江蘇省泗洪縣洪翔中學(xué) 于炳友
略談數(shù)學(xué)學(xué)困生思維困惑成因及錯(cuò)解案例
江蘇省泗洪縣洪翔中學(xué) 于炳友
常聽(tīng)人說(shuō):當(dāng)今高考得數(shù)學(xué)者得天下。雖然有些夸張,但卻反映出了在高考中數(shù)學(xué)學(xué)科的重要性,可是由于部分學(xué)生數(shù)學(xué)學(xué)習(xí)習(xí)慣不好,對(duì)于高中數(shù)學(xué)知識(shí)不能形成體系,逐漸對(duì)數(shù)學(xué)學(xué)習(xí)失去興趣,最后成了不折不扣的學(xué)困生。數(shù)學(xué)課的學(xué)習(xí)怎樣才能高效達(dá)標(biāo)?怎樣才能提高我們高中數(shù)學(xué)教學(xué)的有效性?本文將對(duì)學(xué)困生數(shù)學(xué)解題困惑的成因及解決方法做簡(jiǎn)要的分析,對(duì)常見(jiàn)題型的錯(cuò)解案例做簡(jiǎn)要的歸納。
學(xué)困生數(shù)學(xué)思維;數(shù)學(xué)解題困惑;錯(cuò)解案例
在實(shí)際高中數(shù)學(xué)教學(xué)過(guò)程中,我們經(jīng)常聽(tīng)到學(xué)生反映上課時(shí)聽(tīng)老師講課,聽(tīng)得很“明白”,但到自己解題時(shí)總感到困難重重,無(wú)從入手,也就是學(xué)生私下里講的“一聽(tīng)就懂,一看就會(huì),一做就錯(cuò)”。有時(shí),在課堂上待我們把某一問(wèn)題分析完時(shí),常常看到學(xué)生拍腦袋:“唉,這個(gè)題目也不難做嘛!差一點(diǎn)就做對(duì)了!”事實(shí)上,有不少問(wèn)題的解答,其思維形式或結(jié)果與具體問(wèn)題的解決存在差異,學(xué)困生長(zhǎng)期的模仿使其解題時(shí)的思維缺乏創(chuàng)造性,他們往往用剛剛?cè)腴T的數(shù)學(xué)知識(shí)去尋找數(shù)學(xué)的美感,數(shù)學(xué)專業(yè)知識(shí)積累又不夠,數(shù)學(xué)里的邏輯美又尋找不到,這時(shí)學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣就會(huì)逐漸喪失,學(xué)生會(huì)產(chǎn)生巨大的心理落差,甚至對(duì)數(shù)學(xué)學(xué)習(xí)產(chǎn)生恐懼感,他們常用一句話概括自己現(xiàn)在乃至今后的數(shù)學(xué)水平:“我數(shù)學(xué)就是學(xué)不好啊?!倍蝗ふ揖烤故悄膫€(gè)章節(jié)、哪個(gè)知識(shí)點(diǎn)學(xué)得不好。因此,研究學(xué)困生的數(shù)學(xué)思維困惑對(duì)于數(shù)學(xué)教學(xué)是十分必要的。
我們知道,數(shù)學(xué)思維是指人用頭腦進(jìn)行邏輯推導(dǎo)的屬性、能力和過(guò)程,它反映的是數(shù)學(xué)的本質(zhì)及思維規(guī)律性。學(xué)困生的數(shù)學(xué)思維,同樣是指學(xué)生在對(duì)高中數(shù)學(xué)感性認(rèn)識(shí)的基礎(chǔ)上,運(yùn)用分析、歸納思維的基本方法,理解并掌握高中數(shù)學(xué)內(nèi)容,能對(duì)具體的數(shù)學(xué)問(wèn)題進(jìn)行論證與判斷,從而獲得對(duì)高中數(shù)學(xué)知識(shí)本質(zhì)和規(guī)律的認(rèn)識(shí)能力。學(xué)困生的數(shù)學(xué)解題思維存在困惑,這種解題思維的困惑的成因一部分是由于我們教學(xué)中的疏漏,但更多的則來(lái)自于學(xué)生自身沒(méi)有良好的思維品質(zhì),來(lái)自于學(xué)生不成體系的知識(shí)結(jié)構(gòu)和欠缺的思維模式。
如果教師的教學(xué)脫離學(xué)生的基礎(chǔ),只顧自我欣賞,自我陶醉;如果學(xué)生在學(xué)習(xí)數(shù)學(xué)過(guò)程中,新舊數(shù)學(xué)知識(shí)不能順利銜接,只顧抄記筆記,不去總結(jié),那么就勢(shì)必會(huì)造成學(xué)生對(duì)所學(xué)知識(shí)認(rèn)知上的不足、理解上的偏頗,從而在解決具體問(wèn)題時(shí)就會(huì)產(chǎn)生解題困惑,影響學(xué)生的解題能力。
由于學(xué)困生數(shù)學(xué)思維障礙產(chǎn)生的原因各不相同,所以他們數(shù)學(xué)思維障礙的表現(xiàn)各異,具體可以概括為:
1.數(shù)學(xué)思維膚淺:由于學(xué)困生在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,對(duì)一些數(shù)學(xué)基本概念的發(fā)生、推理過(guò)程沒(méi)有深刻的體會(huì),學(xué)生僅僅停留在表象的概括水平上,他們多數(shù)不能脫離具體表象而形成抽象的思維,自然也無(wú)法擺脫局部事實(shí)的片面性而把握事物的本質(zhì)。如在蘇教版選修1-1橢圓教學(xué)時(shí)出現(xiàn)了如下錯(cuò)解案例:
很多學(xué)生開始是如下錯(cuò)解:
學(xué)生這種錯(cuò)誤的形成是因?yàn)樗麄冊(cè)谧鰴E圓題目時(shí)多數(shù)都認(rèn)為焦點(diǎn)在x軸上,這樣他們就已經(jīng)形成了一種思維定式,即便這種思維不一定正確。而本題并沒(méi)有指明焦點(diǎn)在x軸上還是在y軸上,故應(yīng)包括兩種情況。所以,我們教師在教學(xué)中一定要反復(fù)叮囑學(xué)生,討論橢圓方程,要注意焦點(diǎn)位置,求橢圓離心率e及其取值范圍時(shí),千萬(wàn)不能忽視 0<e<1。
2.缺乏足夠的數(shù)學(xué)思維能力:忽略了隱含條件,解決數(shù)學(xué)問(wèn)題常常不能抓住題目的本質(zhì),不能轉(zhuǎn)化為已知的數(shù)學(xué)模型或過(guò)程去分析解決。如在學(xué)習(xí)蘇教版選修1-1雙曲線時(shí)出現(xiàn)了如下的錯(cuò)解案例:
案例2 已知P是雙曲線上一點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線的左、右焦點(diǎn),且PF1=17,求PF2的值。
學(xué)生出現(xiàn)了如下錯(cuò)解:由雙曲線的定義可知,|PF1-PF2|=2a=16,因?yàn)镻F1=17,所以PF2=1或PF2=33。出錯(cuò)的原因是忽略了雙曲線中的一個(gè)隱含條件:雙曲線上的點(diǎn)到任一焦點(diǎn)的距離都大于等于(c-a),從而兩解中要舍掉一個(gè)。
由此可見(jiàn),學(xué)困生數(shù)學(xué)思維障礙及解題困惑的形成,不僅不利于學(xué)生數(shù)學(xué)思維的進(jìn)一步發(fā)展,而且也不利于學(xué)生解決數(shù)學(xué)問(wèn)題能力的提高。所以,在平時(shí)的數(shù)學(xué)教學(xué)中注重突破學(xué)生的數(shù)學(xué)思維障礙就顯得尤為重要。
“書越來(lái)越難教,高中數(shù)學(xué)更難教”,這是我和部分同事的感慨。怎樣才能避免在課堂上唱獨(dú)角戲,怎樣才能激發(fā)學(xué)困生的數(shù)學(xué)學(xué)習(xí)興趣?怎樣改變很多教師“求學(xué)生學(xué)”、“哄學(xué)生學(xué)”的現(xiàn)狀?怎樣才能真正讓學(xué)生做到踏實(shí)“求學(xué)”?其實(shí),只要我們堅(jiān)持以學(xué)生為主體,了解學(xué)困生的學(xué)習(xí)特點(diǎn)、思維特點(diǎn),了解他們的學(xué)習(xí)習(xí)慣,以培養(yǎng)他們的數(shù)學(xué)思維發(fā)展為己任,則勢(shì)必會(huì)提升高中數(shù)學(xué)教學(xué)質(zhì)量,擺脫題海戰(zhàn)術(shù),狠抓基礎(chǔ),真正減輕學(xué)困生學(xué)習(xí)數(shù)學(xué)的心理負(fù)擔(dān),從而為提高學(xué)困生的整體素質(zhì)做出我們數(shù)學(xué)教師應(yīng)有的貢獻(xiàn)。各位同仁,素質(zhì)教育已經(jīng)向我們傳統(tǒng)的高中數(shù)學(xué)教學(xué)提出了更高的要求,而學(xué)困生的數(shù)學(xué)教學(xué)也是素質(zhì)教育的一種體現(xiàn),只有一線數(shù)學(xué)教師不斷摸索,對(duì)學(xué)困生因材施教,才能逐步解決他們數(shù)學(xué)的學(xué)習(xí)困惑。以上是我在的數(shù)學(xué)教學(xué)中的一點(diǎn)粗淺認(rèn)識(shí),希望能得到各位老師們的指點(diǎn)和建議。
[1]郭思樂(lè),喻偉.數(shù)學(xué)思維教育論[M].上海:上海教育出版社,1997.
[2]孔慧英,梅智超編著.現(xiàn)代數(shù)學(xué)思想概論[M].北京:中國(guó)科學(xué)技術(shù)出版社,1993.
[3]朱智賢,林崇德.思維發(fā)展心理[M].北京:北京師范大學(xué)出版社,1990.
[4]席振偉著.數(shù)學(xué)的思維方式[M].南京:江蘇教育出版社,1995.