)構(gòu),參與對(duì)氨基糖苷類等多種藥物的外排轉(zhuǎn)運(yùn)。48株鮑曼不動(dòng)桿菌中43株攜帶外排泵adeB基因,檢出率為89.6%(43/48),與蒯守剛等報(bào)道一致[5],提示外排泵adeB基因可能是介導(dǎo)我院鮑曼不動(dòng)桿菌氨基糖苷類抗生素耐藥的又一個(gè)重要因素。有待于進(jìn)一步用RT-PCR檢測其表達(dá)量,探明其在介導(dǎo)耐藥中的作用。此外,有39株鮑曼不動(dòng)桿菌同時(shí)攜帶adeB和armA基因,10株同時(shí)攜帶aac(6′)-Ib、adeB和armA基因,說明這些菌株氨基糖苷類抗生素耐藥是由多種耐藥基因共同作用的結(jié)果。
綜上所述 ,我院臨床分離的鮑曼不動(dòng)桿菌攜帶多種氨基糖苷類耐藥基因,應(yīng)關(guān)注鮑曼不動(dòng)桿菌對(duì)氨基糖苷類抗生素的耐藥性,加強(qiáng)耐藥機(jī)制監(jiān)測,了解耐藥株流行情況,為延緩細(xì)菌耐藥性產(chǎn)生,控制耐藥菌株的播散和流行,臨床合理選用抗菌藥物以及為新型抗菌藥物的研發(fā)提供可靠的實(shí)驗(yàn)室依據(jù)。
[1] Hang J, Chen EZ, Qiu HP, et al. Sources of multidrug-resistantAcinetobacterbaumanniiand its role in respiratory tract colonization and nosocomial pneumonia in intensive care unit patients[J]. Chin Med(Engl), 2013, 126(10): 1826-1831.
[2] Hu FP, Zhu DM, Wang F, et al. 2014 CHINET surveillance of bacterial resistance in China[J]. Chin J Infect Chemother, 2015, 15(5): 401-410.DOI: 10.3969/j.issn.1009-7708.2015.05.001(in Chinese)
胡付品,朱德妹,汪復(fù),等.2014年中國CHINET細(xì)菌耐藥性監(jiān)測[J].中國感染與化療雜志,2015,15(5):401-410.
[3] Inchai J, Liwsrisakun C, Theerakittikul T, et al. Risk factors of multidrug-resistant, extensively drug-resistant and pandrug-resistantAcinetobacterbaumanniiventilator-associated pneumonia in a Medical Intensive Care Unit of University Hospital in Thailand[J]. J Infect Chemother, 2015, 21(8): 570-574.DOI: 10.1016/j.jiac.2015.04.010
[4] Nie L, Lv Y, Yuan M, et al. Genetic basis of high level aminoglycoside resistance inAcinetobacterbaumanniifrom Beijing, China[J]. Acta Pharm Sin B,2014, 4(4): 295-300. DOI: 10.1016/j.apsb. 2014.06.004.
[5] Kuai SG, Huang LH, Pei H, et al. Study on the molecular mechanism of aminoglycoside resistance toAcinetobacterbaumannii[J]. Lab Med, 2012, 27(8): 619-623.DOI: 10.3969/j.issn.1673-8640.2012.08.001 (in Chinese)
蒯守剛,黃利華,裴豪,等.鮑曼不動(dòng)桿菌對(duì)氨基糖苷類藥物耐藥機(jī)制研究[J].檢驗(yàn)醫(yī)學(xué),2012,27(8):619-623.
[6] Fu Q, Ye H, Liu S. Risk factors for extensive drug-resistance and mortality in geriatric inpatients with bacteremia caused byAcinetobacterbaumannii[J]. Am J Infect Control, 2015, 43(8): 857-860.DOI: 10.1016/j.ajic.2015.03.033.
[7] Chen BY,He LX,Hu BJ. Consensus of the Chinese specialists for diagnosis, treatment & control ofAcinetobacterbaumanniiinfection[J].Natl Med J China,2012, 92(2): 76-85. DOI: 10.3760/cma.j.issn.0376-2491.2012.02.002 (in Chinese)
陳佰儀,何禮賢,胡必杰,等.中國鮑曼不動(dòng)桿菌感染診治與防控專家共識(shí)[J]. 中華醫(yī)學(xué)雜志, 2012, 92(2): 76-85.
[8] Xiao SZ,Han LZ,Chu HQ, et al. Detection of aminoglycoside resistance related genes in multidrug-resistantAcinetobacterbaumanniiisolated from a single institute of Shanghai, China[J]. Panminerva Med,2015, 57(1): 49-53.
[9] Yu H, Liu H, Huang WF, et al. Sichuan Provincial Antimicrobial Resistant Investigation Net 2012 annual report: Bacterial drug resistance surveillance in Sichuan[J]. Chin J Antibiotics, 2014, 39(5): 332-337. DOI: 10.3969/j.issn.1001-8689.2014.05.003 (in Chinese)
喻華,劉華,黃文芳,等.四川省細(xì)菌耐藥監(jiān)測網(wǎng)2012年細(xì)菌耐藥性監(jiān)測[J].中國抗生素雜志,2014,39(5):332-337.
[10] Guo P, Qiao Y, Zhang HT, et al. Surveillance of antibiotic resistance in clinical isolates from the First Affiliated Hospital of Bengbu Medical College during 2014[J]. Chin J Antibiotics, 2015,40(10): 760-765. DOI: 10.3969/j.issn.1001-8689.2015.10.009 (in Chinese)
郭普,喬艷,張海濤,等.2014年蚌埠醫(yī)學(xué)院第一附屬醫(yī)院病原菌耐藥性監(jiān)測[J].中國抗生素雜志,2015,40(10):760-765.
[11] Aghazadeh M,Rezaee MA,Nahaei MR, et al. Dissemination of aminoglycoside-modifying enzymes and 16S rRNA methylases amongAcinetobacterbaumanniiandPseudomonasaeruginosaisolates[J]. Microb Drug Resist,2013, 19(4): 282-288.DOI: 10.1089/mdr.2012.0223
[12] Tang CG, Li QH, Lin T. Spread of aminoglycoside modifying enzyme gene: aac(2')-Ib in drug-resistantA.baumannii[J]. Chin J Antibiotics, 2014, 39(11): 844-848. DOI: 10.3969/j.issn.1001-8689.2014.11.009 (in Chinese)
唐朝貴,李前輝,林濤,等.氨基糖苷類修飾酶基因aac(2')-Ib型在耐藥鮑曼不動(dòng)桿菌中流行[J].中國抗生素雜志,2014,39(11):844-848.
[13] Liu XQ, Chen J, Li H, et al. Study of aminoglycoside drug-resistant gene on the plasmid ofAcinetobacterbaumannii[J]. Chin J Antibiotics, 2012, 37(5): 335-356. DOI: 10.3969/j.issn.1001-8689.2012.05.003 (in Chinese)
劉曉慶,陳嬌,李華,等.鮑曼不動(dòng)桿菌質(zhì)粒上氨基糖苷類耐藥基因的研究[J].中國抗生素雜志,2012,37(5):335-356.
AminoglycosideresistancegenesofAcinetobacterbaumannii
GUO Pu1, QIAO Yan2, LI Jing1
(1.DepartmentofClinicalMedicalLaboratory,theFirstAffiliatedHospitalofBengbuMedicalCollege,Bengbu233004,China;2.DepartmentofInfeetionsDiseases,theFirstAffiliatedHospitalofBengbuMedicalCollege,Bengbu233004,China)
To investigate the distribution of the resistance genes ofAcinetobacterbaumanniito aminoglycoside, 48 strains of extensively drug resistantAcinetobacterbaumanniiwere collected from the First Affiliated Hospital of Bengbu Medical College from January to December,2015. The drug sensitivity test and identification were performed by VITEK 2 compact automatic microorganism instrument. Twelve aminoglycosides modifying enzymes, three 16SrRNA methylase genes and efflux pump abeB gene were detected from these isolates by PCR. Results showed that among these experimental 16 genes, aac(6′)-Ib gene was detected from 19 of 48 isolates (39.6%), botharmA andadeB genes were 43 (89.6%), ant(3″)-Ia gene was from 5 (10.4%), while the other genes were not found.And more than two gene types were amplified from 39 of 48 strains (81.3%). In conclusion,the aac(6′)-Ib, armA gene and efflux pump adeB may play a key role in drug resistance to aminoglycosides antibiotics ofAcinetobacterBaumanniin our hospital.
Acinetobacterbaumanni; aminoglycosides antibiotics; drug resistance
10.3969/j.issn.1002-2694.2017.10.012
1.蚌埠醫(yī)學(xué)院第一附屬醫(yī)院檢驗(yàn)科,蚌埠 233004;
2.蚌埠醫(yī)學(xué)院第一附屬醫(yī)院感染性疾病科,蚌埠 233004
378.2
A
1002-2694(2017)10-0912-04
2017-04-05編輯張智芳