朱薈云,吳 芳,吳江東,張 杰,董江濤,章 樂(lè),張 帥,張大龍,武青青,張萬(wàn)江
?
類泛素-蛋白酶體系統(tǒng)和藥物外排泵抑制劑對(duì)結(jié)核分枝桿菌單純利福平耐藥性影響的研究
朱薈云1,吳 芳1,吳江東1,張 杰2,董江濤3,章 樂(lè)1,張 帥1,張大龍4,武青青4,張萬(wàn)江1
目的 探討類泛素-蛋白酶體系統(tǒng)對(duì)結(jié)核分枝桿菌單純利福平耐藥性的影響。方法 采用刃天青顯色法檢測(cè)利福平對(duì)結(jié)核分枝桿菌的最低抑菌濃度(minimum inhibitory concentration,MIC),比較分析結(jié)核分枝桿菌Pup、Dop、PafA、Mpa基因的過(guò)表達(dá)或缺失突變對(duì)結(jié)核分枝桿菌利福平MIC的差異;檢測(cè)分別加入羰基氰氯苯腙、利血平、維拉帕米和氯丙嗪4種外排泵抑制劑前后各菌株對(duì)利福平MIC的影響。結(jié)果 結(jié)核分枝桿菌Pup、Dop、PafA和Mpa基因的過(guò)表達(dá)均能增強(qiáng)單純耐利福平結(jié)核分枝桿菌對(duì)利福平的耐藥性,而Pup、Mpa、Dop和PafA基因的缺失均能顯著降低單純耐利福平結(jié)核分枝桿菌對(duì)利福平的耐藥性,P值均<0.05。4種藥物外排泵抑制劑能不同程度的降低各過(guò)表達(dá)菌株對(duì)利福平的MIC,P值均<0.05,并且,類泛素-蛋白酶體系統(tǒng)與外排泵抑制劑之間存在一定交互作用。結(jié)論 類泛素-蛋白酶體系統(tǒng)對(duì)結(jié)核分枝桿菌單純利福平耐藥性的產(chǎn)生有影響;類泛素-蛋白酶體系統(tǒng)可能通過(guò)調(diào)控外排相關(guān)通路蛋白來(lái)影響結(jié)核分枝桿菌單純利福平耐藥性的產(chǎn)生。
結(jié)核分枝桿菌;類泛素-蛋白酶體系統(tǒng);利福平;最小抑菌濃度;藥物外排泵;耐藥性
結(jié)核病(Tuberculosis,TB)是一種由結(jié)核分枝桿菌(Mycobacteriumtuberculosis,MTB)引起的一種感染性疾病,也是一種人獸共患病。半個(gè)世紀(jì)前由于使用了抗結(jié)核藥物,結(jié)核病疫情得到一定的控制[1]。然而,由于耐藥結(jié)核病,特別是耐多藥(multi-drug resistant,MDR)結(jié)核病的出現(xiàn),影響了結(jié)核病的有效治療和控制[2]。我國(guó)結(jié)核病利福平(rifampin ,RFP)耐藥率為9.63%,高于全球平均水平[3]。因此,本文將探討研究耐利福平結(jié)核桿菌耐藥機(jī)制。
2008 年,Pearce等人[4]在結(jié)核桿菌中發(fā)現(xiàn)了分枝桿菌蛋白酶體降解信號(hào)原核類泛素蛋白(Prokaryotic ubiquitin-like,Pup) ,結(jié)核桿菌的Pup與結(jié)核桿菌蛋白酶體組成了結(jié)核桿菌Pup-蛋白酶體系統(tǒng) (Pup-poroteasome system,PPS) 。Pup在輔助因子蛋白酶體關(guān)聯(lián)ATP酶(Mycobacterium proteasomal ATPase,Mpa)、蛋白酶體輔助因子A(proteasome accessory factor A,PafA)和Pup脫酰胺酶(deamidase of Pup,Dop)的輔助作用下將底物蛋白傳遞到蛋白酶體內(nèi)進(jìn)行降解或者參與廣泛的調(diào)控作用。結(jié)核分枝桿菌的蛋白酶水解功能依賴ATP,這一過(guò)程對(duì)病原體的毒力是必不可少的[5]。
本課題組前期的研究結(jié)果表明,類泛素-蛋白酶體系統(tǒng)中的Pup基因、Dop基因、PafA基因和Mpa基因?qū)Y(jié)核分枝桿菌的耐藥性有影響[6],但是具體機(jī)制尚不明確。本研究通過(guò)應(yīng)用4種不同外排泵抑制劑,調(diào)控外排泵的功能,來(lái)觀察各結(jié)核桿菌菌株的MTB PPS對(duì)利福平藥物敏感性的影響,探討MTB PPS對(duì)單純耐利福平MTB耐藥性的影響及其機(jī)制,為揭示結(jié)核桿菌的耐藥機(jī)制提供理論依據(jù)。
1.1 菌株 單純耐利福平結(jié)核桿菌臨床分離株、Pup基因、Dop基因、Mpa基因、PafA基因過(guò)表達(dá)的耐利福平結(jié)核桿菌菌株(rRFP-MTB::Pup菌株、rRFP-MTB::Dop菌株、rRFP-MTB::Mpa菌株、rRFP-MTB::PafA菌株)、Pup基因、Dop基因、Mpa基因、PafA基因缺失突變的耐利福平結(jié)核桿菌菌株(RFP-MTB△Pup菌株、RFP-MTB△Dop菌株、RFP-MTB△Mpa菌株、RFP-MTB△PafA菌株)由本實(shí)驗(yàn)室構(gòu)建、鑒定和保存。
1.2 試劑 利福平購(gòu)自Sigma公司,羰基氰氯苯腙、利血平、維拉帕米和氯丙嗪購(gòu)自上海信誼藥廠有限公司,刃天青購(gòu)自上海Aladdin有限公司,二甲基亞楓購(gòu)自山西太谷化工廠,10%的醋酸購(gòu)自天津市坤華化工有限公司,Tween 80購(gòu)自天津化學(xué)試劑廠,生理鹽水購(gòu)自上海生物工程有限公司,胰蛋白胨OXOID、酵母提取物OXOID購(gòu)自英國(guó)Tryptone 公司,OADC細(xì)菌增菌液、羅氏固體培養(yǎng)基和7H9培養(yǎng)基購(gòu)自美國(guó)BD公司。
1.3 繪制各菌株的生長(zhǎng)曲線分別挑取羅氏固體培養(yǎng)基上生長(zhǎng)良好的RFP MTB菌株、4種MTB PPS過(guò)表達(dá)的耐利福平結(jié)核桿菌菌株(rRFP-MTB::Pup菌株、rRFP-MTB::Dop菌株、rRFP-MTB::Mpa菌株、rRFP-MTB::PafA菌株)4種MTBPPS缺失突變的耐利福平結(jié)核桿菌菌株(rRFP-MTB△Pup菌株、rRFP-MTB△Dop菌株、rRFP-MTB△Mpa菌株、rRFP-MTB△PafA菌株)單一菌落,接種于7H9液體培養(yǎng)基,37 ℃搖床培養(yǎng),每3 d取1次菌液,測(cè)定菌液在波長(zhǎng)600 nm處的吸光度(A)值。以培養(yǎng)時(shí)間為橫坐標(biāo),A600值為縱坐標(biāo),繪制各菌株生長(zhǎng)曲線,觀察各菌株的生長(zhǎng)特點(diǎn)。
1.4 MIC測(cè)定
1.4.1 操作程序 參考Franzblau SG方法[7],并在此基礎(chǔ)上稍加改進(jìn)。在一次性無(wú)菌96孔培養(yǎng)板(1~10孔)中每孔加7H9液體培養(yǎng)基工作液100 μL。第1孔加適當(dāng)稀釋的抗結(jié)核藥原液 100 μL,雙倍連續(xù)稀釋至第 8孔,使各孔藥物終濃度為RFP8-0.06 μg/mL,第9孔為不含抗菌藥物的生長(zhǎng)對(duì)照孔。
1.4.2 MIC值 刃天青顯色法檢測(cè)RFP-MTB菌株、MTB PPS過(guò)表達(dá)結(jié)核桿菌菌株、MTB PPS缺失突變結(jié)核桿菌菌株MIC值。
1.4.3 藥物外排泵抑制劑對(duì)各菌株MIC的影響測(cè)定 試驗(yàn)前,在96孔板中加入4種外排泵抑制劑,使藥物外排泵抑制劑羰基氰氯苯腙、利血平、維拉帕米和氯丙嗪的終濃度分別為0.05 μg/mL、6 μg/mL、64 μg/mL、4 μg/mL。4種藥物外排泵抑制劑濃度參考文獻(xiàn)[8]并根據(jù)預(yù)實(shí)驗(yàn)確定。
1.5 統(tǒng)計(jì)學(xué)分析 采用SPSS 19.0統(tǒng)計(jì)軟件,采用成對(duì)樣本t檢驗(yàn),比較單純耐利福平結(jié)核桿菌臨床分離株、4種MTB PPS過(guò)表達(dá)的耐利福平結(jié)核桿菌菌株、4種MTB PPS缺失突變的耐利福平結(jié)核桿菌菌株MIC值,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。采用析因設(shè)計(jì),分析在加入不同濃度羰基氰氯苯腙(carbonyl cyanidem-chlorophenyl hydrazine,CCCP)、利血平(reserpine,RP)、維拉帕米(verapamil,VP)和氯丙嗪(chlorpromazine,CPZ)上述各菌株MIC值,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 各菌株的生長(zhǎng)曲線 RFP-MTB菌株培養(yǎng)3 d后即進(jìn)入對(duì)數(shù)生長(zhǎng)期,培養(yǎng)24 d后進(jìn)入生長(zhǎng)穩(wěn)定期。rRFP-MTB::Pup菌株、RFP-MTB△Pup菌株、rRFP-MTB::Dop菌株、RFP-MTB△Dop菌株、rRFP-MTB::Mpa菌株、rRFP-MTB△Mpa菌株、rRFP-MTB::PafA菌株、rRFP-MTB△PafA菌株培養(yǎng)6 d后即進(jìn)入對(duì)數(shù)生長(zhǎng)期,培養(yǎng)24 d后進(jìn)入生長(zhǎng)穩(wěn)定期。rRFP-MTB::Pup菌株、RFP-MTB△Pup菌株、rRFP-MTB::Dop菌株、RFP-MTB△Dop菌株、rRFP-MTB::Mpa菌株、RFP-MTB△Mpa菌株、rRFP-MTB::PafA菌株、RFP-MTB△PafA菌株的適應(yīng)期較RFP-MTB菌株長(zhǎng),生長(zhǎng)周期基本相近,為30 d左右。(圖1)
a.RFP-MTB菌株、rRFP-MTB::Pup菌株、RFP-MTB△Pup菌株的生長(zhǎng)曲線;b. RFP-MTB菌株、rRFP-MTB::Dop菌株、RFP-MTB△Dop菌株的生長(zhǎng)曲線;c. RFP-MTB菌株、rRFP-MTB::Mpa菌株、RFP-MTB△Mpa菌株的生長(zhǎng)曲線;d. RFP-MTB菌株、rRFP-MTB::PafA菌株、RFP-MTB△PafA菌株的生長(zhǎng)曲線。
a.The growth curve of RFP-MTB strains,rRFP-MTB::Pupstrains,RFP-MTB△Pupstrains;b.The growth curve of RFP-MTB strains,rRFP-MTB::Dopstrains,RFP-MTB△Dopstrains;c.The growth curve of RFP-MTB strains,rRFP-MTB::Mpastrains,RFP-MTB△Mpastrains;d.The growth curve of RFP-MTB strains,rRFP-MTB::PafAstrains,RFP-MTB△PafAstrains.
圖1 試驗(yàn)菌株生長(zhǎng)曲線
Fig.1 The growth curve of test strains
2.2 各菌株的利福平MIC結(jié)果rRFP-MTB::Pup菌株、rRFP-MTB::Dop菌株、rRFP-MTB::Mpa菌株rRFP-MTB::PafA菌株MIC與RFP-MTB菌株MIC相比明顯增高,rRFP-MTB△Pup菌株、rRFP-MTB△Dop菌株、rRFP-MTB△Mpa菌株、rRFP-MTB△PafA菌株MIC與RFP-MTB菌株MIC相比差異均具有統(tǒng)計(jì)學(xué)意義(P<0.01)。(圖2)
a. rRFP-MTB::Pup菌株、RFP-MTB△Pup菌株MICs與單純耐利福平的MTB MIC的比較;b. rRFP-MTB::Dop菌株、RFP-MTB△Dop菌株MICs與單純耐利福平的MTB MIC的比較;c. rRFP-MTB::Mpa菌株、RFP-MTB△Mpa菌株MICs與單純耐利福平的MTB MIC的比較;d. rRFP-MTB::PafA菌株、RFP-MTB△PafA菌株MICs與單純耐利福平的MTB MIC的比較**與對(duì)照組MIC比較,P<0.01a. Comparison of rRFP-MTB::Pup strains,RFP-MTB△Pup strains and the RFP-MTB MICs resistance to rifampin;b. Comparison of rRFP-MTB::Dop strains, RFP-MTB△Dop strains and the RFP-MTB MICs resistance to rifampin;c. Comparison of rRFP-MTB::Mpa strains, RFP-MTB△Mpa strains and the RFP-MTB MICs resistance to rifampin;d. Comparison of rRFP-MTB::PafA strains, RFP-MTB△PafA strains and the RFP-MTB MICs resistance to rifampin;** compared to the control MIC, P<0.01圖2 各菌株MICs與單純耐利福平的MTB MICs的比較Fig.2 Comparison of different strains and the RFP-MTB MICs resistance to rifampin
2.3 4種外排泵抑制劑對(duì)各過(guò)表達(dá)菌株的利福平MIC的影響 CCCP的終濃度為0.05 μg/mL時(shí),利福平對(duì)RFP-MTB的MIC由2.0 μg/mL降低至0.075 μg/mL。RP的終濃度為6 μg/mL時(shí),RP對(duì)RFP-MTB的MIC由2.0 μg/mL降低至0.9 μg/mL。VP的終濃度為64 μg/mL時(shí),利福平對(duì)RFP-MTB的MIC降低至0.3 μg/mL。CPZ的終濃度為4 μg/mL時(shí),利福平對(duì)RFP-MTB的MIC由2.0 μg/mL降低至1.2 μg/mL。在使用4種外排泵抑制劑之后,利福平對(duì)rRFP-MTB::Pup、rRFP-MTB::Dop、rRFP-MTB::Mpa、rRFP-MTB::PafA的MIC都有所降低。與RFP-MTB菌株相比,Pup基因過(guò)表達(dá)可以使利福平的MIC由2.0 μg/mL升高至3.6 μg/mL,在加入外排泵抑制劑之后,利福平的MIC降低,最低為0.113 μg/mL。與RFP-MTB菌株相比,Dop基因過(guò)表達(dá)可以使利福平的MIC升高至7.2 μg/mL,在加入終濃度為0.05 μg/mL的RP時(shí),利福平的MIC可降低至0.15 μg/mL。Mpa基因過(guò)表達(dá)可以使利福平的MIC升高為3.4 μg/mL,在使用外排泵抑制劑之后,利福平的MIC最低可降至0.225 μg/mL。PafA基因過(guò)表達(dá)可以使利福平的MIC顯著升高,在加入外排泵抑制劑之后,利福平的MIC也出現(xiàn)不同程度的降低(圖2、圖3)。通過(guò)SPSS析因分析,發(fā)現(xiàn)Pup基因、Mpa基因、Mpa基因、PafA基因與CCCP、RP、VP和CPZ 4種外排泵藥物之間,存在一定的交互作用。
注: *與對(duì)照組MIC比較,P<0.05Compared to the control MIC,P<0.05圖3 4種外排泵抑制劑對(duì)過(guò)表達(dá)各菌株的利福平MIC值Fig.3 Four kinds of efflux pump inhibitors on expression of various strains of rifampin MICs value
原核生物分枝桿菌屬中廣泛存在一種類似真核生物泛素-蛋白酶體系統(tǒng)的蛋白降解系統(tǒng),命名為類泛素-蛋白酶體系統(tǒng)。在類泛素-蛋白酶體系統(tǒng)中,通過(guò)輔助因子的作用,Pup可標(biāo)記多種功能蛋白,并介導(dǎo)被標(biāo)記的蛋白通過(guò)蛋白酶體降解。其中標(biāo)記的靶蛋白廣泛參與了信號(hào)通路等細(xì)菌生命活動(dòng)的各個(gè)環(huán)節(jié),多個(gè)與此系統(tǒng)相關(guān)基因的突變會(huì)導(dǎo)致結(jié)核分枝桿菌對(duì)NO的敏感性增加,同時(shí)降低了結(jié)核分枝桿菌的存活率。
Pup-蛋白酶體系統(tǒng)選擇性降解蛋白質(zhì)的過(guò)程:Pup側(cè)鏈末端的谷氨酰胺在連接作用之前首先被Dop脫去酰胺基后變成谷氨酸(此過(guò)程需要與ATP的結(jié)合但不是其水解作用)[9],然后在PafA的催化下谷氨酸的1個(gè)羧基通過(guò)異肽鍵連接到底物賴氨酸上。與底物的賴氨酸相連接的可能是α-羧基也可能是γ-羧基(此過(guò)程需要ATP的水解作用)[10]。最后,MTB蛋白酶體的Mpa負(fù)責(zé)將底物運(yùn)載到蛋白酶體內(nèi)使其降解[11]。Pup羧基末端的螺旋部分會(huì)與Mpa氨基末端卷曲螺旋區(qū)域相互作用[12]。Chen X等[13]發(fā)現(xiàn),PafA在PPS系統(tǒng)中可自動(dòng)調(diào)節(jié),自身可發(fā)生pup化。
本研究結(jié)果顯示,與單純耐利福平MTB相比,過(guò)表達(dá)Pup、Dop、PafA和Mpa基因均能夠使單純耐利福平的結(jié)核桿菌對(duì)利福平的耐藥性增強(qiáng)。缺失Pup基因、Mpa基因、Dop基因、PafA基因均能顯著降低單純耐利福平MTB對(duì)利福平的耐藥性。據(jù)報(bào)道Pup能夠?qū)?MTB 中待降解的蛋白質(zhì)進(jìn)行識(shí)別和修飾,并將修飾好的靶蛋白帶入蛋白酶體進(jìn)行降解[14]。
CCCP是最典型的質(zhì)子泵抑制劑,為一種抑制質(zhì)子轉(zhuǎn)運(yùn)的解耦聯(lián)劑,可以抑制主動(dòng)外排系統(tǒng)能量來(lái)源的質(zhì)子濃度梯度,導(dǎo)致轉(zhuǎn)運(yùn)蛋白失去能量供應(yīng),破壞外排系統(tǒng)的主動(dòng)外排作用,表現(xiàn)為藥物在細(xì)菌中的蓄積顯著增加,恢復(fù)細(xì)菌對(duì)藥物的敏感性[15]。目前CCCP已是研究外排耐藥系統(tǒng)必不可少的工具試劑,能顯著降低耐藥菌的MIC,幾乎成為判斷主動(dòng)外排系統(tǒng)存在的標(biāo)志,但是其本身具有一定毒副作用。鄒永勝等[16]研究發(fā)現(xiàn),主動(dòng)外排泵抑制劑 CCCP 可以使氟喹諾酮類抗菌藥物對(duì) MDR大腸埃希菌的 MIC 降低。本實(shí)驗(yàn)結(jié)果顯示,加入CCCP終濃度為0.05 μg/mL時(shí),實(shí)驗(yàn)組MIC的變化范圍有不同程度的降低。通過(guò)析因分析發(fā)現(xiàn)PPS系統(tǒng)與CCCP之間存在一定交互作用,說(shuō)明PPS系統(tǒng)可能通過(guò)影響外排泵功能發(fā)揮作用。CCCP可以阻斷菌體表面蛋白能量的供應(yīng),使外排泵無(wú)法正常工作,藥物不被外排而蓄積于菌體內(nèi),也有可能使得ATP依賴的MTB PPS系統(tǒng)無(wú)法降解相關(guān)蛋白,從而提高結(jié)核分枝桿菌對(duì)藥物的敏感性。目前CCCP還沒(méi)有成功應(yīng)用于臨床,究其原因,主要是因?yàn)槭褂脛┝枯^大,副作用大,對(duì)機(jī)體存在毒性傷害。
RP為一種抗高血壓藥物, 對(duì)結(jié)核分枝桿菌無(wú)殺菌或抑菌作用,但它是一種細(xì)菌的外排泵抑制劑已得到證實(shí)。它屬于吲哚生物堿類,主要通過(guò) ATP 水解釋能途徑減少細(xì)菌能量供應(yīng),從而減少細(xì)菌對(duì)底物的外排使細(xì)菌恢復(fù)對(duì)藥物的敏感性[17]。Pup和ATP蛋白水解酶體在序列上的高度保守,以及折疊Pup被誘導(dǎo)的結(jié)合反應(yīng),作為一種普遍的識(shí)別機(jī)制,存在于細(xì)菌的蛋白酶體系統(tǒng)中。2013年,周云等[18]在體外用4種外排泵抑制劑對(duì)鮑曼不動(dòng)桿菌的耐藥性進(jìn)行實(shí)驗(yàn),發(fā)現(xiàn)對(duì)細(xì)菌耐藥有明顯的逆轉(zhuǎn)作用。有關(guān)報(bào)道,利血平對(duì)于MFS及ABC型外排泵具有抑制作用。本實(shí)驗(yàn)中,外排系統(tǒng)與PPS系統(tǒng)存在交互作用,可能是因?yàn)镸TB PPS降解過(guò)程中需要ATP的參與。
VP是罌粟堿的衍生物,是一種質(zhì)子梯度依賴泵抑制劑,也是一種鈣離子通道阻滯劑。蘇啟表等人[19]的研究結(jié)果顯示,在脂多糖誘導(dǎo)產(chǎn)生的全身性急性炎癥狀態(tài)下,以上2個(gè)步驟均參與了大鼠肝P-gp的翻譯后修飾過(guò)程。本研究結(jié)果顯示,PPS系統(tǒng)與維拉帕米之間存在一定的交互作用,提示可能PPS系統(tǒng)調(diào)控了有關(guān)外排通路。張志剛等人[20]提出,外源性野生型泛素基因轉(zhuǎn)染腫瘤細(xì)胞及應(yīng)用糖化抑制劑抑制P-gP蛋白糖化過(guò)程均可增加P-gP的泛素化和蛋白降解,反之應(yīng)用蛋白酶體阻斷劑則可減少P-gP降解,使已泛素化的P-gP增加。同時(shí),泛素化增強(qiáng)可使腫瘤細(xì)胞P-gP功能下降及其對(duì)抗腫瘤藥物敏感性增強(qiáng)。但維拉帕米在作為外排泵抑制劑使用時(shí)所需劑量較高,容易發(fā)生心血管系統(tǒng)的不良反應(yīng),從而限制了其臨床應(yīng)用。加入維拉帕米后,MTB PPS系統(tǒng)的MIC值發(fā)生顯著降低,提示P糖蛋白可能參與MTB的外排轉(zhuǎn)運(yùn)過(guò)程。
CPZ屬于吩噻嗪類藥物,是一種強(qiáng)效的抗焦慮和抗抑郁藥物。甲硫達(dá)嗪作用機(jī)理同氯丙嗪。Daniel等[21]在實(shí)驗(yàn)中發(fā)現(xiàn)吩噻嗪類化合物能抑制抗凋亡基因 NF-κB。王騫等人[22]的研究表明,NF-κB途徑參與結(jié)核炎癥反應(yīng)。提示,MTB PPS系統(tǒng)可能通過(guò)調(diào)控相關(guān)通路,影響細(xì)菌耐藥性。
細(xì)菌對(duì)進(jìn)入菌體的抗生素進(jìn)行主動(dòng)外排作用是細(xì)菌產(chǎn)生耐藥性的一個(gè)重要機(jī)制[23]。2009 年,F(xiàn)esta 等[24]采用串聯(lián)親和層析和質(zhì)譜分析法對(duì) MTB 中的Pup標(biāo)記蛋白進(jìn)行了系統(tǒng)分析,共發(fā)現(xiàn)有55個(gè)被Pup標(biāo)記的靶蛋白,這些蛋白涉及物質(zhì)中間代謝、信號(hào)通路、毒性與抗毒性因子、細(xì)胞壁和細(xì)胞膜組分等多個(gè)方面。鑒于這些Pup-蛋白酶體系統(tǒng)底物蛋白的生理功能,Pup-蛋白酶體系統(tǒng)可以通過(guò)調(diào)控蛋白質(zhì)降解,在MTB的生長(zhǎng)調(diào)控和致病性中發(fā)揮重要作用。本研究發(fā)現(xiàn)MTB PPS系統(tǒng)可能與外排泵相關(guān),利用pupylation網(wǎng)站和pupdb數(shù)據(jù)庫(kù),研究探討MTB PPS影響利福平耐藥性的靶蛋白為結(jié)核病的耐藥機(jī)制,疫苗的研制提供基礎(chǔ)。
[1] Wade MM,Zhang Y. Mechanisms of drug resistance inMycobacteriumtuberculosis[J]. Front Biosci,2004,9: 975-994. DOI: 10.1016/j.jgg.2016.10.002
[2] Kurz SG,F(xiàn)urin JJ,Bark CM. Drug-resistant tuberculosis: Challenges and progress[J]. Infect Dis Clin North Am,2016,30(2): 509-522. DOI: 10.1016/j.idc.2016.02.010
[3] Yin L,Xiao DL,Wang WJ,et al. A baseline survey of drug resistance in the whole nation[M]. Beijing: People’s Medical Publishing House,2010: 48-52. (in Chinese)
尹力,肖東樓,王文杰,等.全國(guó)結(jié)核病耐藥性基線調(diào)查報(bào)告[M].北京:人民衛(wèi)生出版社,2010:48-52.
[4] Pearce MJ,Mintseris J,F(xiàn)erreyra J,et al. Ubiquitin-like protein involved in the proteasome pathway ofMycobacteriumtuberculosis[J]. Science,2008,322(5904): 1104-1107. DOI: 10.1126/science.1163885
[5] Zhang YQ,Zhang WJ. Research progress about the relationship between the pup-proteasome system and the pathogenicity ofMycobacteriumtuberculosis[J]. Chin J Zoonoses,2014,30(9): 971-977. DOI:10.3969/j.issn.1002-2694.2014.09.020(in Chinese)
張玉清,張萬(wàn)江. 泛素樣蛋白-蛋白酶體系統(tǒng)與結(jié)核分枝桿菌致病性的相關(guān)性研究進(jìn)展[J].中國(guó)人獸共患病學(xué)報(bào),2014,30(9): 971-977.
[6] He L,Zhu B,Zhang WJ,et al. Study on the gene expression of the ubiquitin like protein (Pup)-proteasome system of drug resistantMycobacteriumtuberculosis[J]. Chin J Immunol,2015: 31(6):741-747. (in Chinese)
何麗,朱彬,張萬(wàn)江,等.耐藥結(jié)核桿菌原核類泛素蛋白(Pup)-蛋白酶體系統(tǒng)基因表達(dá)的研究[J].中國(guó)免疫學(xué)雜志,2015:31(6):741-747.
[7] Franzblau SG,Witzig RS,McLaughlin JC,et al. Rapid,low-technology MIC determination with clinicalMycobacteriumtuberculosisisolates by using the microplate Alamar Blue assay[J]. J Clin Microbiol,1998,36(2): 362-366.
[8] Fan GR,Yang ZB,Huang J,et al. Study on mechanism of rifampin resistantMycobacteriumabscess[J]. Chin J Zoonoses,2013,(12): 1172-1176. DOI:10.3969/j.issn.1002-2694.2013.12.009(in Chinese)
范貴榮,楊致邦,黃進(jìn),等.膿腫分枝桿菌耐利福平機(jī)制的研究[J].中國(guó)人獸共患病學(xué)報(bào),2013(12): 1172-1176.
[9] Striebel F,Imkamp F,Sutter M,et al. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes[J]. Nat Struct Mol Biol,2009,16(6): 647-651. DOI: 10.1038/nsmb.1597
[10] Kraut DA,Matouschek A. Pup grows up:invitrocharacterization of the degradation of pupylated proteins[J]. EMBO J,2010,29(7): 1163-1164. DOI: 10.1038/emboj.2010.40
[11] Sutter M,Striebel F,Damberger FF,et al. A distinct structural region of the prokaryotic ubiquitin-likeprotein (Pup) is recognized by the N-terminal domain of theproteasomal ATPase Mpa[J]. FEBS Lett,2009,583(19): 3151-3157. DOI: 10.1016/j.febslet.2009.09.020
[12] Imkamp F,Ziemski M,Weber-Ban E. Pupylation-dependent and independent proteasomal degradation in mycobacteria[J]. Biomol Concepts,2015,6(4): 285-301. DOI: 10.1515/bmc-2015-0017
[13] Chen X,Li C,Wang LL,et al. The mechanism ofMycobacteriumsmegmatisPafA self-Pupylation[J]. PLoS One,2016,11(3): 1-16. DOI: 10.1371/journal.pone.0151021
[14] Zhang Z,Liu ZQ,Zheng PY,et al. Influence of efflux pump inhibitors on the multidrug resistance ofHelicobacterpylori[J]. World J Gastroenterol,2010,16(10): 1279-1284.
[15] Aeschlimann JR,Dresser LD,Kaatz GW,et al. Effects of NorA inhibitors oninvitroantibacterial activities and postantibiotic effects of levofloxacin,ciprofloxacin,and norfloxacin in genetically related strains ofStaphylococcusaureus[J]. Antimicrob Agents Chemother,1999,43(2): 335-340.
[16] Zou YS,Wang X,Huang YM,et al. Efflux pump inhibitor carbonyl cyanide m-chlorophenylhydrazone effect of drug resistance on multiresistantEscherichiacoli[J]. Infect Dis Informat,2013(1): 29-31. (in Chinese)
鄒永勝,王旭,黃永茂,等.外排泵抑制劑羰酰氰間氯苯腙對(duì)多重耐藥大腸埃希菌的耐藥性影響[J].傳染病信息,2013(1):29-31.
[17] Brown MH,Panlsen IT,Slurray RA. The multidrug effluxprotein Nor M is a prototype of a new family of transporters[J]. Mol Microbiol,1999,31(1): 394-395.
[18] Zhou Y,Ling BD. Four efflux pump inhibitorAcinetobacterresistance to the Bauman effect of inhibiting[J]. Chin J Antibiotics,2013,38(6): 461-466. (in Chinese)
周云,凌保東.4種外排泵抑制劑對(duì)鮑曼不動(dòng)桿菌耐藥性的抑制影響[J].中國(guó)抗生素雜志,2013,38(6):461-466.
[19] Su QB,Wei GN,Wang LY,et al. Ubiquitin proteasome system involved in the expression of P-protein in rat liver in acute inflammation state[J]. Chin J Clin Pharmacol,2016,(16): 28. (in Chinese)
蘇啟表,韋桂寧,王來(lái)友,等.泛素-蛋白酶體系統(tǒng)參與急性炎癥狀態(tài)下大鼠肝P-糖蛋白表達(dá)下調(diào)[J].中國(guó)臨床藥理學(xué)雜志.2016(16):28.
[20] Zhang ZG,Yang JM,Hait WN. The effects of ubiquitin regulation on the stability and function of tumor cell drug resistance gene protein[C]. The 2005 Academic Annual Conference of the Chinese Society of Medicine.Yichang:Chinese Pathological Society,2005(4): 70. (in Chinese)
張志剛,楊金銘,William N.Hait.泛素化調(diào)節(jié)對(duì)腫瘤細(xì)胞耐藥基因蛋白P-gp的穩(wěn)定型和功能的影響[C].中華醫(yī)學(xué)會(huì)病理學(xué)分會(huì)2005年學(xué)術(shù)年會(huì)論文匯編.宜昌:中華醫(yī)學(xué)會(huì)病理學(xué)分會(huì),2005(4): 70.
[21] Nagel D,Spranger S,Vincendeau M,et al. Pharmacologic inhibition of MALT1 protease by phenothiazines as a therapeutic approach for the treatment of aggressive ABC-DLBCL[J]. Cancer Cell,2012,22(6): 825-837. DOI: 10.1016/j.ccr.2012.11.002
[22] Wang Q,Niu NK,Wang ZL,et al. Experimental study on 2KLF4 regulation of the TLR-2/ p38MAPK / NF-κB the signaling pathway in the pathogenesis of spinal tuberculosis[J]. Chin J Orthopaed Surg,2016,24(7): 636-642. (in Chinese)
王騫,牛寧奎,王自立,等.2KLF4 調(diào)控的TLR-2/ p38MAPK / NF-κB 信號(hào)通路在脊柱結(jié)核發(fā)病機(jī)制中的實(shí)驗(yàn)研究[J].中國(guó)矯形外科雜志,2016,24(7): 636-642.
[23] Aygul A. The importance of efflux systems in antibiotic resistance and eddlux pump inhibitors in the man-agement of resistance[J]. Mikrobiyol Bul,2015,49(2): 278-291.
[24] Festa RA,McAllister F,Pearce MJ,et al. Prokayrotic ubiquitin-like protein proteome ofMycobacteriumtuberculosis[J]. PLoS One,2010,5(1): e8589. DOI: 10.1371/journal.pone.0008589
Effects of theMycobacteriumtuberculosisprokaryotic ubiquitin-like protein-proteasome system on the mono-resistant to rifampin resistance toMycobacteriumtuberculosis
ZHU Hui-yun1,WU Fang1,WU Jiang-dong1,ZHANG Jie2,DONG Jiang-tao3,ZHANG Le1, ZHANG Shuai1,ZHANG Da-long4,WU Qing-qing4,ZHANG Wan-jiang1
(1.DepartmentofPathophysiology,ShiheziUniversitySchoolofMedicine/TheKeyLaboratoryofXinjiangEndemicandEthnicDiseases/CollaborativeInnovationCenterofHighIncidenceofZoonosesCommunicableDiseasePreventionintheWesternRegion,Shihezi832002,China;2.EmergencySurgeryDepartment,theFirstAffiliatedHospitalofShiheziUniversityMedicalCollege,Shihezi832002,China;3.DepartmentofNeurosurgery,theFirstAffiliatedHospitalofShiheziUniversityMedicalCollege,Shihezi832002,China; 4.DepartmentofCriticalMedicine,theFirstAffiliatedHospitalofShiheziUniversityMedicalCollege,Shihezi832002,China)
We studied the effect of theMycobacteriumtuberculosisprokaryotic ubiquitin-like protein-proteasome system on mono-resistant to rifampin resistance toM.tuberculosis. A resazurin-based assay was employed to evaluate minimum inhibitory concentration (MIC) and comparative research on mono-resistant to rifampin MTB withPup,Dop,PafA,Mpagenes expression and deletion of the difference. Above testing strains,respectively,carbonyl cyanide chlorobenzene hydrazone (CCCP),reserpine (RP),verapamil (VP) and chlorpromazine (CPZ) were tested. We compared and analyzed the change of rifampicin MICs on the various strains. Compared with rifampin resistant MTB,overexpression ofPup,Dop,PafAandMpagenes were able to make mono-rifampicin ofM.tuberculosisto enhance resistance to rifampin. Deletion ofPupgene,Mpagene,Dopgene,PafAgene significantly decreased the resistance to rifampicin alone MTB,and thePvalue was <0.05. Results indicated that 4 kinds of efflux pump inhibitors can reduce the degree of rifampin MIC in different strains. Through the factorial analysis,there were some interactions between MTB and PPS efflux pump inhibitors,and thePvalue was <0.05. MTB PPS has influence on mono-rifampin resistance to MTB and it may regulate the efflux pathway related protein to influence its resistance.
Mycobacteriumtuberculosis; prokaryotic ubiquitin-like protein-proteasome system; rifampin; minimum inhibitory concentration; active efflux; drug resistance
Zhang Wan-jiang; Email: zwj1117@126.com
國(guó)家自然科學(xué)基金資助項(xiàng)目(No.81260261,No.81160192);石河子大學(xué)高層次人才科研啟動(dòng)項(xiàng)目(No.RCZX201446)
張萬(wàn)江,Email: zwj1117@126.com
1.石河子大學(xué)醫(yī)學(xué)院病理生理學(xué)教研室/《新疆地方與民族高發(fā)病》教育部重點(diǎn)實(shí)驗(yàn)室/《西部地區(qū)高發(fā)人獸共患傳染性疾病防治》協(xié)同創(chuàng)新中心,石河子 832002; 2.石河子大學(xué)醫(yī)學(xué)院第一附屬醫(yī)院急診外科,石河子 832002; 3.石河子大學(xué)醫(yī)學(xué)院第一附屬醫(yī)院神經(jīng)外科,石河子 832002; 4.石河子大學(xué)醫(yī)學(xué)院第一附屬醫(yī)院重癥醫(yī)學(xué)科,石河子 832002
10.3969/j.issn.1002-2694.2017.07.009
R378.91
A
1002-2694(2017)07-0617-07
2016-10-24 編輯:張智芳
Supported by the National Natural Science Foundation (Nos. 81260261,81160192) and the High-level Personnel Scientific Research Projects of Shihezi University (No. RCZX201446)