高金枝 張 偲 易 琴 應(yīng)艷琴 羅小平
華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬同濟(jì)醫(yī)院兒科(湖北武漢 430030)
NMDA受體介導(dǎo)戊二酸尿癥I型紋狀體神經(jīng)元損傷
高金枝 張 偲 易 琴 應(yīng)艷琴 羅小平
華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬同濟(jì)醫(yī)院兒科(湖北武漢 430030)
目的探討NMDA受體在戊二酸尿癥I型紋狀體神經(jīng)元興奮性損傷中的作用。方法利用構(gòu)建的特異性沉默戊二酰輔酶A脫氫酶(GCDH)慢病毒載體感染原代培養(yǎng)紋狀體神經(jīng)元結(jié)合高濃度賴氨酸培養(yǎng)構(gòu)建GA1細(xì)胞模型。Western-Blot檢測(cè)NMDA受體蛋白表達(dá)水平變化。NMDA受體拮抗劑MK-801預(yù)處理神經(jīng)元,再行慢病毒及高濃度賴氨酸干預(yù),MTT檢測(cè)神經(jīng)元活性及Hoechst3342檢測(cè)神經(jīng)元凋亡情況。結(jié)果與對(duì)照組比較,實(shí)驗(yàn)組的NR2B蛋白表達(dá)升高,差異有統(tǒng)計(jì)學(xué)意義(P<0.001)。實(shí)驗(yàn)組、對(duì)照組以及MK-801預(yù)處理組三組間神經(jīng)元活性和正常核比例的差異均有統(tǒng)計(jì)學(xué)意義(P<0.01);兩兩比較發(fā)現(xiàn),實(shí)驗(yàn)組神經(jīng)元活性和正常核比例較對(duì)照組明顯下降,MK-801預(yù)處理后神經(jīng)元活性和正常核比例較實(shí)驗(yàn)組明顯升高,但仍低于對(duì)照組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。結(jié)論NR2B受體介導(dǎo)戊二酸尿癥I型體內(nèi)代謝累積物致紋狀體神經(jīng)元損傷。
戊二酸尿癥I型; 紋狀體; 神經(jīng)元; 興奮性損傷; NMDA受體
戊二酸尿癥Ⅰ型(glutaric aciduria type Ⅰ,GA1)是一種常染色體隱性遺傳疾病,該病各種族發(fā)生率不同,臺(tái)灣地區(qū)統(tǒng)計(jì)約1/106 474,浙江省統(tǒng)計(jì)約1/64 708[1-3]?;純撼T谏?~36個(gè)月因感染、腹瀉等非特異性疾病誘發(fā)急性腦病危象,隨即出現(xiàn)以紋狀體損傷為主的神經(jīng)系統(tǒng)后遺癥甚至死亡。目前已知該病是因患兒體內(nèi)戊二酰輔酶A脫氫酶(glutaryl-CoA dehydrogenase,GCDH)缺陷引起的賴氨酸、色氨酸等有機(jī)酸代謝障礙。戊二酸(glutaric acid,GA)、3-羥基戊二酸(3-hydroxyglutaric acid,3-HGA)等代謝產(chǎn)物在體內(nèi)蓄積選擇性地?fù)p傷神經(jīng)系統(tǒng),致紋狀體神經(jīng)元退行性變,廣泛白質(zhì)變性,膠質(zhì)增生[4]。
盡管具體腦損傷機(jī)制尚未明確,大量體內(nèi)外實(shí)驗(yàn)均提示GA、3-HGA等代謝產(chǎn)物的神經(jīng)毒性主要表現(xiàn)在興奮性損傷、氧化損傷及細(xì)胞能量代謝損傷三個(gè)方面[5]。其中興奮性損傷的研究中,NMDA受體(N-methyl-D-aspartate receptors)的研究較多。NMDA受體是腦內(nèi)最重要的興奮性神經(jīng)遞質(zhì)谷氨酸突觸后膜的受體,其可能介導(dǎo)GA、3-HGA所致的神經(jīng)元興奮性損傷[6]。研究已證實(shí)采用攜帶靶向沉默GCDH基因shRNA的慢病毒載體感染原代紋狀體神經(jīng)元,GCDH蛋白表達(dá)下降達(dá)80.78%,結(jié)合高濃度賴氨酸培養(yǎng)成功構(gòu)建了GA1細(xì)胞模型[7]。本研究利用該細(xì)胞模型檢測(cè)神經(jīng)元NMDA受體表達(dá)變化,及NMDA受體拮抗劑MK-801對(duì)GA1細(xì)胞模型神經(jīng)元損傷是否有保護(hù)性作用;進(jìn)一步證實(shí)NMDA受體在GA1神經(jīng)元興奮性損傷中的作用。
出生24 h內(nèi)的清潔級(jí)Sprague-Dawley大鼠乳鼠由華中科技大學(xué)同濟(jì)醫(yī)學(xué)院實(shí)驗(yàn)動(dòng)物中心提供。胰酶消化配合無血清培養(yǎng)基培養(yǎng)高純度的原代紋狀體神經(jīng)元[7]。神經(jīng)元分為陰性對(duì)照組、實(shí)驗(yàn)組和MK-801預(yù)處理組。原代神經(jīng)元培養(yǎng)7天后,分別用攜帶靶向沉默GCDH基因shRNA的慢病毒載體(實(shí)驗(yàn)組)和陰性對(duì)照組病毒(對(duì)照組)感染神經(jīng)元。感染后細(xì)胞繼續(xù)培養(yǎng)72 h 換含5 mmol/L賴氨酸的高濃度賴氨酸培養(yǎng)基繼續(xù)培養(yǎng)。MK-801預(yù)處理組為原代紋狀體神經(jīng)元培養(yǎng)6天后培養(yǎng)基中加入10 μmol/L MK-801,繼續(xù)細(xì)胞培養(yǎng)24 h 用攜帶靶向沉默GCDH基因shRNA的慢病毒載體感染神經(jīng)元,病毒感染72 h 換含5 mmol/L賴氨酸和10 μmol/L MK-801培養(yǎng)基繼續(xù)培養(yǎng)。細(xì)胞培養(yǎng)用胎牛血清、馬血清、Neurobasal培養(yǎng)基、B27購于Gibco公司。谷氨酰胺、DMEM高糖培養(yǎng)基購于Hyclone公司。胰蛋白酶、多聚賴氨酸購于Sigma公司。
1.2.1 神經(jīng)元NMDA受體蛋白表達(dá)檢測(cè) 采用Western blot方法。換高濃度賴氨酸培養(yǎng)基培養(yǎng)24 h,棄培養(yǎng)基,磷酸鹽緩沖液(PBS)洗細(xì)胞2次,加細(xì)胞裂解液收集細(xì)胞至EP管中,50 w超聲儀震蕩10 s,冰上靜置10 min,重復(fù)3次。予SDS-PAGE 電泳(濃縮膠75 V和分離膠120 V恒壓電泳);200 mA,轉(zhuǎn)膜45 min至聚偏氟乙烯膜(PVDF)上;轉(zhuǎn)膜后4 ℃一抗(NR1以1∶500稀釋、NR2A以1∶3 000稀釋、NR2B以1∶ 2 000稀釋)孵育過夜,二抗(1∶3 000稀釋)孵育1 h,增強(qiáng)化學(xué)發(fā)光法(ECL)顯色。UVP Labworks照相、Labworks 4.6軟件定量分析光密度值(OD值)。檢測(cè)結(jié)果以NR1、NR2A、NR2B與β-actin的OD值比值確定NR1、NR2A、NR2B蛋白表達(dá)的相對(duì)水平。β-actin兔抗鼠單克隆抗體、羊抗鼠NR1、NR2A、NR2B多克隆抗體購于Santa Cruz。辣根過氧化物酶標(biāo)記羊抗兔及兔抗山羊二抗購于KPL。
1.2.2 MTT檢測(cè)各組神經(jīng)元活性 換高濃度賴氨酸培養(yǎng)基培養(yǎng)24 h后,每孔細(xì)胞在0.5 mg/mL MTT,37 ℃、5% CO2培養(yǎng)箱中孵育4 h,換DMSO室溫?fù)u床震蕩15 min。570 nm測(cè)量波長(zhǎng),630 nm參照波長(zhǎng)測(cè)定各孔的光密度值(OD值)。無細(xì)胞培養(yǎng)孔加培養(yǎng)液做空白對(duì)照。MTT購于Amresco。
1.2.3 Hoechst 33342檢測(cè)各組神經(jīng)元凋亡 換高濃度賴氨酸培養(yǎng)基培養(yǎng)24 h后,避光37 ℃,10 μg/mL Hoechst 33342孵育細(xì)胞10 min。4%多聚甲醛,避光固定細(xì)胞10 min。PBS洗滌細(xì)胞后熒光顯微鏡下觀察。每孔至少拍攝10個(gè)視野,計(jì)算Hoechst 33342染色陽性核比例。Hoechst 33342購于Sigma公司。
運(yùn)用SPSS 17.0軟件包行統(tǒng)計(jì)分析。符合正態(tài)分布的計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差表示,多組間比較采用單因素方差分析,進(jìn)一步兩兩比較采用LSD-t檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
細(xì)胞培養(yǎng)7 天后,鏡下神經(jīng)元突起細(xì)長(zhǎng)交織成網(wǎng)狀,胞體折光性好,可見胞核,部分神經(jīng)元呈聚集狀態(tài)(圖1)。慢病毒以感染復(fù)數(shù)(MOI)=10感染神經(jīng)元,免疫熒光顯微鏡下可見超過90%的細(xì)胞顯示綠色熒光,胞體透亮、立體且有光暈,突起細(xì)長(zhǎng)交織成網(wǎng)狀(圖1)。
圖1 鏡下紋狀體神經(jīng)元及慢病毒感染(×100)
實(shí)驗(yàn)組NR2B表達(dá)明顯高于對(duì)照組,差異有統(tǒng)計(jì)學(xué)意義(P<0.001)。兩組間NR1、NR2A的表達(dá)差異均無統(tǒng)計(jì)學(xué)意義(P>0.05)。見圖2、表1。
圖2 NMDA受體蛋白表達(dá)變化
表1 NMDA受體蛋白相對(duì)表達(dá)量比較
實(shí)驗(yàn)組、對(duì)照組以及MK-801預(yù)處理組三組間神經(jīng)元活性的差異有統(tǒng)計(jì)學(xué)意義(F=17.65,P=0.003)。兩兩比較發(fā)現(xiàn),實(shí)驗(yàn)組較對(duì)照組細(xì)胞活性明顯下降,MK-801預(yù)處理后細(xì)胞活性較實(shí)驗(yàn)組明顯升高,但與對(duì)照組比較細(xì)胞活性仍明顯下降,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。見表2。
表2 MTT檢測(cè)各組間神經(jīng)元OD值比較
正常神經(jīng)元橢圓形胞核被均染成淡藍(lán)色;凋亡神經(jīng)元胞核出現(xiàn)局部深染高密度區(qū),部分胞核呈月牙形甚至可見胞核碎片。實(shí)驗(yàn)組、對(duì)照組以及MK-801預(yù)處理組三組間神經(jīng)元正常核比例的差異有統(tǒng)計(jì)學(xué)意義(F=240.01,P<0.001);實(shí)驗(yàn)組神經(jīng)元正常核比例明顯低于對(duì)照組,MK-801預(yù)處理后神經(jīng)元正常核比例較實(shí)驗(yàn)組明顯上升,但與對(duì)照組比較神經(jīng)元正常核比例仍明顯下降,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。見圖3、表3。
圖3 各處理組細(xì)胞Hoechest33342染色(×100)
表3 Hoechest33342染色各組間神經(jīng)元正常核比例
GA1是一種常染色體隱性遺傳疾病,編碼GCDH的基因發(fā)生突變致GCDH缺陷。GCDH是賴氨酸、色氨酸等有機(jī)酸代謝的關(guān)鍵酶。GCDH缺陷致GA、3-HGA等代謝產(chǎn)物在體內(nèi)蓄積選擇性地不可逆性損傷紋狀體為主的神經(jīng)系統(tǒng)。較多國家已將該病納入新生兒疾病篩查范疇。雖然早期的診斷和嚴(yán)格依從指南的治療可明顯改善患兒預(yù)后,仍有部分患兒遺留神經(jīng)系統(tǒng)后遺癥[8]。GA1發(fā)病機(jī)制亟待進(jìn)一步研究。近年來,大量研究結(jié)果顯示GA、3-HGA等代謝產(chǎn)物的神經(jīng)毒性主要集中在興奮性損傷、氧化損傷及細(xì)胞能量代謝損傷三個(gè)方面[5]。
GA、3-HGA結(jié)構(gòu)上與谷氨酸相似。谷氨酸是腦內(nèi)最重要的興奮性神經(jīng)遞質(zhì),與認(rèn)知、記憶、運(yùn)動(dòng)等多項(xiàng)功能有關(guān)。谷氨酸膜受體過度刺激致大量的Ca2+和Na+內(nèi)流活化蛋白酶、磷酸酶等最終致神經(jīng)元死亡,這個(gè)過程被稱為興奮性損傷。GA1患者尸檢結(jié)果發(fā)現(xiàn)基底節(jié)及大腦皮質(zhì)均顯示突觸后空泡形成,這與谷氨酸介導(dǎo)的腦損傷特征一致。GCDH基因敲除鼠腦組織實(shí)驗(yàn)也證實(shí)GA擾亂谷氨酸平衡致神經(jīng)元興奮性損傷[9]。甚至高濃度GA可直接通過NMDA受體致紋狀體神經(jīng)元興奮性損傷[6]。但也有研究顯示3-HGA不能直接影響神經(jīng)元活性,還提出興奮性損傷可能由色氨酸旁路代謝途徑生成的喹啉酸通過NMDA受體介導(dǎo)[10]。興奮性損傷機(jī)制尚不明確。
NMDA受體是一種重要的谷氨酸門控通道,參與多種神經(jīng)發(fā)育與功能活動(dòng)過程。該受體有多個(gè)亞單位NR1、NR2A、NR2B、NR2C、NR2D、NR3A、NR3B等。每個(gè)受體是由2~3個(gè)亞單位組成的異聚體,且至少含有1個(gè)NR1亞單位。受體異聚體含有不同的NR2亞單位則其介導(dǎo)不同的功能活動(dòng)[11]。對(duì)PC12細(xì)胞系和原代培養(yǎng)皮質(zhì)神經(jīng)元細(xì)胞的興奮性損傷研究發(fā)現(xiàn)該損傷主要由NR2B介導(dǎo)[12]。同時(shí)對(duì)GCDH基因敲除鼠(GCDH-/-小鼠)的研究發(fā)現(xiàn)其紋狀體NR2A、NR2B含量明顯增加[13]。還有對(duì)高賴氨酸飲食飼養(yǎng)GCDH-/-小鼠的研究提出其紋狀體NMDA受體NR2B明顯增加可能是其神經(jīng)元興奮性損傷易感性的原因[14]。
本研究用靶向沉默GCDH基因的慢病毒載體感染原代紋狀體神經(jīng)元結(jié)合高濃度賴氨酸培養(yǎng)模擬GA1賴氨酸代謝產(chǎn)物蓄積對(duì)紋狀體神經(jīng)元的影響。細(xì)胞模型中NR2B蛋白量較對(duì)照組顯著性升高,NR1、NR2A蛋白量無明顯變化,且兩組中NR2A含量都極低。MK-801是一種高選擇性的NMDA受體阻斷劑,對(duì)NR1和NR2A/ NR2B異聚體受體(NR1/NR2A或NR1/ NR2B)有特異性阻斷作用。本實(shí)驗(yàn)中MK-801預(yù)處理可有效阻斷賴氨酸代謝產(chǎn)物蓄積所致的紋狀體神經(jīng)元損傷。由此推測(cè)GA1代謝產(chǎn)物致紋狀體神經(jīng)元興奮性損傷主要由NR2B介導(dǎo)。
[1]Govender R, Mitha A, Mubaiwa L.A review of patients with glutaric aciduria type 1 at Inkosi Albert Luthuli Central Hospital, Durban, South Africa [J].S Afr Med J, 2017,107(3): 201-204.
[2]Tsai FC, Lee HJ, Wang AG, et al.Experiences during newborn screening for glutaric aciduria type 1: diagnosis,treatment, genotype, phenotype, and outcomes [J].J Chin Med Assoc, 2017, 80(4): 253-261.
[3]Yang L, Yin H, Yang R, et al.Diagnosis, treatment and outcome of glutaric aciduria type I in Zhejiang Province,China [J].Med Sci Monit, 2011, 17(7): 55-59.
[4]Harting I, Boy N, Heringer J, et al.1H-MRS in glutaric aciduria type 1: impact of biochemical phenotype and age on the cerebral accumulation of neurotoxic metabolites [J].J Inherit Metab Dis, 2015, 38(5): 829-838.
[5]Jafari P, Braissant O, Bonafé L, et al.The unsolved puzzle of neuropathogenesis in glutaric aciduria type I [J].Mol Genet Metab, 2011, 104(4): 425-437.
[6]Tian F, Fu X, Gao J, et al.Glutaric acid-mediated apoptosis in primary striatal neurons [J].Biomed Res Int, 2014, 2014:484731.
[7]Gao J, Zhang C, Fu X, et al.Effects of targeted suppression of glutaryl-CoA dehydrogenase by lentivirus-mediated shRNA and excessive intake of lysine on apoptosis in rat striatal neurons [J].PLoS One, 2013, 8(5): e63084.
[8]Boy N, Mühlhausen C, Maier EM, et al.Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: second revision [J].J Inherit Metab Dis, 2017, 40(1): 75-101.
[9]Busanello EN, Fernandes CG, Martell RV, et al.Disturbance of the glutamatergic system by glutaric acid in striatum and cerebral cortex of glutaryl-CoA dehydrogenase-deficient knockout mice: possible implications for the neuropathology of glutaric acidemia type I [J].J Neurol Sci, 2014, 346(1-2):260-267.
[10]Colín-González AL, Paz-Loyola AL, Serratos I, et al.Toxic synergism between quinolinic acid and organic acids accumulating in glutaric acidemia type I and in disorders of propionate metabolism in rat brain synaptosomes: relevance for metabolic acidemias [J].Neuroscience, 2015, 308:64-74.
[11]Iacobucci GJ, Popescu GK.NMDA receptors: linking physiological output to biophysical operation [J].Nat Rev Neurosci, 2017, 18(4): 236-249.
[12]Wu Y, Chen C, Yang Q, et al.Endocytosis of GluN2B-containing NMDA receptors mediates NMDA-induced excitotoxicity [J].Mol Pain, 2017, 13∶1744806917701921.
[13]Lagranha VL, Matte U, de Carvalho TG, et al.Increased glutamate receptor and transporter expression in the cerebral cortex and striatum of gcdh-/- mice∶ possible implications for the neuropathology of glutaric acidemia type I [J].PLoS One, 2014,9(3)∶ e90477.
[14]Rodrigues MD, Seminotti B, Amaral AU, et al.Experimental evidence that overexpression of NR2B glutamate receptor subunit is associated with brain vacuolation in adult glutaryl-CoA dehydrogenase deficient mice∶ a potential role for glutamatergicinduced excitotoxicity in GA I neuropathology [J].J Neurol Sci,2015, 359(1-2)∶ 133-140.
Damage of striatal neurons mediated by NMDA receptors in glutaric aciduria type Ⅰ
GAO Jinzhi, ZHANG Cai, YI Qin, YING Yanqin, LUO Xiaoping
(Department of Pediatrics, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China)
ObjectiveTo explore the excitotoxic role of NMDA receptors in striatal neurons in glutaric aciduria type I(GA1).MethodsA GA1 cell model was established by lentivirus-mediated shRNA to GCDH and excessive intake of lysine.The expression levels of NMDA receptors were determined by Western blotting.The striatal neurons were preprocessed by MK801(a NMDA receptor antagonist), then infected with lentivirus and cultured in high concentration lysine.Cell viability was measured using MTT.Apoptosis was assessed using Hoechst33342 staining.ResultsCompared with the control group,the expression of NR2B protein in the experimental group was increased, and there was statistical difference (P<0.001).The differentces in the cell viability and normal nuclear proportion among experimental group, control group, and MK-801 pretreatment group were statistically significant (P<0.01).The cell viability and normal nucleus proportion in experimental group were significantly lower than those in control group while they were significantly higher in MK-801 pretreated group than those in the experiment group but still significantly lower than those in control group (Pall <0.05).ConclusionThe accumulation of metabolites in GA 1 played a toxic role in striatal neurons through NMDR receptors.
glutaric aciduria type I; striatum; neuron; excitability injury; NMDA receptor
doi∶10.3969/j.issn.1000-3606.2017.10.015
羅小平 電子信箱:xpluo@tjh.tjmu.edu.cn
2017-04-11)
(本文編輯:鄒 強(qiáng))