陳妍潔, 吳 昊, 沈錫中
復旦大學附屬中山醫(yī)院消化科,上海 200032
·綜述·
干擾素調節(jié)因子在腫瘤發(fā)生中的研究進展
陳妍潔, 吳 昊, 沈錫中*
復旦大學附屬中山醫(yī)院消化科,上海 200032
干擾素調節(jié)因子(interferon regulatory factors, IRFs)是一類在干擾素表達調控中起重要作用的轉錄因子家族,目前共發(fā)現有10個成員,其在免疫調節(jié)、細胞分化、細胞凋亡和細胞周期調節(jié)中具有重要作用。本文就該家族成員的功能特點、免疫活性,特別是在細胞分化及腫瘤發(fā)生中的作用作一綜述。
干擾素調節(jié)因子;細胞免疫;免疫調節(jié)
20世紀中葉,干擾素作為抗病毒蛋白被發(fā)現,此后發(fā)現了干擾素調節(jié)因子家族(interferon regulatory factors,IRFs)。IRFs是一類作用于干擾素(interferon,IFN)基因,調控其表達的轉錄因子[1],由于在機體感染尤其是病毒感染時能夠結合到IFN啟動子上誘導、調節(jié)IFN的表達而得名。所有IRF的氨基端都含有1個由115個氨基酸組成的結構域(DNA binding domain,DBD)。該結構域和Myb蛋白的DBD相似,可與DNA結合并含有5個色氨酸的重復序列;而IRF的羧基端則是1個可變區(qū)域,從而使得IRFs具備了多種生物功能[2]。目前,已發(fā)現的IRFs成員共有10個,IRF-1~IRF-9和病毒IRF(V-IRF),起初這些成員被認為是免疫細胞所特有的,然而近年來越來越多的該家族成員在其他組織細胞中被發(fā)現。迄今為止,多項研究表明,IRFs在細胞分化和凋亡、細胞周期調節(jié)、免疫調控中具有重要作用。近年來,人們開始關注IRFs的抗腫瘤作用及其相關細胞信號轉導通路,希望能找到治療腫瘤的新方法。
人類的固有免疫應答是機體抵御病原生物入侵的第一道防線,由模式識別受體(innate pattern recognition receptors,PRRs)介導,包括Toll樣受體(Toll-like receptor, TLR)、C型凝集素受體(C-type lectin receptor,CLRs)、RIG-Ⅰ樣受體(RLRs)和NOD樣受體(NLRs)[3]。當這些模式識別受體識別不同病原相關分子模式(PAMPs)或損傷相關分子模式(DAMPs)后,通過胞內分子級聯反應誘導Ⅰ型IFN、促炎細胞因子和趨化因子的轉錄,從而殺滅病原微生物或感染的細胞。干擾素調節(jié)因子家族是傳遞模式識別受體信號,從而激活免疫細胞的重要分子[4]。例如,IRF3/7可誘導IFN的表達,從而激活IFN下游靶基因的表達,誘導T細胞分化,并可激活適應性免疫途徑;PRRs激活后還可通過特定接頭蛋白和MyD88信號,引起IRF1/5/7和NF-κB的激活,從而誘導IFN、IL、TNF等的轉錄和表達,并激活非特異性免疫途徑和獲得性免疫。我們對IRF家族傳遞PRR信號的分子通路進行了總結(表1)。
在固有免疫應答的發(fā)生過程中,IRFs可由多種PRRs所激活,而單一的IRF分子又可參與不同PRR的下游信號通路。不同的IRF可被相同的分子所激活,如MyD88;而活化的IRF又可作用于相同的靶基因,如IFN相關靶基因,提示不同的應答模式間具有相關性。由此可見,整個信號通路包括轉錄因子在免疫應答中受到精確調節(jié)。闡明IRFs在信號網絡中所發(fā)揮的關鍵作用,有利于今后生物免疫治療、腫瘤免疫治療的研究。
表1 IRF家族傳遞PRR信號的分子通路
除了參與固有免疫應答以外,IRF-1/2/4/6/8對免疫細胞(如樹突狀細胞、NK細胞、B細胞和T細胞等)的生長也起到關鍵作用。通過基因敲除的小鼠實驗[5]發(fā)現,CD4+DCs、CD8α+DCs和pDC的分化受到IRF-1/2/4/8的調控。IRF-1可誘導IL-15促進NK細胞分化,而IRF-2則可通過細胞內信號通路促進NK細胞分化[5]。IRF-8可通過與EBF啟動子結合激活EBF表達,從而激活B細胞分化的相關基因;而IRF-4通過調節(jié)Fas凋亡抑制分子,從而調節(jié)B細胞的凋亡[6]。IRF-1和IRF-2能強烈啟動Th1應答,而IRF-4則主要參與Th2的細胞分化過程[1]。IRF在免疫細胞發(fā)育中的作用如表2。
IRF可通過調節(jié)腫瘤免疫從而發(fā)揮抗癌效應,如IRF-8可通過促進APCs(如MФ、DCs和B細胞)的分化和成熟而起到抗癌作用[7]。因此,對于IRF的研究有利于深入闡明腫瘤免疫的特點,并為臨床抗腫瘤治療提供新思路。
表2 IRFs在免疫細胞發(fā)育中的作用
目前發(fā)現,IRFs家族在細胞周期、細胞分化以及腫瘤形成中起到重要作用(表3)。早期認為IRF-2與IRF-1競爭識別位點[8],從而發(fā)揮與IRF-1不同的作用,但近年來發(fā)現了IRF-2的其他作用。而IRF-4被認為與血液系統惡性腫瘤密切相關。
3.1 IRF-2 IRF-2的基因位于染色體4q34.1-q35.1,目前尚無研究表明其表達有組織特異性。最初研究[8]認為,IRF-2與抑癌基因IRF-1具有相似的識別位點。因此,推測IRF-2可能通過競爭結合相同的識別位點從而抑制IRF-1的轉錄。另外,IRF-2能與Blimp-1共同結合于IFN-8基因的PRDI結構域,故IRF-2能通過抑制Blimp-1而引起細胞癌變。乙?;蟮腎RF-2可結合到組蛋白H4的啟動子上,從而引起細胞持續(xù)增殖[9]。一些研究[10-11]發(fā)現,IRF-2可在食管癌和胰腺癌組織中呈高表達。
3.2 IRF-4 IRF-4是一個與血液系統的惡性腫瘤密切相關的轉錄因子。當感染了人類T細胞白血病病毒1型(HTLV-1)后,IRF-4的表達明顯升高,從而降低了G2/M關卡基因Cyclin B1和多種DNA修復基因的正常表達[12]。部分多發(fā)性骨髓瘤(MM)患者可出現t(p25;q32),從而導致IRF-4高表達;而IRF-4 mRNA表達水平的升高則提示MM患者預后不良[13]。在MM中,IRF-4可激活MYC基因的轉錄,而Myc蛋白的高表達則進一步促進IRF-4的表達,形成了正向調節(jié)環(huán)[14]。這個正向調節(jié)環(huán)促進疾病的發(fā)生發(fā)展,打破該正向調節(jié)是否可以治療MM有待進一步研究。
目前,發(fā)現大部分的IRFs主要起到直接抑制細胞周期和分化,抑制腫瘤發(fā)生發(fā)展的作用,部分可通過腫瘤免疫抑制腫瘤的發(fā)生發(fā)展(表3)。
表3 IRF家族成員在調節(jié)細胞周期、分化中的作用
4.1 IRF-1 對于IRF家族在腫瘤中調節(jié)作用的研究最早集中于IRF-1。敲除了IRF-1的細胞喪失了DNA損傷引起的細胞周期停滯能力。另外,IRF-1可在轉錄水平激活CDK的抑制蛋白p21WAF1/CIP1的表達[15]。很多小分子(如IFN-γ)可促進IRF-1的促凋亡作用[16]。
IRF-1基因位于染色體5q31.1,這是一個在白血病或骨髓異常增生綜合征中常出現突變的區(qū)域[17]。研究[18]發(fā)現,在血液系統相關疾病的患者中,IRF-1基因有單個或兩個等位基因發(fā)生突變或剪接突變。另外,食管癌和胃癌中也發(fā)現有IRF-1等位基因的缺失[19-20]。之后在慢性髓細胞白血病、乳腺癌、子宮內膜癌和肝細胞肝癌患者中發(fā)現,IRF-1 mRNA表達降低[21]。
4.2 IRF-2 雖然早期研究[22]認為,IRF-2對于腫瘤具有促進作用,但近年來越來越多的研究表明,IRF-2對腫瘤的發(fā)生有抑制作用。研究[23]發(fā)現,IRF-2在乳腺癌組織中的表達與IRF-1正相關。而Sato等[24]發(fā)現,IRF-2可減弱Ⅰ型干擾素的應答,從而促進造血干細胞的分化并維持細胞的表型。研究等[25]則發(fā)現,肝細胞肝癌中的IRF-2發(fā)生基因突變。細胞功能學實驗[25-26]提示,過表達IRF-2可抑制細胞增殖,并使細胞中p53含量明顯升高,而對IRF-2進行沉默則得到相反的結果。進一步研究[27-28]發(fā)現,IRF-2突變常與胚胎基因高表達或p53通路異常相關。這些研究均提示IRF-2更可能為抑癌基因。
4.3 IRF-3 由病毒引起的細胞凋亡主要是由IRF-3激活TRAIL所介導[29]。另外,由細菌感染通過TLR介導的凋亡途徑同樣需要IRF-3的參與。特定的細菌產生毒素因子,抑制p38或NF-κB通路,從而導致MФ的凋亡。而對p38和NF-κB通路的抑制主要由TLR4以及IRF-3等分子所介導[30]。
當DNA受到損傷時,IRF-3會被DNA依賴的蛋白激酶(DNA-PK)磷酸化并從胞漿內遷移至核內,參與DNA損傷誘導的細胞凋亡[31]。因此,目前IRF-3也被認為是一個腫瘤抑制因子。
4.4 IRF-5 高表達IRF-5可以抑制缺乏野生型p53的B細胞淋巴瘤的生長[32],并可促進p53缺失的結腸癌細胞完成DNA損傷誘導的細胞凋亡[33]。也有研究[34]發(fā)現,IRF-5參與Fas/CD95誘導的凋亡。在白血病腫瘤細胞中,IRF-5的mRNA表達受到了明顯的抑制,這也意味著IRF-5可能在腫瘤的發(fā)生發(fā)展中起到抑癌作用[33]。
4.5 IRF-6 IRF-6可能通過與Maspin(抑癌基因)相互作用,從而發(fā)揮其抑癌的作用[35]。研究[36]發(fā)現,IRF-6的表達與乳腺癌的侵襲力呈負相關。在靜息期的乳腺上皮細胞中,IRF-6呈現未磷酸化的狀態(tài),而在細胞分裂期時則被磷酸化并經泛素蛋白酶體途徑被降解;而提高IRF-6的表達可導致細胞周期停滯。
4.6 IRF-7 當機體受到病毒感染或特異性配體結合TLR而使TLR激活后,TBK1/IKK可誘發(fā)IRF-7磷酸化并使其轉移至細胞核內,與IRF-3共同參與各種生物學功能。目前,IRF-7的具體抗腫瘤機制尚不明確,還有待進一步研究。
4.7 IRF-8 IRF-8主要在造血細胞中表達。研究[37]表明,IRF-8的缺失會引起髓性白血病的發(fā)生,特別是慢性髓性白血病(CML)。在CML患者中發(fā)現,IRF-8功能缺失,IRF-8的靶基因(如Bcl2和Pml)的表達明顯降低。另外,IRF-8過表達可以通過間接抑制c-Myc通路而抑制細胞的有絲分裂[38-39]。體內實驗[40]表明,IFN-α治療CML可誘導IRF-8的表達,而IRF-8的表達水平也與IFN-α的治療效果密切相關。IRF-8在非造血腫瘤的發(fā)生發(fā)展中也起到重要作用。在鼻咽癌、食管癌、結腸癌等許多腫瘤中均發(fā)現IRF-8表達缺失[41-42]。
4.8 IRF-9 IRF-9是Ⅰ型干擾素和p53通路之間的重要聯系因子。Ⅰ型干擾素對p53通路的激活需通過ISGF3的復合物,而IRF-9為ISGF3復合物的一部分[42]。另外,還有文獻[43]報道,IRF-9基因可直接被c-Myc激活,因此IRF-9可能也參與細胞周期的調節(jié)。但IRF-9對于腫瘤發(fā)生發(fā)展的調節(jié)機制還有待進一步的研究。
IRFs作為一類轉錄因子在機體的固有免疫應答、適應性免疫應答、細胞周期以及腫瘤發(fā)生中均發(fā)揮重要作用。對IRFs的研究有助于我們更深入了解腫瘤的發(fā)生發(fā)展,并為腫瘤的生物治療、靶向治療提供新思路。對于IRFs在腫瘤免疫中的具體作用,以及其是否可以作為腫瘤免疫治療的關鍵調控分子,都需要進一步探究。
[ 1 ] ZHANG R, CHEN K, PENG L, et al. Regulation of T helper cell differentiation by interferon regulatory factor family members[J]. Immunol Res, 2012,54(1-3):169-176.
[ 2 ] VEALS S A, SCHINDLER C, LEONARD D, et al. Subunit of an alpha-interferon-responsive transcription factor is related to interferon regulatory factor and Myb families of DNA-binding proteins[J]. Mol Cell Biol, 1992,12(8):3315-3324.
[ 3 ] TAKEUCHI O, AKIRA S. Pattern recognition receptors and inflammation[J]. Cell, 2010,140(6):805-820.
[ 4 ] IKUSHIMA H, NEGISHI H, TANIGUCHI T. The IRF family transcription factors at the interface of innate and adaptive immune responses[J]. Cold Spring Harb Symp Quant Biol, 2013,78:105-116.
[ 5 ] SAVITSKY D, TAMURA T, YANAI H, et al. Regulation of immunity and oncogenesis by the IRF transcription factor family[J]. Cancer Immunol Immunother, 2010,59(4):489-510.
[ 6 ] KAKU H, ROTHSTEIN T L. Fas apoptosis inhibitory molecule expression in B cells is regulated through IRF4 in a feed-forward mechanism[J]. J Immunol, 2009,183(9):5575-5581.
[ 7 ] DENG M, DALEY G Q. Expression of interferon consensus sequence binding protein induces potent immunity against BCR/ABL-induced leukemia[J]. Blood, 2001,97(11):3491-3497.
[ 8 ] HARADA H, KITAGAWA M, TANAKA N, et al. Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and -2[J]. Science, 1993,259(5097):971-974.
[ 9 ] TAKI S, NAKAJIMA S, ICHIKAWA E, et al. IFN regulatory factor-2 deficiency revealed a novel checkpoint critical for the generation of peripheral NK cells[J]. J Immunol, 2005,174(10):6005-6012.
[10] WANG Y, LIU D P, CHEN P P, et al. Involvement of IFN regulatory factor (IRF)-1 and IRF-2 in the formation and progression of human esophageal cancers[J]. Cancer Res, 2007,67(6):2535-2543.
[11] SAKAI T, MASHIMA H, YAMADA Y, et al. The roles of interferon regulatory factors 1 and 2 in the progression of human pancreatic cancer[J]. Pancreas, 2014,43(6):909-916.
[12] MAMANE Y, GRANDVAUX N, HERNANDEZ E, et al. Repression of IRF-4 target genes in human T cell leukemia virus-1 infection[J]. Oncogene, 2002,21(44):6751-6765.
[13] HEINTEL D, ZOJER N, SCHREDER M, et al. Expression of MUM1/IRF4 mRNA as a prognostic marker in patients with multiple myeloma[J]. Leukemia, 2008,22(2):441-445.
[14] SHAFFER A L, EMRE N C, LAMY L, et al. IRF4 addiction in multiple myeloma[J]. Nature, 2008,454(7201):226-231.
[15] ARMSTRONG M J, STANG M T, LIU Y, et al. Interferon regulatory factor 1 (IRF-1) induces p21(WAF1/CIP1) dependent cell cycle arrest and p21(WAF1/CIP1) independent modulation of survivin in cancer cells[J]. Cancer Lett, 2012,319(1):56-65.
[16] TOMITA Y, BILIM V, HARA N, et al. Role of IRF-1 and caspase-7 in IFN-gamma enhancement of Fas-mediated apoptosis in ACHN renal cell carcinoma cells[J]. Int J Cancer, 2003,104(4):400-408.
[17] LOAIZA-BONILLA A, GORE S D, CARRAWAY H E. Novel approaches for myelodysplastic syndromes: beyond hypomethylating agents[J]. Curr Opin Hematol, 2010,17(2):104-109.
[18] HARADA H, KONDO T, OGAWA S, et al. Accelerated exon skipping of IRF-1 mRNA in human myelodysplasia/leukemia; a possible mechanism of tumor suppressor inactivation[J]. Oncogene, 1994,9(11):3313-3320.
[19] OGASAWARA S, TAMURA G, MAESAWA C, et al. Common deleted region on the long arm of chromosome 5 in esophageal carcinoma[J]. Gastroenterology, 1996,110(1):52-57.
[20] TAMURA G, OGASAWARA S, NISHIZUKA S, et al. Two distinct regions of deletion on the long arm of chromosome 5 in differentiated adenocarcinomas of the stomach[J]. Cancer Res, 1996,56(3):612-615.
[21] TAMURA T, YANAI H, SAVITSKY D, et al. The IRF family transcription factors in immunity and oncogenesis[J]. Annu Rev Immunol, 2008,26:535-584.
[22] KELLER A D, MANIATIS T. Identification and characterization of a novel repressor of beta-interferon gene expression[J]. Genes Dev, 1991,5(5):868-879.
[23] CONNETT J M, BADRI L, GIORDANO T J, et al. Interferon regulatory factor 1 (IRF-1) and IRF-2 expression in breast cancer tissue microarrays[J]. J Interferon Cytokine Res, 2005,25(10):587-594.
[24] SATO T, ONAI N, YOSHIHARA H, et al. Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion[J]. Nat Med, 2009,15(6):696-700.
[25] GUICHARD C, AMADDEO G, IMBEAUD S, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma[J]. Nat Genet, 2012,44(6):694-698.
[26] AMADDEO G, GUICHARD C, IMBEAUD S, et al. Next-generation sequencing identified new oncogenes and tumor suppressor genes in human hepatic tumors[J]. Oncoimmunology, 2012,1(9):1612-1613.
[27] AMADDEO G, CAO Q, LADEIRO Y, et al. Integration of tumour and viral genomic characterisations in HBV-related hepatocellular carcinomas[J]. Gut, 2014, 64(5):820-829.
[28] CHEN Y J, WU H, ZHU J M, et al. MicroRNA-18a modulates P53 expression by targeting IRF2 in gastric cancer patients[J]. J Gastroenterol Hepatol, 2015, 31(1):155-163.
[29] KIRSHNER J R, KARPOVA A Y, KOPS M, et al. Identification of TRAIL as an interferon regulatory factor 3 transcriptional target[J]. J Virol, 2005,79(14):9320-9324.
[30] HSU L C, PARK J M, ZHANG K, et al. The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4[J]. Nature, 2004,428(6980):341-345.
[31] KARPOVA A Y, TROST M, MURRAY J M, et al. Interferon regulatory factor-3 is aninvivotarget of DNA-PK[J]. Proc Natl Acad Sci U S A, 2002,99(5):2818-2823.
[32] BARNES B J, KELLUM M J, PINDER K E, et al. Interferon regulatory factor 5, a novel mediator of cell cycle arrest and cell death[J]. Cancer Res, 2003,63(19):6424-6431.
[33] HU G, MANCL M E, BARNES B J. Signaling through IFN regulatory factor-5 sensitizes p53-deficient tumors to DNA damage-induced apoptosis and cell death[J]. Cancer Res, 2005,65(16):7403-7412.
[34] COUZINET A, TAMURA K, CHEN H M, et al. A cell-type-specific requirement for IFN regulatory factor 5 (IRF5) in Fas-induced apoptosis[J]. Proc Natl Acad Sci U S A, 2008,105(7):2556-2561.
[35] BAILEY C M, HENDRIX M J. IRF6 in development and disease: a mediator of quiescence and differentiation[J]. Cell Cycle, 2008,7(13):1925-1930.
[36] BAILEY C M, ABBOTT D E, MARGARYAN N V, et al. Interferon regulatory factor 6 promotes cell cycle arrest and is regulated by the proteasome in a cell cycle-dependent manner[J]. Mol Cell Biol, 2008,28(7):2235-2243.
[37] DROR N, RAVE-HAREL N, BURCHERT A, et al. Interferon regulatory factor-8 is indispensable for the expression of promyelocytic leukemia and the formation of nuclear bodies in myeloid cells[J]. J Biol Chem, 2007,282(8):5633-5640.
[38] TAMURA T, KONG H J, TUNYAPLIN C, et al. ICSBP/IRF-8 inhibits mitogenic activity of p210 Bcr/Abl in differentiating myeloid progenitor cells[J]. Blood, 2003,102(13):4547-4554.
[39] MONTANO G, ULLMARK T, JERNMARK-NILSSON H, et al. The hematopoietic tumor suppressor interferon regulatory factor 8 (IRF8) is upregulated by the antimetabolite cytarabine in leukemic cells involving the zinc finger protein ZNF224, acting as a cofactor of the Wilms' tumor gene 1 (WT1) protein[J]. Leuk Res, 2015,40:60-67.
[40] SCHMIDT M, HOCHHAUS A, NITSCHE A, et al. Expression of nuclear transcription factor interferon consensus sequence binding protein in chronic myeloid leukemia correlates with pretreatment risk features and cytogenetic response to interferon-alpha[J]. Blood, 2001,97(11):3648-3650.
[41] YANG D, THANGARAJU M, GREENELTCH K, et al. Repression of IFN regulatory factor 8 by DNA methylation is a molecular determinant of apoptotic resistance and metastatic phenotype in metastatic tumor cells[J]. Cancer Res, 2007,67(7):3301-3309.
[42] LEE K Y, GENG H, NG K M, et al. Epigenetic disruption of interferon-gamma response through silencing the tumor suppressor interferon regulatory factor 8 in nasopharyngeal, esophageal and multiple other carcinomas[J]. Oncogene, 2008,27(39):5267-5276.
[43] WEIHUA X, LINDNER D J, KALVAKOLANU D V. The interferon-inducible murine p48 (ISGF3gamma) gene is regulated by protooncogene c-myc[J]. Proc Natl Acad Sci U S A, 1997,94(14):7227-7232.
[本文編輯] 葉 婷, 曉 路
Progress of the interferon regulatory factors in the development of tumor
CHEN Yan-jie, WU Hao, SHEN Xi-zhong*
Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
Interferon regulatory factors (IRFs), which have 10 members, belong to the transcription factor family, and are named because of the regulation of interferon expression. They play important roles in the immune regulation, cell differentiation, cell apoptosis, and cell cycle regulation. This article will review the functional characteristics and immune activity of the family members, especially in the role of cell differentiation and tumor development.
interferon regulatory factors; cellular immunity; immune regulation
R 730.231
A
2016-09-11 [接受日期] 2017-02-06
上海市青年科技英才揚帆計劃(16YF1401500),復旦大學附屬中山醫(yī)院青年基金(2015ZSQN08). Supported by Project of Youth Science and Technology Excellence of Shanghai (16YF1401500) and Youth Found of Zhongshang Hospital, Fudan University (2015ZSQN08).
陳妍潔,博士,住院醫(yī)師. E-mail:chen.yanjie@zs-hospital.sh.cn
*通信作者(Corresponding author). Tel: 021-64041990, E-mail: shen.xizhong@zs-hospital.sh.cn
10.12025/j.issn.1008-6358.2017.20160800