亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        帶線性延遲項(xiàng)的Volterra積分方程研究(英文)

        2017-08-28 08:18:35鄭偉珊
        關(guān)鍵詞:中圖范數(shù)分類號(hào)

        鄭偉珊

        Abstract This paper is concerned about the Volterra integral equation with linear delay. First we transfer the integral interval [0,T] into interval [-1, 1] through the conversion of variables. Then we use the Gauss quadrature formula to get the approximate solutions. After that the Chebyshev spectral-collocation method is proposed to solve the equation. With the help of Gronwall inequality and some other lemmas, a rigorous error analysis is provided for the proposed method, which shows that the numerical error decay exponentially in the innity norm and the Chebyshev weighted Hilbert space norms. In the end, numerical example is given to confirm the theoretical results.

        Key words Chebyshev spectral-collocation method; linear delay; Volterra integral equations; error analysis

        中圖分類號(hào) O242.2文獻(xiàn)標(biāo)識(shí)碼 A文章編號(hào) 1000-2537(2017)04-0083-06

        摘 要 本文主要研究帶線性延遲項(xiàng)的Volterra型積分方程收斂情況. 首先通過(guò)線性變換, 我們將原先定義在[0,T]區(qū)間上帶線性延遲項(xiàng)的Volterra型積分方程轉(zhuǎn)換成定義在固定區(qū)間[-1,1]上的方程, 然后利用Gauss積分公式求得近似解, 進(jìn)而再利用Chebyshev譜配置方法分析該方程的收斂性, 最終借助格朗沃不等式及相關(guān)引理分析獲得方程在L∞和L2ωc 范數(shù)意義下呈現(xiàn)指數(shù)收斂的結(jié)論. 最后給出數(shù)值例子, 驗(yàn)證理論證明的結(jié)論.

        關(guān)鍵詞 Chebyshev譜配置方法; 線性延遲項(xiàng); Volterra型積分方程; 誤差分析

        Equations of this type arise as models in many fields, such as the Mechanical problems of physics, the movement of celestial bodies problems of astronomy and the problem of biological population original state changes. They are also applied to network reservoir, storage system, material accumulation, different fields of industrial process etc, and solve a lot problems from mathematical models of population statistics, viscoelastic materials and insurance abstracted. The Volterra integral equation with linear delay is one of the important type of Volterra integral equations with great significance in both theory and applications. There are many methods to solve Volterra integral equations, such as Legendre spectral-collocation method[1], Jacobi spectral-collocation method[2], spectral Galerkin method[3-4], Chebyshev spectral-collocation method[5] and so on. In this paper, inspired by[5] and [6], we use a Chebyshev spectral-collocation method to solve Volterra integral equations with linear delay.

        References:

        [1] TANG T, XU X, CHENG J. On Spectral methods for Volterra integral equation and the convergence analysis[J]. J Comput Math, 2008,26(6):825-837.

        [2] CHEN Y, TANG T. Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equation with a weakly singular kernel[J]. Math Comput, 2010,79(269):147-167.

        [3] WAN Z, CHEN Y, HUANG Y. Legendre spectral Galerkin method for second-kind Volterra integral equations[J]. Front Math China, 2009,4(1):181-193.

        [4] XIE Z, LI X, TANG T. Convergence analysis of spectral galerkin methods for Volterra type integral equations[J]. J Sci Comput, 2012,53(2):414-434.

        [5] GU Z, CHEN Y. Chebyshev spectral collocation method for Volterra integral equations[J]. Contem Math, 2013,586:163-170.

        [6] LI J, ZHENG W, WU J. Volterra integral equations with vanishing delay[J]. Appl Comput Math, 2015,4(3):152-161.

        [7] CANUTO C, HUSSAINI M, QUARTERONI A, et al. Spectral method fundamentals in single domains[M]. New York: Spring-Verlag, 2006.

        [8] SHEN J, TANG T. Spectral and high-order methods with applications[M]. Beijing: Science Press, 2006.

        [9] MASTROIANNI G, OCCORSIO D. Optional system od nodes for Lagrange interpolation on bounded intervals[J]. J Comput Appl Math, 2001,134(1-2):325-341.

        [10] KUFNER A, PERSSON L. Weighted inequality of Hardys Type[M]. New York: World Scientific, 2003.

        [11] NEVAI P. Mean convergence of Lagrange interpolation[J]. Trans Amer Math Soc, 1984,282:669-698.

        猜你喜歡
        中圖范數(shù)分類號(hào)
        基于加權(quán)核范數(shù)與范數(shù)的魯棒主成分分析
        The Tragic Color of the Old Man and the Sea
        矩陣酉不變范數(shù)H?lder不等式及其應(yīng)用
        Connection of Learning and Teaching from Junior to Senior
        English Language Teaching in Yunann Province: Opportunities & Challenges
        A Study of Chinese College Athletes’ English Learning
        A Study on the Change and Developmentof English Vocabulary
        Translation on Deixis in English and Chinese
        一類具有準(zhǔn)齊次核的Hilbert型奇異重積分算子的范數(shù)及應(yīng)用
        The law of exercise applies on individual behavior change development
        久久视频在线视频精品| 久久久久久人妻一区精品| 亚洲色欲久久久综合网| 高清中文字幕一区二区| 国产精东一区二区三区| 午夜tv视频免费国产区4| 国产特级毛片aaaaaaa高清| 亚洲中文字幕国产视频| 一区二区三区观看在线视频| 成黄色片视频日本秘书丝袜| 99re热视频这里只精品| 欧美肥妇毛多水多bbxx水蜜桃 | 精品久久欧美熟妇www| 红桃av一区二区三区在线无码av| 免费蜜桃视频在线观看| 偷拍熟女亚洲另类| 香蕉网站在线| 精品国产三级a∨在线观看| 免费视频爱爱太爽了| 亚洲国产精品美女久久| 亚洲长腿丝袜中文字幕| 一本一道久久a久久精品综合蜜桃| 久久精品中文字幕极品| 野外性史欧美k8播放| 久久婷婷人人澡人人喊人人爽| 蜜桃视频网站在线观看一区| 国产亚洲一区二区三区成人 | 欧美一级色图| 一本色道久久综合亚洲精品不卡| 中文字幕色av一区二区三区| 国产黑丝美女办公室激情啪啪| 国产性感主播一区二区| 亚洲欧美国产成人综合不卡| 在线亚洲综合| 装睡被陌生人摸出水好爽| 蜜桃日本免费看mv免费版| 国产欧美日韩一区二区加勒比| 亚洲丰满熟女一区二亚洲亚洲| 国产免费99久久精品| 青青草免费高清视频在线观看| 无码人妻丝袜在线视频|