亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        An eigenvalue inequality of a class of matrices and its applications in proving the Fischer inequality

        2017-10-10 01:01:45ZHANGHuaminYINHongcai
        關(guān)鍵詞:行列式財經(jīng)大學(xué)蚌埠

        ZHANG Huamin, YIN Hongcai

        (1.Department of Mathematics & Physics, Bengbu University, Bengbu 233030,Anhui Province, China;2.School of Management Science and Engineering, Anhui University of Finance & Economics,Bengbu 233000, Anhui Province, China)

        An eigenvalue inequality of a class of matrices and its applications in proving the Fischer inequality

        ZHANG Huamin1, YIN Hongcai2

        (1.Department of Mathematics & Physics, Bengbu University, Bengbu 233030,Anhui Province, China;2.School of Management Science and Engineering, Anhui University of Finance & Economics,Bengbu 233000, Anhui Province, China)

        The Hadamard inequality and Fischer inequality play an important role in the matrix study. Many articles have addressed these inequalities providing new proofs, noteworthy extensions, generalizations, refinements, counterparts and applications. This paper discusses the eigenvalues of a class of matrices related to the real symmetric positive definite matrix and establishes an inequality of the eigenvalues. By using this inequality, the Fischer determinant inequality and Hadamard determinant inequality are proved.

        positive definite matrix; eigenvalue; eigenvector; determinant inequality

        1 Introduction and preliminaries

        Inequality is an active research topic in recent years,the classical convexity has been generalized and extended in a diverse manner.One of them is the pre-invexity,introduced by WEIR et al[1]as a significant generalization of convex functions.Many researchers have studied the basic properties of the pre-invex functions and their role in optimization,variational inequalities and equilibrium problems[2-4].

        Hadamard and Fischer inequalities are prima-ry inequalities for the real symmetric positive def-inite matrix, and there are many inequalities can be proved by using these two inequalities.There are many methods to prove these inequalities[5-7].Some results have been established inspired by the Hadamard inequality[8-9].

        The real symmetric positive definite matrix has many properties and has been used in many ar-eas[10-12].Some properties can be used to prove the Hadamard inequality.In this note,inspired by the results established in[13-14],a new eigenvalue inequality related to the real symmetric positive definite matrix is proposed, and the Hadamard and Fischer inequality are proved by using this new inequality.

        Firstly, let us introduce some notations and lemmas.Inis the identity matrix with ordern×n.For a square matrixA,we use λ[A],det(A) andATrepresent the set of the eigenvalues,the deter-minant and the transpose ofA,respectively.

        Next,we introduce two lemmas.The following result about the block matrix determinant is well known[10].

        Lemma1If matrixAis invertible,then for any block matrix,we have

        (1)

        or if marixDis invertible,then we have

        (2)

        Lemma2IfA∈Rm×nis a full column-rank matrix,theA(ATA)-1ATis idempotent and the eigenvalues ofA(ATA)1ATare 1 or 0, there exists an orthogonal matrixQsuch that

        Q[A(ATA)-1AT]Q=diag[1,…,1,0,…,0]=∶Λ.

        Furthermore,we have rank [A]=n.

        This lemma was suggested in[14],for convenience,we give the proof here.

        ProofIf σ∈λ[A(ATA)1AT],then there exists a nonzero vectorx∈Rm, satisfying

        A(ATA)1ATx=σx.

        Thus,we have

        [A(ATA)-1ATx]T[A(ATA)-1ATx]=(σx)T(σx),
        xT[A(ATA)-1AT][A(ATA)1AT]x=σ2‖x‖2,
        xT[A(ATA)-1ATA(ATA)1AT]x=σ2‖x‖2,
        xT[A(ATA)1AT]x=σ-2‖x‖2,
        xTσx=2‖x‖2,
        σ‖x‖2=σ2‖x‖2.

        Since‖x‖2≠0,A(ATA)-1AThas eigenvaluesσ=0 orσ=1.Because of the symmetry ofA(ATA)-1AT,there exists a real orthogonal matrixQ:=[q1,q2,…,qm]∈Rm×msuch that

        QT[A(ATA)-1AT]Q= diag[1,…,1,0,…,0]=Λ.

        On the other hand,since (ATA)-1ATis the left pseudo-inverse ofA,we have

        rank[A]=rank[QT[A(ATA)-1AT]Q]=
        rank[A(ATA)-1AT]=rank[A]=n.

        This proves lemma 2.

        2 An inequality of a class of matrices

        In this section,we will establish a new property about the eigenvalues related to the symmetric positive definite matrix.IfA∈Rn×nis a symmetric positive definite matrix,then there exists an invertible matrixBsuch thatA=BBT.Suppose thatBcan be expressed as a block matrix

        Set

        With these symbols,the following result holds.

        Theorem1If the eigenvalues of the matrixN-1Aareδ1,δ2,…,δn,then 0<δ1δ2…δn≤1.

        ProofLetf(λ)∶=det(λIn-N-1A)be the characteristic polynomial of matrixN-1A,we have

        f(λ)=

        (3)

        We verify that 2 not belongs to the eigenvalues of the matrixN-1A.If 2 is the eigenvalue of the matrixN-1A,then

        On the other hand,

        f(2)=

        This is a contradiction,so 2 is not a eigenvalue of the matrixN-1A.

        According to lemma 1,suppose thatm≥p,equation (3) can be manipulated as

        det((λ-1)Im)det((λ-1)Ip-(λ-1)-1Ip×

        (4)

        [q1,q2,…,qn]diag[1,…,1,0,…,0]=

        [q1,q2,…,qm,0,0,…,0],

        (5)

        (6)

        (7)

        (k1q2+k2q2+…+knqn)=

        (8)

        (k1q1+k2q2+…+knqn)=

        k1q1+k2q2+…+kmqm.

        (9)

        The both side of equation (6) multiply byTgives

        =.

        (10)

        According to equations(7) and (9),the left-side of equation (10) can be rewritten as

        (k1q1+k2q2+…+knqn)T×

        (k1q1+k2q2+…+kmqm)=

        (11)

        Combining equations(10)(8)and(11)gives

        Hence,we have

        (12)

        (13)

        whereRis strictly upper triangular.Substituting equation(13)into equation(4)and simplifying it, give

        From this equation,we can see that the eigenvalues ofN-1Aare

        1+ρ1,1-ρ1,…,1+ρp,1-ρp,1,…,1.

        (14)

        From this equation,we have

        0≤δ1δ2…δn=

        (1+ρ1)(1-ρ1)…(1+ρp)(1-ρp)=

        (15)

        Since 2 is not the eigenvalue of the matrixN-1A,an improvement of inequality (12) is 0≤ρ<1.

        Correspondingly,inequality (15) can be im-proved as

        0≤δ1δ2…δn=

        (1+ρ1)(1-ρ1)…(1+ρp)(1-ρp)=

        The proof is completed.

        Remark1The above proof shows that the sup-positionm≥pis not essential.In fact,ifm

        f(λ)=

        det((λ-1)Ip)det((λ-1)Im-(λ-1)-1×

        This manipulation does not change the subsequent proof.

        3 New proof of the Fischer inequality

        In this section,we will use the results in theo-rem 1 to prove two determinant inequalities related to the symmetric positive definite matrix,that is,the Fischer inequality and the Hadamard inequali-ty.

        Theorem2Considering the following symmetric positive definite block matrix

        here Mii,i=1,2,…,k,are the definite submatri-ces,then

        det(M)≤det(M11)det(M22)…det(Mkk).

        det(N-1M)≤det(N-1)det(M)=δ1δ2…δn≤1.

        That is,

        det(M)≤det(N)=det(M11)det(M22).

        Fork>2,using this manipulation successively gives

        det(M)≤det(M11)det(M22)…det(Mkk).

        The proof is completed.

        It is clear that Hadamard inequality is the spe-cial case of Fischer inequality whenk=n,so the following inequality holds.

        Theorem3IfM=(mij) ∈Rn×nis a symmetric positive definite matrix,then

        det(M)≤m11m22…mnn.

        4 Conclusions and future work

        The eigenvalues of a class of matrices related to the real symmetric positive definite matrix are discussed in this paper, and an inequality about the eigenvalues is established.Using this result,the Fischer inequality and the Hadamard inequality of the positive definite matrix are proved.

        SandTdenote the subsets of set W:= {1,2,…,n}and S and T satisfy S ∪T=W.cd(S) denotes the cardinality of set S.Screpresents the complementary set of S.MSdenotes the principal submatrix determined by set S.

        Consider the following of the Koteljanskii,Fan and Szasz inequalities[15],

        j=1,2,…,n-1,

        [1]WEIRT.Pre-invexfunctionsinmultiobjectiveoptimization[J].JournalofMathematicalAnalysisandApplications,1998,136(1): 29-38.

        [2] MOHAN S R,NEOGY S K.On invex sets and pre-invex functions[J].JournalofMathematicalAnalysisandApplications,1995,189(3): 901-908.

        [3] NOOR M A.Variational-like inequalities[J].Optimization,1994,30(4): 323-330.

        [4] YANG X M,LI D.On properties of pre-invex functions[J].JournalofMathematicalAnalysisandApplications,2001,256(1): 229-241.

        [5] WANG S G,WU M X,JIA Z Z.TheMatrixInequalities[M].2nd ed. Beijing: Science Press,2006.

        [6] BELLMAN R.IntroductiontoMatrixAnalysis[M].NewYork: Mcgraw-Hill Book Company,1970.

        [7] ZENG C N,XU W X,ZHOU J Z.Several notes on Hadamard theorem[J].JournalofMath,2010,30(1): 152-156.

        [8] ZHANG X D,YANG S J.A note on Hadamard’s inequality[J].ActaMathematicaeApplicataeSinca,1997,20(2): 269-274.

        [9] LI X Y,LENG G S.Inverse forms of Hadamard inequality and Szasz inequality[J].JournalofNaturalScienceofHunanNormalUniversity,2007,30(2): 19-21.

        [10] ZHANG X D.MatrixAnalysisandApplications[M].Beijing: Tsinghua University Press,2004.

        [11] HORN R A,JOHNSON C R.MatrixAnalysis[M].Cambridge: Cambridge University Press,1985.

        [12] GOLUB G H,VAN LOAN C F.MatrixComputations[M].3rd ed.Baltimore,MD: Johns Hopkins University Press,1996.

        [13] YIN H C,ZHANG H M.Eigenvalues of a class of matrices related to the positive definite matrices[J].JournalofZhejiangUniversity:ScienceEdition,2014,41(1): 1-5.

        [14] ZHANG H M,DING F.A property of the eigenvalues of the symmetric positive definite matrix and the iterative algorithm for coupled Sylvester matrix equations[J].JournaloftheFranklinInstitute,2014,351(1): 340-357.

        [15] GOVER E,KRIKORIAN N.Determinants and the volumes of parallelotopes and zonotopes[J].LinearAlgebraandItsApplications,2010,433(1): 28-40.

        張華民1,殷紅彩2

        ( 1.蚌埠學(xué)院 數(shù)理系,安徽 蚌埠 233030; 2.安徽財經(jīng)大學(xué) 管理科學(xué)和工程學(xué)院,安徽 蚌埠 233000)

        Hadamard和Fischer不等式在矩陣研究中起重要作用.已有大量文獻研究此兩不等式的新證明、 推廣、 細化及應(yīng)用.本文研究了和實對稱正定矩陣相關(guān)的一類矩陣的特征值,并建立了關(guān)于這類矩陣特征值乘積范圍的一個不等式,利用此不等式證明了行列式的Fischer和Hadamard不等式.

        正定矩陣;特征值;特征向量;行列式不等式

        O 151.2

        :A

        :1008-9497(2017)05-511-05

        date:Feb.4,2016.

        Supported by Natural Science Foundation of Anhui Provincial Education Department (KJ2016A458) and Excellent Personnel Domestic Visiting Project (gxfxZD2016274).

        Abouttheauthor:ZHANG Huamin (1972-),ORCID:http://orcid.org/0000-0002-7416-7415,male,doctor,associate professor,the field of interest are matrix theory and its applications,E-mail:zhangeasymail@126.com.

        10.3785/j.issn.1008-9497.2017.05.002

        一類矩陣特征值的不等式及其在Fischer不等式證明中的應(yīng)用.浙江大學(xué)學(xué)報(理學(xué)版),2017,44(5):511-515

        猜你喜歡
        行列式財經(jīng)大學(xué)蚌埠
        行列式解法的探討
        尋找最美校園 吉林財經(jīng)大學(xué)
        文苑(2018年19期)2018-11-09 01:30:14
        Research on financing strategy for Small and Medium Enterprises
        n階行列式算法研究
        加項行列式的計算技巧
        考試周刊(2016年89期)2016-12-01 12:38:39
        對話蚌埠:藥品采購究竟咋啦?
        蚌埠藥采是非熱議
        蚌埠藥采事件回放
        改善商品包裝的若干思考
        塑料包裝(2014年4期)2014-09-16 03:41:29
        一類矩陣行列式的構(gòu)造計算方法
        国产免费a∨片在线软件| 5级做人爱c视版免费视频| 99久久综合九九亚洲| 日本一区二区三区一级免费| 亚洲中文字幕一区高清在线| 黄片视频免费观看蜜桃| 免费无遮挡禁18污污网站| 97se亚洲国产综合自在线图片| 日本人妻少妇精品视频专区| 麻豆久久91精品国产| 秘书边打电话边被躁bd视频| 久操视频新免费伊人| 色琪琪一区二区三区亚洲区 | 成人无码网www在线观看| 性感熟妇被我玩弄到高潮| 中文精品久久久久人妻不卡| 亚洲中文无码永久免| 国产人禽杂交18禁网站| av在线播放免费网站| 东北少妇不带套对白| 亚洲精品不卡电影| 高清高速无码一区二区| 国产一区二区黑丝美胸| 久久综合久久美利坚合众国| 蜜桃视频一区二区三区在线观看| 亚洲日韩欧美一区二区三区| 中文字幕日韩熟女av| 虎白m粉嫩小在线播放| 亚洲 自拍 另类小说综合图区| 欧美a级在线现免费观看| 日本超骚少妇熟妇视频| 国产一级一片内射视频播放| 精品乱码久久久久久久| 男人无码视频在线观看| 国内自拍视频在线观看| 男女av一区二区三区| 和黑人邻居中文字幕在线| 国产99视频精品免费视频免里| 亚洲精品一区二区三区蜜臀| 亚洲av综合色区无码另类小说| 最新亚洲精品国偷自产在线 |