劉 念,李玉紅,2,鄭恩金,高大慶,陸承平
?
基于RNA-seq分析Eha調(diào)控遲緩愛(ài)德華菌抵抗酸化的作用
劉 念1,李玉紅1,2,鄭恩金1,高大慶1,陸承平3
目的 Eha是一個(gè)影響遲緩愛(ài)德華菌(Et)胞內(nèi)生存的轉(zhuǎn)錄調(diào)控因子,本研究有助于揭示其調(diào)控Et抵御酸的分子機(jī)制。方法 用ATPase 抑制劑洛霉素A1抑制巨噬細(xì)胞的酸化,菌落計(jì)數(shù)法比較酸化對(duì)野生株和eha基因缺失株胞內(nèi)存活數(shù)目的影響;比較兩種細(xì)菌在酸性應(yīng)激實(shí)驗(yàn)中存活率的差異;構(gòu)建pMP220-PehaLacZ質(zhì)粒,采用β-半乳糖苷酶實(shí)驗(yàn)檢測(cè)eha基因的啟動(dòng)子在不同酸性pH值下和不同培養(yǎng)時(shí)間的轉(zhuǎn)錄活性;選擇Eha轉(zhuǎn)錄水平最高的一個(gè)酸性pH值和培養(yǎng)時(shí)間,分別提取兩種細(xì)菌RNA,進(jìn)行RNA-Sequencing;并用qRT-PCR驗(yàn)證其結(jié)果。結(jié)果 野生株ET13在巨噬細(xì)胞內(nèi)和不同pH酸環(huán)境中的存活率明顯高于缺失株,阻止酸化胞內(nèi)菌數(shù)明顯高于未阻止酸化的胞內(nèi)菌數(shù)(P<0.05)。對(duì)數(shù)期細(xì)菌pH6.3培養(yǎng)基生長(zhǎng)2 h,RNA-Sequencing結(jié)果表明:eha基因缺失株轉(zhuǎn)錄水平和野生株相比,147個(gè)差異顯著表達(dá)的基因(DEGs)(|log2 Ratio|≥1),其中113個(gè)上調(diào),34個(gè)基因下調(diào),qRT-PCR隨機(jī)抽樣,和RNA-Sequencing 表達(dá)趨勢(shì)呈強(qiáng)相關(guān)。147個(gè)基因采用GO數(shù)據(jù)庫(kù)進(jìn)行功能聚類,分成25類,主要涉及細(xì)菌加工、定位、代謝、結(jié)合、催化、運(yùn)輸、細(xì)胞成份;基于KEGG通路的富集分析,有130個(gè)可以富集到55條通路中,包括與氨基酸、核苷酸、脂質(zhì)代謝及鐵的轉(zhuǎn)運(yùn)等路徑,涉及基因較多的有雙組分系統(tǒng)、ABC轉(zhuǎn)運(yùn)系統(tǒng)、不同環(huán)境中的微生物代謝和次級(jí)代謝產(chǎn)物等路徑。結(jié)論 在酸性生存環(huán)境,Eha對(duì)Et的轉(zhuǎn)錄組呈多途徑、多基因的適應(yīng)性的全局性調(diào)控。
eha基因;RNA-sequencing;E.tarda;酸化
遲緩愛(ài)德華菌(Edwardsiellatarda,簡(jiǎn)稱Et)屬于腸桿菌科愛(ài)德華菌屬,該菌能夠感染多種魚(yú)類,是水產(chǎn)養(yǎng)殖業(yè)的重要病原體[1]。Et也可感染人,引起人的胃腸炎、腹膜炎、敗血癥和腦膜炎等疾病[2]。Et溶血調(diào)控基因(Et haemolysin activator gene,簡(jiǎn)稱eha)是Et一個(gè)重要的毒力調(diào)控基因[3-4],Et菌能夠抵抗巨噬細(xì)胞吞噬體內(nèi)氧化和酸化的殺菌而生存繁殖,是其致病的關(guān)鍵[5],eha基因缺失引起Et 在巨噬細(xì)胞內(nèi)繁殖率降低的機(jī)制[6],尚未完全研究清楚。高通量測(cè)序技術(shù),具有測(cè)序通量高、成本低、速度快等特點(diǎn),廣泛應(yīng)用于動(dòng)植物及微生物的基因組學(xué)、轉(zhuǎn)錄組學(xué)等領(lǐng)域的研究。
近年來(lái),隨著新一代高通量測(cè)序技術(shù)(High-throughput sequencing technology)的發(fā)展,轉(zhuǎn)錄組測(cè)序(RNA sequencing,RNA-Seq)技術(shù)已成為測(cè)序技術(shù)的重要手段。本研究首先分析Eha在調(diào)控細(xì)菌抵御巨噬細(xì)胞酸化殺菌的作用,采用RNA-Seq比較在酸性條件下,ET-13野生株和eha基因缺失株轉(zhuǎn)錄組表達(dá)差異的基因(Differentially Expressed Genes,DEGs),通過(guò)生物信息學(xué)對(duì)其數(shù)據(jù)進(jìn)行定性定量的分析,旨在分子水平識(shí)別DEGs的功能及其代謝通路,并利用熒光定量PCR隨機(jī)抽樣,驗(yàn)證DEGs表達(dá)趨勢(shì),初步探索Eha在調(diào)控Et抵御巨噬細(xì)胞酸化殺菌的分子機(jī)制。
1.1 Et毒力株 ET13為南京農(nóng)業(yè)大學(xué)陸承平教授惠贈(zèng);ET13的eha基因缺失株為本室保存;鼠源巨噬細(xì)胞RAW264.7為上海獸醫(yī)研究所王少輝博士惠贈(zèng);pMP220-PehalacZ質(zhì)粒東南大學(xué)毛曉華教授惠贈(zèng)。細(xì)菌培養(yǎng)基(Luria Broth,LB):細(xì)胞培養(yǎng)液(Dulbecco’s Minimum Essential Medium,DMEM),胎牛血清(Fetal Bovine Serum,F(xiàn)BS)均購(gòu)自Gibco公司。
1.2 抑制酸化對(duì)細(xì)菌胞內(nèi)存活的影響 方法參考文獻(xiàn)[6],實(shí)驗(yàn)組用含1 μmol/L ATPase 抑制劑洛霉素(Bafilomycin,BAF)A1的培養(yǎng)液處理細(xì)胞30 min,以阻止細(xì)胞吞噬體酸化,對(duì)照組用正常細(xì)胞培養(yǎng)液。對(duì)數(shù)期ET13野生株和eha缺失株以10∶1的感染復(fù)數(shù) (Multiplicity Of Infection,MOI)分別加入24孔單層細(xì)胞。共孵育1 h后,再用含慶大霉素(100 μg/mL)的培養(yǎng)液殺胞外的細(xì)菌1 h,此時(shí)定為0 h;換用含慶大霉素(10 μg/mL)的培養(yǎng)液繼續(xù)培養(yǎng)0 h,2 h,4 h 或 6 h。在預(yù)定時(shí)間點(diǎn),加入1 mL 1% Triton X-100裂解細(xì)胞10 min,將裂解產(chǎn)物經(jīng)稀釋,涂平板,培養(yǎng),菌落記數(shù)。以培養(yǎng)時(shí)間(h)為橫坐標(biāo),活菌數(shù)(CFU/mL)為縱坐標(biāo),繪制細(xì)菌胞內(nèi)細(xì)菌數(shù)目和時(shí)間曲線。
1.3 酸性環(huán)境的應(yīng)激實(shí)驗(yàn) 方法參考文獻(xiàn)[6],對(duì)數(shù)期的菌體用PBS(pH7.2)漂洗2次后,菌液 OD600調(diào)節(jié)為0.5。菌液分為兩等份,一組為實(shí)驗(yàn)組,經(jīng)不同pH(7.2,6.3,5.5,4.8,4.3)LB處理2 h,另一組作為對(duì)照組,正常培養(yǎng)。然后進(jìn)行兩組培養(yǎng)液系列稀釋,涂平板,計(jì)數(shù)菌落。菌液濃度=平板菌落數(shù)/mL×稀釋倍數(shù),細(xì)菌存活率=實(shí)驗(yàn)組菌液濃度(CFU/mL)/對(duì)照組菌液濃度(CFU/mL)×100%。
1.4 構(gòu)建eha基因的啟動(dòng)子和LacZ融合質(zhì)粒及β-半乳糖苷酶實(shí)驗(yàn) 以ET13基因組DNA為模板,擴(kuò)增eha的啟動(dòng)子區(qū)域,將該片段插入 pMP220-LacZ載體中,構(gòu)建了eha基因的啟動(dòng)子探針載體pMP220-PehaLacZ,然后將該載體電極導(dǎo)入eha基因缺失株中,檢測(cè)eha基因的啟動(dòng)子在不同酸性pH值下和不同培養(yǎng)時(shí)間的轉(zhuǎn)錄活性,選擇Eha轉(zhuǎn)錄水平最高的一個(gè)酸性pH值和培養(yǎng)時(shí)間。
1.5 提取細(xì)菌的RNA 野生株與eha基因缺失株分別在pH值7.2的LB培養(yǎng)至對(duì)數(shù)生長(zhǎng)期(OD值0.8),再在pH值6.3的LB培養(yǎng)2 h。分別提取兩種細(xì)菌的RNA,并檢測(cè)其濃度(μg/μL)和純度(OD260/OD280,OD260/OD230),及RNA完整性計(jì)數(shù)(RNA Integrity Number,RIN)。
1.6 cDNA文庫(kù)的構(gòu)建與Illumina測(cè)序儀測(cè)序 根據(jù)細(xì)菌mRNA純化試劑盒的說(shuō)明書提供的方法,將提取的總RNA中16S rRNA 與23S rRNA 除去,用帶有Oligo T(dT)的磁珠對(duì)mRNA進(jìn)行富集純化。mRNA打斷成100-500 nt短片段后逆轉(zhuǎn)錄成cDNA,3′末端加polyA并連接測(cè)序接頭,連接產(chǎn)物經(jīng)PCR擴(kuò)增得到測(cè)序文庫(kù),上機(jī)進(jìn)行 Illumina Hi Seq 2000 測(cè)序(深圳華大基因公司完成)。
1.7 轉(zhuǎn)錄組數(shù)據(jù)分析 測(cè)序所得的原始數(shù)據(jù)稱為原始標(biāo)簽(raw read),再進(jìn)行過(guò)濾得到凈標(biāo)簽(clean read),用于后續(xù)分析。該序列信息已提交至NCBI Sequence Read Achieve數(shù)據(jù)庫(kù),登錄號(hào):SRX 1898774。
1.8 差異表達(dá)基因分析 利用短reads比對(duì)軟件SOAPaligner/SOAP2 軟件,將測(cè)序數(shù)據(jù)與E.tarda菌ATCC15947參考基因組序列(http://www.ncbi.nlm.nih.gov/ nuccore/)進(jìn)行比對(duì),統(tǒng)計(jì)clean reads 參考基因組及基因序列上的分布情況及覆蓋度;利用 RPKM(Reads Per Kb per Million)法計(jì)算基因的表達(dá)量,用于比較兩樣品間基因的差異表達(dá)情況,以p-value做多重假設(shè)檢驗(yàn)校正,通過(guò)控制錯(cuò)誤發(fā)生率(false discovery rate,F(xiàn)DR)來(lái)決定P閾值;采用Gene Ontology(GO)數(shù)據(jù)庫(kù)(http://www.geneontology.org/)和Kyoto Encyclopedia of Genes and Genomes (KEGG)數(shù)據(jù)庫(kù)(http://www. genome. jp/kegg/)進(jìn)行差異表達(dá)基因的功能聚類和生物學(xué)功能分析。
1.9 實(shí)時(shí)熒光定量PCR(quantitative real time PCR,qRT-PCR) 分別提取野生株與eha基因缺失株的RNA,隨機(jī)選取RNA-seq差異顯著15個(gè)基因,根據(jù)表1設(shè)計(jì)引物,操作按試劑盒說(shuō)明書,反應(yīng)在ABI7300型熒光定量PCR儀上進(jìn)行,以16S rRNA基因的表達(dá)量作為內(nèi)標(biāo)參照,采用2-ΔΔct法計(jì)算eha基因缺失株的基因轉(zhuǎn)錄水平相對(duì)野生株的倍數(shù),這些基因的表達(dá)趨勢(shì)和RNA-seq表達(dá)的基因趨勢(shì)做相關(guān)性分析。
表1 qRT-PCR引物序列,產(chǎn)物大小和變性溫度
Tab.1 Primer sequence product size and annealing temperature for RT-qPCR
GenePrimersequence(5′→3′)Productsize/bpAnnealingtemperature/℃UpregulatedETATCC_RS01560GCCAGCACAGGTGATCTCGGCGAGGATACGGACATGAGCC13459.50ETATCC_RS01555TGGAGCCATTATCACTTTCGCGATCTGCGCTAATACCTCC15457.45ETATCC_RS05005TGGGCGTCGGTGCCTTCTTCGCCATCGCCAACAGGAATAG16657.55ETATCC_RS11570CTATCGCCAAACCCATTACCTCGTCACCGACTACAAACCA14155.40ETATCC_RS13205TTCCTGCGGCACAGTTGAAGGCATTGGCTGATTGGTTG19058.00ETATCC_RS14200TCTTCCAGCAGGGATTCGGGCTGGTCTTGGCTACCGTCA14759.50ETATCC_RS11220GGTGGACGAGGCGTTCCTTCAATAGCGGCAGCGACAGC17262.00ETATCC_RS10525CATTGGTGCGCCTGGAAGAACACGCCGATGGTGAACGT16860.00ETATCC_RS09485TGGCGCTAGTGCAAGAACATACGGCATGGATGCTGACC15558.00ETATCC_RS14205GCCATCTGGATCGGTAACTTCATCTCCTGCACATTGACGT16855.40DownregulatedETATCC_RS16120TAGCTGATCCAGCGTCCTGGCGTTTGAAGCCGTTAGAG14558.00ETATCC_RS06155ACTTTGCCGTGTTTGTCGCGCAGGGTTGAACAGCAGGA12458.00ETATCC_RS11420TTGGATCTGGAGAAGGGTGCTGCAATGTTGTCGAGGAGT14258.00ETATCC_RS00925TGACCGTGCGTGGTAATCCGCGGCTGTAGTGCTTCTGG18660.00ETATCC_RS10185AACTTGGTCGGTTGGGATGGCTGTGACGGGAGTTAGGC12059.45
1.10 統(tǒng)計(jì)學(xué)分析 兩組數(shù)據(jù)之間的比較采用t檢驗(yàn),以P<0.05 為差異有統(tǒng)計(jì)學(xué)意義。qRT-PCR基因的表達(dá)趨勢(shì)和RNA-seq表達(dá)的基因趨勢(shì),用R2做相關(guān)性分析,R2>0.75表示強(qiáng)相關(guān)性,0.75>R2>0.45表示中等相關(guān)性,R2<0.45表示弱相關(guān)性。
2.1 比較抑制酸化對(duì)ET13野生株和eha基因缺失株在胞內(nèi)存活的影響 從圖1中可以看出,先用ATPase 抑制劑洛霉素A1處理巨噬細(xì)胞,以阻止酸化,再用野生株和eha基因缺失株分別感染RAW264.7細(xì)胞1 h,慶大霉素殺胞外菌1 h,繼續(xù)培養(yǎng)4 h 或6 h時(shí),它們胞內(nèi)CFU/mL明顯高于各自未阻止酸化的胞內(nèi)CFU/mL(P<0.05),表明巨噬細(xì)胞的酸化在抑制Et胞內(nèi)繁殖中起了很大作用,但酸化對(duì)野生株和缺失株各自抑制程度明顯不同。繼續(xù)培養(yǎng)6 h時(shí),未阻止酸化野生株胞內(nèi)CFU/mL和未阻止酸化eha基因缺失株胞內(nèi)CFU/mL差異明顯(P<0.05),這說(shuō)明eha基因在調(diào)控細(xì)菌抵御巨噬細(xì)胞酸化殺菌中起了重要作用,但同時(shí),阻止酸化野生株胞內(nèi)CFU/mL和阻止酸化eha基因缺失株胞內(nèi)CFU/mL差異也明顯(P<0.05),這也說(shuō)明eha基因在調(diào)控細(xì)菌抵御巨噬細(xì)胞殺菌中其它機(jī)制也起作用,如我們以前的研究表明,Eha蛋白能夠調(diào)控Et 抵抗Mф 氧化殺菌的作用[6]。
圖1 比較酸對(duì)野生株和eha基因缺失株巨噬細(xì)胞胞內(nèi)存活的不同影響Fig.1 Comparison of the differences of the intracellular survival rates of the wild type and its eha mutant in macrophages against acid
2.2 比較經(jīng)不同pH LB處理,野生株和eha基因缺失株存活率的差異 模擬細(xì)菌在巨噬細(xì)胞吞噬溶酶體中酸性的環(huán)境,對(duì)數(shù)期細(xì)菌經(jīng)不同pH(7.2,6.3,5.5,4.8,4.3)LB處理細(xì)菌2 h后,結(jié)果如圖2所示,eha基因缺失株的存活率明顯低于野生株(P<0.05),互補(bǔ)株的存活率介于缺失株和野生株之間。結(jié)果表明,eha基因在細(xì)菌在體外抵御酸的殺菌機(jī)制中起重要作用。
圖2 比較不同pH酸對(duì)野生株和eha基因缺失株存活率的影響Fig.2 Comparison of the differences of the survival rates of the wild type and its eha mutant against different pH acid
2.3 檢測(cè)eha基因的啟動(dòng)子在不同環(huán)境刺激下的轉(zhuǎn)錄活性 體外模擬在巨噬細(xì)胞酸的生存環(huán)境,分別在不同時(shí)間和pH值的LB培養(yǎng)Et菌,檢測(cè)含pMP220-PehaLacZEt菌的β-半乳糖苷酶活性,結(jié)果表明,對(duì)數(shù)期的Et菌在pH值6.3的LB培養(yǎng)2 h,Eha轉(zhuǎn)錄水平最高。
2.4 轉(zhuǎn)錄組的測(cè)序數(shù)據(jù)評(píng)估 提取野生株與eha基因缺失株RNA濃度分別為1.905 μg/μL和1.255 μg/μL;純度:OD260/OD280,≥1.9,OD260/OD230≥2.0;RIN:10.0,表明其純度高,滿足建庫(kù)要求。為了構(gòu)建Et菌的cDNA文庫(kù),其mRNA被隨機(jī)性打斷。其隨機(jī)性評(píng)估表明,ET13菌野生株和缺失株轉(zhuǎn)錄組測(cè)序不同的長(zhǎng)度的clean reads在基因組中分布均勻。利用軟件將成功比對(duì)到基因組上的clean reads與參考基因序列進(jìn)行比對(duì),進(jìn)行基因覆蓋度分析,結(jié)果表明,野生株和eha基因缺失株的clean reads中覆蓋率在90%以上的基因分別超過(guò)92%。
2.5eha基因缺失株和野生株差異表達(dá)基因比較和功能聚類分析 利用RPKM法計(jì)算兩種細(xì)菌基因的表達(dá)量,閾值設(shè)為:|log2 Ratio|≥1,FDR≤0.001。在ET13野生株中,共有147個(gè)基因的轉(zhuǎn)錄水平與eha基因缺失株相比差異顯著,其中113個(gè)基因轉(zhuǎn)錄水平上調(diào),34個(gè)基因轉(zhuǎn)錄水平下調(diào)。采用GO數(shù)據(jù)庫(kù)對(duì)147個(gè)差異表達(dá)的基因進(jìn)行功能聚類分析,分成25類,這些基因主要涉及細(xì)胞加工(68個(gè))、定位(30個(gè))、結(jié)合(59個(gè))、催化(83個(gè))、運(yùn)輸 (27個(gè))、代謝 (78個(gè))、細(xì)胞成份(37個(gè))和細(xì)胞膜(33個(gè)) (圖3),Eha在酸性條件下調(diào)節(jié)這些基因。
基于KEGG通路的顯著性富集分析,能確定DEGs參與的最主要生化代謝途徑和信號(hào)轉(zhuǎn)導(dǎo)途經(jīng)。結(jié)果顯示,147個(gè)DEGs中,有130個(gè)基因可以富集到55條通路中,包括10條與氨基酸代謝相關(guān)的路徑,16條與碳代謝、脂質(zhì)、酯酸及能量代謝相關(guān)的路徑,4條與核苷酸代謝相關(guān)的路徑,3條與硫代謝相關(guān)的路徑,以及一些與氮代謝、鐵的轉(zhuǎn)運(yùn)等相關(guān)的路徑。涉及差異表達(dá)基因較多的代謝路徑主要有(|log2 Ratio|≥1) (表2):雙組分系統(tǒng)路徑(20個(gè)),ABC轉(zhuǎn)運(yùn)系統(tǒng)路徑(12個(gè)),不同環(huán)境中的微生物代謝路徑(21個(gè))和次代謝的合成路徑(17個(gè))。
2.6 實(shí)時(shí)熒光定量PCR 隨機(jī)選取 15個(gè)DEGs進(jìn)行qRT-PCR,驗(yàn)證RNA-seq測(cè)結(jié)果。兩種方法結(jié)果表明,14個(gè)基因的表達(dá)趨勢(shì)出現(xiàn)了一致的結(jié)果,其相關(guān)性為強(qiáng)相關(guān)(R2=0.799>0.75),僅ETATCC-RS11570基因在eha基因缺失株和野生株中通過(guò)qRT-PCR檢測(cè)無(wú)明顯差異,與RNA-seq結(jié)果不一致(圖4)。
圖4 比較qRT-PCR和RNA-seq發(fā)現(xiàn)的差異表達(dá)基因Fig.4 Comparison of significantly different expressed genes by qRT-PCR和RNA-seq
Classification of DEGs between the wild type and the eha mutant,according to GO functional analysis (|log2 Ratio|≥1).圖3 ET 13 eha基因缺失株和野生株差異表達(dá)基因比較和聚類分析Fig.3 Classification of significantly different expressed genes between the wild type and its eha mutant of ET 13
本研究首先用洛霉素A1抑制酸化和菌落計(jì)數(shù)法,比較酸化對(duì)ET13株和它的eha基因缺失株胞內(nèi)存活數(shù)目的影響,以及比較兩種細(xì)菌在體外酸性應(yīng)激實(shí)驗(yàn)中存活率的差異,發(fā)現(xiàn)了Eha在調(diào)控Et菌抵御巨噬細(xì)胞酸化殺菌和體外酸性環(huán)境中的重要作用。然后,采用β-半乳糖苷酶實(shí)驗(yàn)檢測(cè)eha的啟動(dòng)子在不同酸性pH值下和不同培養(yǎng)時(shí)間的轉(zhuǎn)錄活性;選擇Eha轉(zhuǎn)錄水平最高的一個(gè)酸性pH值和培養(yǎng)時(shí)間,分別提取兩種細(xì)菌RNA,進(jìn)行RNA-Seq,比較ET13株和eha基因缺失株的轉(zhuǎn)錄組表達(dá),發(fā)現(xiàn)了147個(gè)DEGs,對(duì)它們進(jìn)行GO功能聚類和KEGG通路分析,結(jié)果如下:
為了生存和適應(yīng)外界環(huán)境,細(xì)菌通過(guò)雙組分系統(tǒng)(Two-component system,TCS)等信號(hào)轉(zhuǎn)導(dǎo)途徑來(lái)響應(yīng)環(huán)境信號(hào)并對(duì)刺激作出應(yīng)答。本研究提示,20個(gè)DEGs涉及TCS系統(tǒng)路徑。在酸壓力下,eha基因缺失株中有7個(gè)DEGs上調(diào),13個(gè)DEGs下調(diào)。ETATCC_RS06140、ETATCC_RS06135 和ETATCC _RS06130分別編碼檸檬酸裂合酶CitC的α、β、γ亞基,ETATCC_RS06145和ETATCC_RS06150編碼CitG亞基。檸檬酸裂合酶是參與三羧酸循環(huán)的關(guān)鍵酶,已經(jīng)報(bào)道,檸檬酸裂合酶基因突變的Et在感染魚(yú)的模型中生存力和致病性明顯下降[7]。ETATCC_RS14195和ETATCC_RS00005以及ETATCC_RS12655分別編碼谷氨酰胺酶和絲氨酸脫水酶。幽門螺桿菌產(chǎn)生的谷氨酰胺酶可以催化谷氨酰胺脫氨,中和胃酸,這和該菌在胃的生存能力和致病性有關(guān)[8]。ETATCC_RS16530編碼一種外膜蛋白,它負(fù)責(zé)將莢膜多糖從周質(zhì)間隙運(yùn)輸?shù)骄w表面,而莢膜直接參與細(xì)菌對(duì)環(huán)境的抗逆性[9]。Et菌通過(guò)Eha調(diào)控這些基因的表達(dá)量以抵抗酸性環(huán)境的刺激,增加其在細(xì)胞內(nèi)的存活能力。
表2 基于KEGG通路分析在酸性條件eha基因調(diào)控差異明顯表達(dá)的基因
Tab.2 KEGG pathway analysis of theeha-dependent genes differentially expressed in an acid condition
PathwayGeneIDGenedescriptionRNA?Seq?Two?componentsystemETATCC_RS04225hydrogenase2smallsubunit1.229ETATCC_RS01230multidrugtransporter1.133ETATCC_RS14195glutaminase1.096ETATCC_RS081653?demethylubiquinone?93?methyltransferase1.082ETATCC_RS00005serinedehydratase1.080ETATCC_RS12655serinedehydratase1.045ETATCC_RS02740transcriptionalregulator1.025ETATCC_RS06125[citrate[pro?3S]?lyase]ligase-3.916ETATCC_RS06135citratelyasesubunitbeta-3.269ETATCC_RS06130citratelyasesubunitgamma-3.255ETATCC_RS07080putativecitratetransporter-2.859ETATCC_RS06140citratelyasesubunitalpha-2.725ETATCC_RS061502?(5′?triphosphoribosyl)?3′?dephosphoCoAsynthase-2.423ETATCC_RS06155antiporter-2.372ETATCC_RS061452?(5′?triphosphoribosyl)?3′?dephospho?CoAsynthase-2.347ETATCC_RS16525proteintyrosinephosphatase-2.234ETATCC_RS16530polysaccharideexportproteinWza-2.202ETATCC_RS04890aminoacidtransporter-1.216ETATCC_RS16520tyrosineproteinkinase-1.142ETATCC_RS11420flagellarproteinFliS-1.115BiosynthesisofsecondarymetabolitesETATCC_RS10420tryptophansynthasesubunitalpha2.208ETATCC_RS10415tryptophansynthasesubunitbeta1.787ETATCC_RS16110inosine?5?monophosphatedehydrogenase1.400ETATCC_RS02195phosphoribosylglycinamideformyltransferase1.383ETATCC_RS06795threoninedehydratase1.341ETATCC_RS14735chorismatesynthase1.107ETATCC_RS081653?demethylubiquinone?93?methyltransferase1.082ETATCC_RS00005serinedehydratase1.080ETATCC_RS10525glyoxylatereductase1.080ETATCC_RS12655serinedehydratase1.045ETATCC_RS12785riboflavinsynthasesubunitalpha1.041ETATCC_RS02280succinyl?diaminopimelatedesuccinylase1.039ETATCC_RS041802?succinyl?5?enolpyruvyl?6?hydroxy?3?cyclohexene?1?carbox?ylatesynthase1.027ETATCC_RS158158?amino?7?oxononanoatesynthase1.026ETATCC_RS01185sirohemesynthase1.001ETATCC_RS07360gluconokinase-3.176ETATCC_RS10185hypotheticalprotein-1.867ABCtransportersETATCC_RS16605nickelABCtransporterATP?bindingprotein2.617ETATCC_RS16615nickelABCtransporterpermeaseproteinNikB2.467ETATCC_RS16600nickelABCtransporterATP?bindingproteinNikE2.348ETATCC_RS16620nickelABCtransportersubstrate?bindingprotein2.129ETATCC_RS16610nickelABCtransporterpermeaseproteinNikC2.055續(xù)表PathwayGeneIDGenedescriptionRNA?Seq?
ETATCC_RS10370aminoacidABCtransportersubstrate?bindingprotein1.718ETATCC_RS11635aminoacidABCtransporterATP?bindingprotein1.631ETATCC_RS10375cysteineABCtransporterpermease1.505ETATCC_RS07555thiamineABCtransporterpermease1.193ETATCC_RS14735chorismatesynthase1.107ETATCC_RS07595ironABCtransporterpermeaseABC1.012ETATCC_RS04890aminoacidtransporter-1.216FlagellarassemblyETATCC_RS11420flagellarproteinFliS-1.115ETATCC_RS14855flagellarhookproteinFlgK-1.072ETATCC_RS14860flagellarhookproteinFlgL-1.035MicrobialmetabolismindiverseenvironmentsETATCC_RS10375cysteineABCtransporterpermease1.505ETATCC_RS13205acidphosphatase1.313ETATCC_RS04225hydrogenase2smallsubunit1.229ETATCC_RS10905phosphonoacetaldehydehydrolase1.212ETATCC_RS06430haloaciddehalogenase1.195ETATCC_RS14735chorismatesynthase1.107ETATCC_RS13645cytochromeCnitritereductase1.099ETATCC_RS10525glyoxylatereductase1.080ETATCC_RS09485putativeoxidoreductase1.074ETATCC_RS04220hydrogenase1.048ETATCC_RS02280succinyl?diaminopimelatedesuccinylase1.039ETATCC_RS087253?mercaptopyruvatesulfurtransferase1.036ETATCC_RS07510putativelong?chainfatty?acid?CoAligase1.014ETATCC_RS04215putativeNiFe?hydrogenase2b?typecytochromesubunit1.011ETATCC_RS01185sirohemesynthase1.001ETATCC_RS04315thiosulfatesulfurtransferase1.000ETATCC_RS06135citratelyasesubunitbeta-3.269ETATCC_RS07360gluconokinase-3.176ETATCC_RS061502?(5′?triphosphoribosyl)?3′?dephosphoCoAsynthase-2.423ETATCC_RS10185hypotheticalprotein-1.867ETATCC_RS070755?oxopent?3?ene?1,2,5?tricarboxylatedecarboxylase-1.156
Note:*RNA-seq,llog2 Ratio (eha_mutant_ET13/wild_ET13)l≥1.00
ABC轉(zhuǎn)運(yùn)子(ABC transporter)是細(xì)菌膜上的一種運(yùn)輸ATP酶,如寡肽透過(guò)酶(Oligopeptide permease,Opp),控制著必需營(yíng)養(yǎng)物質(zhì)進(jìn)出細(xì)胞.在本研究中, 12個(gè)DEGs涉及該轉(zhuǎn)運(yùn)路徑,編碼鎳、氨基酸、硫胺素、鐵等轉(zhuǎn)運(yùn)蛋白。金葡菌Opp1ABC轉(zhuǎn)運(yùn)子運(yùn)輸鎳和鈷進(jìn)入細(xì)胞,該突變子降低黏附小鼠膀胱和腎臟的能力,以及在泌尿道感染的模型中小鼠死亡率[10]。Et菌通過(guò)Eha調(diào)控這些基因的表達(dá)量以抵抗酸性環(huán)境的刺激,增加其在細(xì)胞內(nèi)的存活能力。
微生物次級(jí)代謝產(chǎn)物的合成通常以初級(jí)代謝產(chǎn)物為前體,并受其調(diào)節(jié);次級(jí)代謝產(chǎn)物的合成過(guò)程易受環(huán)境因素的影響. 本研究發(fā)現(xiàn)17個(gè)DEGs涉及該路徑,均呈上調(diào)趨勢(shì)。ETATCC_RS10420和ETATCC_RS10415編碼的色氨酸合酶,沙眼衣原體的色氨酸合酶有助于它在Hela細(xì)胞內(nèi)的存活和對(duì)干擾素的抵抗力[11]。
本研究發(fā)現(xiàn)ETATCC_RS11420、ETATCC_RS14855和ETATCC_RS14860分別編碼鞭毛蛋白FliC的分子伴侶FliS、鞭毛鉤絲FlgK和FlgL。FlgM-FliA回路在協(xié)調(diào)細(xì)菌鞭毛組裝中起關(guān)鍵作用。鞭毛是細(xì)菌的運(yùn)動(dòng)器官,鞭毛的運(yùn)動(dòng)方向受到細(xì)菌趨化作用系統(tǒng)的控制,鞭毛對(duì)于細(xì)菌的環(huán)境適應(yīng)性及致病性至關(guān)重要。在假結(jié)核耶爾森氏菌中,F(xiàn)liS作為分子伴侶通過(guò)調(diào)節(jié)FlgM的活性,調(diào)控后期鞭毛的表達(dá)、運(yùn)動(dòng)及生物膜形成(biofilm)[12]。生物膜是細(xì)菌為適應(yīng)自然環(huán)境,在生長(zhǎng)過(guò)程中附著于固體表面而形成的特殊存在形式,生物膜的形成顯著增強(qiáng)了細(xì)菌對(duì)環(huán)境的抵抗能力。
不同環(huán)境中的微生物代謝路徑涉及多種物質(zhì)的代謝與降解過(guò)程,參與細(xì)菌物質(zhì)和能量代謝網(wǎng)絡(luò)。本研究發(fā)現(xiàn)20個(gè)DEGs直接涉及該路徑,ETATCC_RS13205拷貝的酸性磷酸酶,能夠在酸性條件下水解磷酸酯鍵如酪氨酸磷酸酯酶,它可以作用于許多含酪氨酸磷酸的蛋白,這些蛋白涉及信號(hào)傳導(dǎo)。對(duì)于細(xì)菌來(lái)說(shuō),該酶和致病菌的毒力因子I和IV莢膜的合成有關(guān),莢膜直接參與細(xì)菌對(duì)環(huán)境的抵抗能力[13]。
綜上所述,我們將RNA-seq技術(shù)首次用于Et菌的轉(zhuǎn)錄組研究。 Eha通過(guò)調(diào)控147個(gè)靶基因,影響Et的能量,代謝和毒力,以適應(yīng)其酸性環(huán)境。因此,在酸性生存環(huán)境,Eha對(duì)Et菌的轉(zhuǎn)錄組呈多途徑、多基因的適應(yīng)性的全局性調(diào)控,這些結(jié)果有助于探討 Eha調(diào)控Et抵抗巨噬細(xì)胞酸化的殺菌機(jī)制。
[1] Chen AP,Jiang YL,Qian D,et al. Edwardsiellasis[J]. China Fisheries,2011,7: 49-50. (in Chinese)
陳愛(ài)平,江育林,錢冬,等. 遲緩愛(ài)德華氏菌病 [J].中國(guó)水產(chǎn),2011,7:49-50.
[2] Nelson JJ,Nelson CA,Carter JE. Extraintestinal manifestations ofEdwardsiellatardainfection: a 10-year retrospective review[J]. J La State Med Soc,2009,161 (2): 103-106.
[3] Sheng AK,Li YH,Zhang P,et al.ehagene regulates the virulence ofEdwardsiellatarda[J]. Chin J Zoonoses,2015,31(2): 125-129.DOI:10.3969/j.issn.1002-2694.2015.02.007 (in Chinese)
盛安康,李玉紅,張坡,等.eha基因調(diào)控遲緩愛(ài)德華菌的毒力[J]. 中國(guó)人獸共患病學(xué)報(bào),2015,31(2):125-129.
[4] Gao D,Cheng J,Zheng E,et al.Eha,a transcriptional regulator of hemolytic activity ofEdwardsiellatarda[J]. FEMS Microbiol Lett,2014,353(2): 132-140. DOI:10.1111/1574-6968. 12420.
[5] Zhang L,Ni C,Xu W,et al. Intramacrophage infection reinforces the virulence ofEdwardsiellatarda[J]. J Bacteriol,2016,198(10): 1534-1542. DOI: 10.1128/JB.00978-15
[6] Xu ZY,Li YH,Cheng J,et al.Ehagene is required forEdwardsiellatardaoxidative stress resistance in macrophage[J]. Chin J Zoonoses,2015,31(6):497-500. DOI:10.3969/j.issn.1002-2694.2015.06.001(in Chinese)
徐澤炎,李玉紅,成靜,等.eha基因調(diào)控遲緩愛(ài)德華菌抵抗巨噬細(xì)胞氧化殺菌作用[J]. 中國(guó)人獸共患病學(xué)報(bào),2015,31(6):497-500.
[7] Srinivasa Rao PS,Lim TM,Leung KY. Functional genomics approach to the identification of virulence genes involved inEdwardsiellatardapathogenesis[J]. Infect Immun,2003,71(3): 1343-1351.
[8] Stark RM,Suleiman MS,Hassan IJ,et al. Amino acid utilisation and deamination of glutamine and asparagine byHelicobacterpylori[J]. J Med Microbiol,1997,46(9): 793-800.
[9] Cooper CA,Mainprize IL,Nickerson NN. Genetic,biochemical,and structural analyses of bacterial surface polysaccharides[J]. Adv Exp Med Biol,2015,883: 295-315. DOI: 10.1007 /978-3-319-23603-2_16
[10] Remy L,Carrière M,Derré-Bobillot A,et al. TheStaphylococcusaureusOpp1 ABC transporter imports nickel and cobalt in zinc-depleted conditions and contributes to virulence[J]. Mol Microbiol,2013,87(4): 730-743. DOI: 10.1111/mmi.12126
[11] Muramatsu MK,Brothwell JA,Stein BD,et al. Beyond tryptophan synthase: identification of genes that contribute toChlamydiatrachomatissurvival during Gamma interferon-induced persistence and reactivation[J]. Infect Immun,2016,84(10): 2791-2801. DOI: 10.1128/ IAI.00356-16
[12] Xu S,Peng Z,Cui B,et al. FliS modulates FlgM activity by acting as a non-canonical chaperone to control late flagellar gene expression,motility and biofilm formation in Yersinia pseudotuberculosis[J]. Environ Microbiol,2014,16(4): 1090-1104. DOI: 10.1128 /IAI.00356-16
[13] Caselli A,Paoli P,Santi A,et al. Low molecular weight protein tyrosine phosphatase: Multifaceted functions of an evolutionarily conserved enzyme[J]. Biochim Biophys Acta,2016,1864(10): 1339-1355. DOI: 10.1016/j.bbapap.2016.07.001
Deep sequencing analysis on transcriptomes ofEdwardsiellatardaregulated by Eha following acidification
LIU Nian1,LI Yu-hong1,2,ZHENG En-jin1,GAO Da-qing1,LU Cheng-ping3
(1.SchoolofMedicine,SoutheastUniversity,Nanjing210009,China;2.WuxiMedicineSchool,JiangnanUniversity,Wuxi214122,China;3.CollegeofVeterinaryMedicine,NanjingAgriculturalUniversity,Nanjing210095,China)
Our studies tried to demonstrate Eha (Et haemolysin activator) could regulate the resistance of the bacterium against acidification to survive in the macrophage and explain its underlying molecular mechanism. When the bacteria infected the macrophages at time intervals,intracellular survival rate in bafilomycin-treated macrophages was higher than that with untreated cells,and the rate of wild type ET 13 was higher than that of itsehamutant,respectively (P<0.05). The survival rate of the wild type was higher than that of the mutant under acid treatment (P<0.05). To determine the conditions that induced the highest eha expression,we constructed a pMP220-PehaLacZ plasmid and determined thelacZ expression under different conditions. After exposure of pH6.3 medium for 2 h time,we performed the whole transcriptomic profiles of the wild type and mutant by RNA-sequencing. We identified 147 differentially-expressed genes (|log2 ratio|≥1),113 and 34 of which were significantly up-and down-regulated,respectively in the mutant,comparing with the wild type. These findings were validated by qRT-PCR. GO functional analysis revealed that these genes were divided into 25 categories,including the bacterial catalysis,cellular composition,combination,localization,metabolism,processing,and transportation. Based on the KEGG database,these genes were distributed in 55 pathways,such as two-component system,ABC transporters,and microbial metabolism in diverse environments. Overall,Eha is an important regulator to affect all kinds of target genes and pathways forE.tardato adapt to an acid environment. These results could be helpful for further investigations of the mechanisms by whichE.tardasurvives in macrophages.
ehagene; RNA-sequencing;Edwardsiellatarda; acidification
Gao Da-qing,Email: dgao2@seu.edu.cn
10.3969/j.issn.1002-2694.2017.07.001
國(guó)家自然科學(xué)基金(No.31570124)資助
高大慶:Email:dgao2@seu.edu.cn
1.東南大學(xué)醫(yī)學(xué)院,南京 210009; 2.江南大學(xué)無(wú)錫醫(yī)學(xué)院,無(wú)錫 214122; 3.南京農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院,南京 21009
R378.2
A
1002-2694(2017)07-0575-08
2016-10-01 編輯:張智芳
Supported by the National Natural Science Foundation (No. 31570124)