亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        ON THE SUM OF k-POWER OF ALL DISTANCES IN BIPARTITE GRAPHS

        2017-11-06 09:36:38GENGXianyaZHAOHongjinXULili
        數(shù)學(xué)雜志 2017年6期
        關(guān)鍵詞:次方下界頂點(diǎn)

        GENG Xian-ya,ZHAO Hong-jin,XU Li-li

        (1.School of Mathematics and Big Data,Anhui University of Science and Technology,Huainan 232001,China)

        (2.School of Mathematics and Statistics,Central China Normal University,Wuhan 430079,China)

        ON THE SUM OFk-POWER OF ALL DISTANCES IN BIPARTITE GRAPHS

        GENG Xian-ya1,ZHAO Hong-jin1,XU Li-li2

        (1.School of Mathematics and Big Data,Anhui University of Science and Technology,Huainan 232001,China)

        (2.School of Mathematics and Statistics,Central China Normal University,Wuhan 430079,China)

        Denote the sum ofk-power of all distances between all pairs of vertices inGbySk(G).In this paper,by applying the vertex partition method,sharp bound of all connectednvertex bipartite graphs of diameterdon theSk(G)is obtained,and the extremal graphs with the minimalSk(G)are also characterized.

        bipartite graph;diameter;extremal graph

        1 Introduction

        In this paper,we only consider connected,simple and undirected graphs and assume that all graphs are connected,and refer to Bondy and Murty[2]for notation and terminologies used but not de fined here.

        LetG=(VG,EG)be a graph with vertex setVGand edge setEG.G?v,G?uvdenote the graph obtained fromGby deleting vertexv∈VGor edgeuv∈EG,respectively(this notation is naturally extended if more than one vertex or edge is deleted).Similarly,G+uvis obtained fromGby adding an edgeuv/∈EG.Forv∈VG,letNG(v)(N(v)for short)denote the set of all the adjacent vertices ofvinGandd(v)=|NG(v)|,the degree ofvinG.

        A bipartite graphGis a simple graph,whose vertex setVGcan be partitioned into two disjoint subsetsV1andV2such that every edge ofGjoins a vertex ofV1with a vertex ofV2.A bipartite graph in which every two vertices from different partition classes are adjacent is called complete,which is denoted byKm,n,wherem=|V1|,n=|V2|.

        The distanced(u,v)between verticesuandvinGis de fined as the length of a shortest path between them.The diameter ofGis the maximal distance between any two vertices ofG.LetBdnbe the class of all bipartite graphs of ordernwith diameterd.

        LetSk=Sk(G)be the sum ofk-power of distances between all pairs of vertices ofG,which is denoted by

        whereHG(v)is the sum ofk-power of all diatances fromvinG.

        Whenk=1,Skis Wiener index.The Wiener index is popular in chemical literatures.This quantity was introduced by Mustapha Aouchich and Pierre Hansen in[1]and was extensively studied in the monograph.Recently,S2(G)is applied to the research of distance spectral radius.Zhou and Trinajsti?[19]proved an upper bound using the ordernin addition to the sum of the squares of the distancesS2(G),see[18,20].They also proved a lower bound on the distance spectral radius of a graph using onlyS2(G).As a continuance of it,in this paper,we determine the extremal graphs with the minimalSk(G)for the class of all connectedn-vertex bipartite graphs of diameterd.For surveys and some up-to-date papers related to Wiener index of trees and line graphs,see[7,9,11–15,17]and[3,6,8,10,16],respectively.

        In this paper we study the quantitySkin the case ofn-vertex bipartite graphs,which is an important class of graphs in graph theory.Based on the structure of bipartite graphs,sharp bounds onSkamongBdnare determined.The corresponding extremal graph is also identified.

        Further on we need the following lemma,which is the direct consequence of the de finition ofSk.

        Lemma 1.1LetGbe a connected graph of ordernand not isomorphic toKn.Then for each edgeSk(G)>Sk(G+e).

        2 The Graph with Minimum Skamong Bdn

        LetGbe a graph inClearly there exists a partitionV0,V1,···,VdofVGsuch that|V0|=1 andd(u,v)=ifor each vertexv∈Viandu∈V0(i=0,1,···,d).We callVia block ofVG.Two blocksVi,VjofVGare adjacent if|i?j|=1.For convenience,let|Vi|=lithroughout this section.

        Lemma 2.1[15]For any graphwith the above partition ofVG,G[Vi]induces an empty graph(i.e.,containing no edge)for eachi∈(i=0,1,···,d).

        Given a complete bipartite graphwith bipartition(X,Y)satisfyingandchoose a vertexx(resp.y)inX(resp.Y)and let?xy,whereG′is depicted in Figure 1.LetG?be the graph obtained fromG′by attaching pathsandatxandy,respectively.It is routine to check thatfor oddd.

        Given a complete bipartite graphKp,qwith bipartition(X,Y)satisfying|X|=p≥3,|Y|=q≥2,andp+q=n?d+4,choose two different vertices,sayx,yinXand let

        whereG′′is depicted in Figure 1.Letbe the graph obtained fromG′′by attaching pathsandatxandy,respectively.It is routine to check thatfor evend.Set

        Figure 1:Graphs G′and G′′

        Theorem 2.2LetGbe inwith the minimumSk(G).

        (i)Ifd=2,then

        (ii)Ifd≥3,thenG≌G?for odddandG∈B for evend,whereG?and B are de fined as above.

        ProofChooseG∈Bdnwith bipartition(X,Y)such thatSk(G)is as small as possible.

        (i)Ifd=2,then by Lemma 1.1,G≌Kn?t,t,wheret≥2 orn?t≥2.Let|X|=n?t,|Y|=t.Then it is routine to check that,for allx(resp.y)inX(resp.Y),one has

        which gives

        Ifnis odd,thenwith equality if and only if,o r,i.e.And ifnis even,thenwith equality if and only ifi.e.,,as desired.

        (ii)First we show the following facts.

        Fact 1G[Vi?1,Vi]induces a complete bipartite subgraph for eachi∈(0,1,···d),and|Vd|=1 ford≥3.

        Proof of Fact 1The first part follows directly from Lemmas 1.1 and 2.1.So in what follows,we prove the second part.

        Letd≥3,z∈Vdandw∈Vd?3.If|Vd|>2,thenG+zw∈BdnandV0∪V1∪Vd?3{w}∪Vd?2∪Vd?1∪{w}∪Vdis a partition ofVG+zw.By Lemma 1.1Sk(G+zw)<Sk(G),a contradiction.

        This completes the proof of Fact 1.

        Fact 2Consider the vertex partitionVG=V0∪V1∪···∪VdofG.

        (i)Ifdis odd,then

        (ii)Ifdis even,then

        Proof of Fact 2(i)Note thathere we only show that|V1|=1 holds.Similarly,we can also showwe omit the procedure here.

        In fact,ifd=3,our result is trivial.So we consider thatd≥5.If|V1|≥2,then chooseu∈V1and letG′=G?v0u+{ux:x∈V4}.In fact,the vertex partition ofG′isV0∪V1{u}∪V2∪V3∪{u}∪V4∪···∪Vd,in view of Fact 1 and the choice ofG,any two of adjacent blocks ofVG′induce a complete bipartite subgraph and|Vd|=1 ford≥5.

        This gives

        i.e.,Sk(G)>Sk(G′),a contradiction to the choice ofG.Hence,|V1|=1.

        Next we show that ifdis odd,thenWithout loss of generality,we assume thatThen it suffices to show thatIf this is not true,thenChooselet

        then the vertex partition ofG′is

        and each of the two adjacent blocks ofVG′induces a complete bipartite graph.By direct calculation,we have

        a contradiction to the choice ofG.

        (ii)By the same discussion as the proof of the first part of(i)as above,we can show thatwe omit the procedure here.

        Now,we show that ifdis even,thenWithout loss of generality,we assume thatThen it suffices to show that

        then the vertex partition ofG?is

        and each of the two adjacent blocks ofVG?induces a complete bipartite graph.By direct calculation,we have

        a contradiction to the choice ofG.

        This completes the proof of Fact 2.

        Now we come back to show the second part of Theorem 2.2.In view of Fact 2(i),ifdis odd,note thattogether withwe obtain thatas desired.

        In view of Fact 2(ii),ifdis even,note thattogether withwe obtain thatG∈B.Furthermore,

        for evennandfor oddn.

        This completes the proof.

        [1]Mustapha Aouchiche,Pierre Hansen.Distance spectra of graphs:a survey[J].Lin.Alg.Appl.,2014,458:301–386.

        [2]Bondy J A,Murty U S R.Graph theory[M].GTM,Vol.224,American:Springer,2008.

        [3]Cohen N,Dimitrov D,Krakovski R,et al.On Wiener index of graphs and their line graphs[J].MATCH Commun.Math.Comput.Chem.,2010,64:683–698.

        [4]Wang T,Wu L X.Decomposition of planar graphs without 5-cycles orK4[J].J.Math.,2016,36(2):223–233.

        [5]Zhang X E,Jiang W.Complements of distance-regular graphs[J].J.Math.,2016,36:234–238.

        [6]Dankelmann P,Gutman I,Mukwembi S,et al.The edge-Wiener index of a graph[J].Disc.Math.,2009,309:3452–3457.

        [7]Dobrynin A,Entringer R,Gutman I.Wiener index of trees:theory and applications[J].Acta Appl.Math.,2001,66:211–249.

        [8]Don Y,Bian Y,Gao H,et al.The polyphenyl chains with extremal edge-Wiener indices[J].Match Commun.Math.Comput.Chem.,2010,64:757–766.

        [9]Gutman I,Klav?ar S,Mohar B,et al.Fifty years of the Wiener index[J].Match Commun.Math.Comput.Chem.,1997,3:51–259.

        [10]Iranmanesh A,Kafrani A S.Computation of the first edge-Wiener index ofTUC4C8(S)nanotube[J].Match Commun.Math.Comput.Chem.,2009,62:311–352.

        [11]Li S C,Song Y B.On the sum of all distances in bipartite graphs[J].Disc.Appl.Math.,2014,169:176–185.

        [12]Liu M,Liu B.On the variable Wiener indices of trees with given maximum degree[J].Math.Comput.Model.,2010,52:1651–1659.

        [13]Luo W,Zhou B.On ordinary and reverse Wiener indices of non-caterpillars[J].Math.Comput.Model.,2009,50:188–193.

        [14]Merris R.An edge version of the matrix-tree theorem and the Wiener index[J].Lin.Multi.Alg.,1988,25:291–296.

        [15]Pisanski T,?erovnik J.Edge-contributions of some topological indices and arboreality of molecular graphs[J].Ars.Math.Contemp.,2009,2:49–58.

        [16]Wu B.Wiener index of line graphs[J].Match Commun.Math.Comput.Chem.,2010,64:699–706.

        [17]Zhang X D,Liu T,Han M X.Maximum Wiener index of trees with given degree sequence[J].Match Commun.Math.Comput.Chem.,2010,64:661–682.

        [18]Zhou B,Trinajsti? N.Mathematical properties of molecular descriptors based on distances[J].Croat.Chem.Acta,2010,83:227–242.

        [19]Zhou B,Trinajsti? N.On the largest eigenvalue of the distance matrix of a connected graph[J].Chem.Phys.Lett.,2007,447:384–387.

        [20]Zhou B,Trinajsti? N.Further results on the largest eigenvalues of the distance matrix and some distance based matrices of connected(molecular)graphs[J].Intern.Elec.J.Mol.Des.,2007,6:375–384.

        [21]Zhang H H,Li S C,Zhao L F.On the further relation between the(revised)Szeged index and the Wiener index of graphs[J].Discr.Appl.Math.,2016,206:152–164.

        二部圖的距離k次方和問題

        耿顯亞1,趙紅錦1,徐李立2
        (1.安徽理工大學(xué)數(shù)學(xué)與大數(shù)據(jù)學(xué)院,安徽淮南 232001)
        (2.華中師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖北武漢 430079)

        本文定義Sk(G)為G中所有點(diǎn)對(duì)之間距離的k次方之和.利用頂點(diǎn)劃分的方法得到了直徑為d的n頂點(diǎn)連通二部圖Sk(G)的下界,并確定了達(dá)到下界所對(duì)應(yīng)的的極圖.

        二部圖;直徑;極圖

        O157.6

        05C50;05C35

        A

        0255-7797(2017)06-1111-07

        date:2017-01-08Accepted date:2017-04-01

        Supported by National Natural Science Foundation of China(11401008;61672001;61572035;61402011)and China Postdoctoral Science Foundation(2016M592030).

        Biography:Geng Xianya(1981–),male,born at Fuyang,Anhui,associate professor,major in graph theory and its application.

        猜你喜歡
        次方下界頂點(diǎn)
        過非等腰銳角三角形頂點(diǎn)和垂心的圓的性質(zhì)及應(yīng)用(下)
        關(guān)于頂點(diǎn)染色的一個(gè)猜想
        Lower bound estimation of the maximum allowable initial error and its numerical calculation
        手表+手鏈+戒指 N次方組合
        Coco薇(2016年7期)2016-06-28 02:09:09
        一組計(jì)算題的啟示
        矩陣Hadamard積的上下界序列
        最大度為10的邊染色臨界圖邊數(shù)的新下界
        常維碼的一個(gè)構(gòu)造性下界
        巨有趣的看數(shù)字猜成語
        文苑·感悟(2013年9期)2013-04-29 13:03:31
        夢(mèng)的N次方
        海峽影藝(2012年1期)2012-11-30 08:16:54
        欧美性猛交xxxx乱大交3| 蜜桃精品视频一二三区| 又黄又刺激的网站久久| 国产女人水真多18毛片18精品| 国产精品 视频一区 二区三区 | 亚洲码国产精品高潮在线 | 91超碰在线观看免费| 麻豆av在线免费观看精品| 亚洲最好看的中文字幕| 漂亮人妻被中出中文字幕久久| 久久夜色撩人精品国产小说| 国产麻豆剧传媒精品国产av蜜桃| 亚洲一区二区三区精品视频| 亚洲精品乱码久久久久久中文字幕 | 久久婷婷人人澡人人喊人人爽| 日本一区二区精品88| 亚洲一区二区三在线播放| 很黄很色的女同视频一区二区| 色拍自拍亚洲综合图区| 亚洲成av人片天堂网九九| 日韩亚洲午夜精品一区二区三区| av剧情演绎福利对白| 午夜理论片日本中文在线| 亚洲熟妇av一区| 日韩精品无码一区二区三区免费| 蜜桃视频免费在线视频| 人妻少妇精品视频一区二区三| 末成年女a∨片一区二区| 欧美中文在线观看| av天堂手机一区在线| 亚洲午夜无码毛片av久久| 中文字幕爆乳julia女教师| 欧美日韩在线观看免费| 91青青草在线观看视频| 在线免费观看一区二区| 国产亚洲人成a在线v网站| 久久老子午夜精品无码| 一区二区三区国产精品麻豆| 色噜噜久久综合伊人一本| 一本大道东京热无码中字| 久久夜色精品国产三级|