亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        An eigenvalue inequality of a class of matrices and its applications in proving the Fischer inequality

        2017-10-10 01:01:45ZHANGHuaminYINHongcai
        關(guān)鍵詞:行列式財經(jīng)大學(xué)蚌埠

        ZHANG Huamin, YIN Hongcai

        (1.Department of Mathematics & Physics, Bengbu University, Bengbu 233030,Anhui Province, China;2.School of Management Science and Engineering, Anhui University of Finance & Economics,Bengbu 233000, Anhui Province, China)

        An eigenvalue inequality of a class of matrices and its applications in proving the Fischer inequality

        ZHANG Huamin1, YIN Hongcai2

        (1.Department of Mathematics & Physics, Bengbu University, Bengbu 233030,Anhui Province, China;2.School of Management Science and Engineering, Anhui University of Finance & Economics,Bengbu 233000, Anhui Province, China)

        The Hadamard inequality and Fischer inequality play an important role in the matrix study. Many articles have addressed these inequalities providing new proofs, noteworthy extensions, generalizations, refinements, counterparts and applications. This paper discusses the eigenvalues of a class of matrices related to the real symmetric positive definite matrix and establishes an inequality of the eigenvalues. By using this inequality, the Fischer determinant inequality and Hadamard determinant inequality are proved.

        positive definite matrix; eigenvalue; eigenvector; determinant inequality

        1 Introduction and preliminaries

        Inequality is an active research topic in recent years,the classical convexity has been generalized and extended in a diverse manner.One of them is the pre-invexity,introduced by WEIR et al[1]as a significant generalization of convex functions.Many researchers have studied the basic properties of the pre-invex functions and their role in optimization,variational inequalities and equilibrium problems[2-4].

        Hadamard and Fischer inequalities are prima-ry inequalities for the real symmetric positive def-inite matrix, and there are many inequalities can be proved by using these two inequalities.There are many methods to prove these inequalities[5-7].Some results have been established inspired by the Hadamard inequality[8-9].

        The real symmetric positive definite matrix has many properties and has been used in many ar-eas[10-12].Some properties can be used to prove the Hadamard inequality.In this note,inspired by the results established in[13-14],a new eigenvalue inequality related to the real symmetric positive definite matrix is proposed, and the Hadamard and Fischer inequality are proved by using this new inequality.

        Firstly, let us introduce some notations and lemmas.Inis the identity matrix with ordern×n.For a square matrixA,we use λ[A],det(A) andATrepresent the set of the eigenvalues,the deter-minant and the transpose ofA,respectively.

        Next,we introduce two lemmas.The following result about the block matrix determinant is well known[10].

        Lemma1If matrixAis invertible,then for any block matrix,we have

        (1)

        or if marixDis invertible,then we have

        (2)

        Lemma2IfA∈Rm×nis a full column-rank matrix,theA(ATA)-1ATis idempotent and the eigenvalues ofA(ATA)1ATare 1 or 0, there exists an orthogonal matrixQsuch that

        Q[A(ATA)-1AT]Q=diag[1,…,1,0,…,0]=∶Λ.

        Furthermore,we have rank [A]=n.

        This lemma was suggested in[14],for convenience,we give the proof here.

        ProofIf σ∈λ[A(ATA)1AT],then there exists a nonzero vectorx∈Rm, satisfying

        A(ATA)1ATx=σx.

        Thus,we have

        [A(ATA)-1ATx]T[A(ATA)-1ATx]=(σx)T(σx),
        xT[A(ATA)-1AT][A(ATA)1AT]x=σ2‖x‖2,
        xT[A(ATA)-1ATA(ATA)1AT]x=σ2‖x‖2,
        xT[A(ATA)1AT]x=σ-2‖x‖2,
        xTσx=2‖x‖2,
        σ‖x‖2=σ2‖x‖2.

        Since‖x‖2≠0,A(ATA)-1AThas eigenvaluesσ=0 orσ=1.Because of the symmetry ofA(ATA)-1AT,there exists a real orthogonal matrixQ:=[q1,q2,…,qm]∈Rm×msuch that

        QT[A(ATA)-1AT]Q= diag[1,…,1,0,…,0]=Λ.

        On the other hand,since (ATA)-1ATis the left pseudo-inverse ofA,we have

        rank[A]=rank[QT[A(ATA)-1AT]Q]=
        rank[A(ATA)-1AT]=rank[A]=n.

        This proves lemma 2.

        2 An inequality of a class of matrices

        In this section,we will establish a new property about the eigenvalues related to the symmetric positive definite matrix.IfA∈Rn×nis a symmetric positive definite matrix,then there exists an invertible matrixBsuch thatA=BBT.Suppose thatBcan be expressed as a block matrix

        Set

        With these symbols,the following result holds.

        Theorem1If the eigenvalues of the matrixN-1Aareδ1,δ2,…,δn,then 0<δ1δ2…δn≤1.

        ProofLetf(λ)∶=det(λIn-N-1A)be the characteristic polynomial of matrixN-1A,we have

        f(λ)=

        (3)

        We verify that 2 not belongs to the eigenvalues of the matrixN-1A.If 2 is the eigenvalue of the matrixN-1A,then

        On the other hand,

        f(2)=

        This is a contradiction,so 2 is not a eigenvalue of the matrixN-1A.

        According to lemma 1,suppose thatm≥p,equation (3) can be manipulated as

        det((λ-1)Im)det((λ-1)Ip-(λ-1)-1Ip×

        (4)

        [q1,q2,…,qn]diag[1,…,1,0,…,0]=

        [q1,q2,…,qm,0,0,…,0],

        (5)

        (6)

        (7)

        (k1q2+k2q2+…+knqn)=

        (8)

        (k1q1+k2q2+…+knqn)=

        k1q1+k2q2+…+kmqm.

        (9)

        The both side of equation (6) multiply byTgives

        =.

        (10)

        According to equations(7) and (9),the left-side of equation (10) can be rewritten as

        (k1q1+k2q2+…+knqn)T×

        (k1q1+k2q2+…+kmqm)=

        (11)

        Combining equations(10)(8)and(11)gives

        Hence,we have

        (12)

        (13)

        whereRis strictly upper triangular.Substituting equation(13)into equation(4)and simplifying it, give

        From this equation,we can see that the eigenvalues ofN-1Aare

        1+ρ1,1-ρ1,…,1+ρp,1-ρp,1,…,1.

        (14)

        From this equation,we have

        0≤δ1δ2…δn=

        (1+ρ1)(1-ρ1)…(1+ρp)(1-ρp)=

        (15)

        Since 2 is not the eigenvalue of the matrixN-1A,an improvement of inequality (12) is 0≤ρ<1.

        Correspondingly,inequality (15) can be im-proved as

        0≤δ1δ2…δn=

        (1+ρ1)(1-ρ1)…(1+ρp)(1-ρp)=

        The proof is completed.

        Remark1The above proof shows that the sup-positionm≥pis not essential.In fact,ifm

        f(λ)=

        det((λ-1)Ip)det((λ-1)Im-(λ-1)-1×

        This manipulation does not change the subsequent proof.

        3 New proof of the Fischer inequality

        In this section,we will use the results in theo-rem 1 to prove two determinant inequalities related to the symmetric positive definite matrix,that is,the Fischer inequality and the Hadamard inequali-ty.

        Theorem2Considering the following symmetric positive definite block matrix

        here Mii,i=1,2,…,k,are the definite submatri-ces,then

        det(M)≤det(M11)det(M22)…det(Mkk).

        det(N-1M)≤det(N-1)det(M)=δ1δ2…δn≤1.

        That is,

        det(M)≤det(N)=det(M11)det(M22).

        Fork>2,using this manipulation successively gives

        det(M)≤det(M11)det(M22)…det(Mkk).

        The proof is completed.

        It is clear that Hadamard inequality is the spe-cial case of Fischer inequality whenk=n,so the following inequality holds.

        Theorem3IfM=(mij) ∈Rn×nis a symmetric positive definite matrix,then

        det(M)≤m11m22…mnn.

        4 Conclusions and future work

        The eigenvalues of a class of matrices related to the real symmetric positive definite matrix are discussed in this paper, and an inequality about the eigenvalues is established.Using this result,the Fischer inequality and the Hadamard inequality of the positive definite matrix are proved.

        SandTdenote the subsets of set W:= {1,2,…,n}and S and T satisfy S ∪T=W.cd(S) denotes the cardinality of set S.Screpresents the complementary set of S.MSdenotes the principal submatrix determined by set S.

        Consider the following of the Koteljanskii,Fan and Szasz inequalities[15],

        j=1,2,…,n-1,

        [1]WEIRT.Pre-invexfunctionsinmultiobjectiveoptimization[J].JournalofMathematicalAnalysisandApplications,1998,136(1): 29-38.

        [2] MOHAN S R,NEOGY S K.On invex sets and pre-invex functions[J].JournalofMathematicalAnalysisandApplications,1995,189(3): 901-908.

        [3] NOOR M A.Variational-like inequalities[J].Optimization,1994,30(4): 323-330.

        [4] YANG X M,LI D.On properties of pre-invex functions[J].JournalofMathematicalAnalysisandApplications,2001,256(1): 229-241.

        [5] WANG S G,WU M X,JIA Z Z.TheMatrixInequalities[M].2nd ed. Beijing: Science Press,2006.

        [6] BELLMAN R.IntroductiontoMatrixAnalysis[M].NewYork: Mcgraw-Hill Book Company,1970.

        [7] ZENG C N,XU W X,ZHOU J Z.Several notes on Hadamard theorem[J].JournalofMath,2010,30(1): 152-156.

        [8] ZHANG X D,YANG S J.A note on Hadamard’s inequality[J].ActaMathematicaeApplicataeSinca,1997,20(2): 269-274.

        [9] LI X Y,LENG G S.Inverse forms of Hadamard inequality and Szasz inequality[J].JournalofNaturalScienceofHunanNormalUniversity,2007,30(2): 19-21.

        [10] ZHANG X D.MatrixAnalysisandApplications[M].Beijing: Tsinghua University Press,2004.

        [11] HORN R A,JOHNSON C R.MatrixAnalysis[M].Cambridge: Cambridge University Press,1985.

        [12] GOLUB G H,VAN LOAN C F.MatrixComputations[M].3rd ed.Baltimore,MD: Johns Hopkins University Press,1996.

        [13] YIN H C,ZHANG H M.Eigenvalues of a class of matrices related to the positive definite matrices[J].JournalofZhejiangUniversity:ScienceEdition,2014,41(1): 1-5.

        [14] ZHANG H M,DING F.A property of the eigenvalues of the symmetric positive definite matrix and the iterative algorithm for coupled Sylvester matrix equations[J].JournaloftheFranklinInstitute,2014,351(1): 340-357.

        [15] GOVER E,KRIKORIAN N.Determinants and the volumes of parallelotopes and zonotopes[J].LinearAlgebraandItsApplications,2010,433(1): 28-40.

        張華民1,殷紅彩2

        ( 1.蚌埠學(xué)院 數(shù)理系,安徽 蚌埠 233030; 2.安徽財經(jīng)大學(xué) 管理科學(xué)和工程學(xué)院,安徽 蚌埠 233000)

        Hadamard和Fischer不等式在矩陣研究中起重要作用.已有大量文獻研究此兩不等式的新證明、 推廣、 細化及應(yīng)用.本文研究了和實對稱正定矩陣相關(guān)的一類矩陣的特征值,并建立了關(guān)于這類矩陣特征值乘積范圍的一個不等式,利用此不等式證明了行列式的Fischer和Hadamard不等式.

        正定矩陣;特征值;特征向量;行列式不等式

        O 151.2

        :A

        :1008-9497(2017)05-511-05

        date:Feb.4,2016.

        Supported by Natural Science Foundation of Anhui Provincial Education Department (KJ2016A458) and Excellent Personnel Domestic Visiting Project (gxfxZD2016274).

        Abouttheauthor:ZHANG Huamin (1972-),ORCID:http://orcid.org/0000-0002-7416-7415,male,doctor,associate professor,the field of interest are matrix theory and its applications,E-mail:zhangeasymail@126.com.

        10.3785/j.issn.1008-9497.2017.05.002

        一類矩陣特征值的不等式及其在Fischer不等式證明中的應(yīng)用.浙江大學(xué)學(xué)報(理學(xué)版),2017,44(5):511-515

        猜你喜歡
        行列式財經(jīng)大學(xué)蚌埠
        行列式解法的探討
        尋找最美校園 吉林財經(jīng)大學(xué)
        文苑(2018年19期)2018-11-09 01:30:14
        Research on financing strategy for Small and Medium Enterprises
        n階行列式算法研究
        加項行列式的計算技巧
        考試周刊(2016年89期)2016-12-01 12:38:39
        對話蚌埠:藥品采購究竟咋啦?
        蚌埠藥采是非熱議
        蚌埠藥采事件回放
        改善商品包裝的若干思考
        塑料包裝(2014年4期)2014-09-16 03:41:29
        一類矩陣行列式的構(gòu)造計算方法
        午夜免费福利小电影| 丰满人妻熟妇乱又伦精品视| 欧美第一黄网免费网站| 欧美国产亚洲精品成人a v | 亚洲av无码成人黄网站在线观看 | 亚洲免费av第一区第二区| 亚洲国产一区二区三区| 国产喷水1区2区3区咪咪爱av| 91精品福利观看| 日韩狼人精品在线观看| 色婷婷久久精品一区二区| 伊人久久大香线蕉综合影院首页| 久久精品国产一区二区电影| 极品人妻少妇一区二区| 亚洲免费一区二区三区四区| 色天使综合婷婷国产日韩av| 亚洲福利视频一区| 亚洲伊人成综合人影院| 日韩亚洲无吗av一区二区| 亚洲av永久无码精品网站在线观看| 999久久久精品国产消防器材| AV在线毛片| 中文字幕一区二区三区综合网| 无码人妻久久一区二区三区免费丨| 国产大陆亚洲精品国产| 欧美日韩性视频| 中文字幕一区二区三区喷水| 音影先锋中文字幕在线| 四虎影视永久地址www成人| 亚洲国产精品线观看不卡| 日韩av一区二区三区精品| 亚洲成人av在线第一页| 久久亚洲精品无码va白人极品| 日本一区二区啪啪视频| 中文字幕成人精品久久不卡91| 成在线人av免费无码高潮喷水| 青青草国产成人99久久| 日韩少妇人妻一区二区| 日本久久伊人特级黄色| 97久久香蕉国产线看观看| 毛片毛片免费看|