亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        高斯整數(shù)環(huán)其商環(huán)元素個(gè)數(shù)

        2017-06-20 16:43:00賈麗媛

        賈麗媛

        【摘要】設(shè)Z表示整數(shù)環(huán),i表示虛單位(i=-1) Z[i]為所有形如a+bi,(a,b∈Z)的復(fù)數(shù)組成的集合,稱為高斯整數(shù)環(huán).高斯整數(shù)環(huán)中的元素稱為高斯整數(shù).在王芳貴的《關(guān)于高斯整數(shù)環(huán)的商環(huán)的元素個(gè)數(shù)的注記》中已經(jīng)用代數(shù)方法證明出|Z[i]/(m+ni)|=m2+n2.本文將用幾何方法給出這一結(jié)論的證明.注意,對(duì)于m=0(或n=0)的情況,證明方法同可證.所以,本文只給出m≠0,n≠0的證明.以下我們用|A|表示A種元素的個(gè)數(shù).

        【關(guān)鍵詞】高斯整數(shù)環(huán);商環(huán);理想

        一、緒 論

        (一)記號(hào):Z[i]={a+bi|a,b∈Z,i2=-1},Z[i]對(duì)普通加法和乘法構(gòu)成一個(gè)環(huán),稱為高斯整數(shù)環(huán).

        (二)定義:(1)若環(huán)R的非空子集I滿足條件:① I是一個(gè)子加群;② 對(duì)任意a∈I,r∈R,元素ar,ra都在I中,此時(shí),我們稱I是R的一個(gè)理想.

        (2)設(shè)R是一個(gè)環(huán),I是R的一個(gè)理想,商群RI關(guān)于乘法a·b=ab所生成的環(huán),叫作R關(guān)于I的商環(huán),仍用記號(hào)RI表示.

        (3)設(shè)Z表示整數(shù)環(huán),i表示虛單位(i=-1),Z[i]為所有形如a+bi,(a,b∈Z)的復(fù)數(shù)組成的集合,稱為高斯整數(shù)環(huán).高斯整數(shù)環(huán)中的元素稱為高斯整數(shù).

        二、本 論

        (一)高斯整數(shù)環(huán)其商環(huán)元素個(gè)數(shù)

        命題1 如果A為高斯整數(shù)點(diǎn),設(shè)A=a+bi,且a≠0,b≠0.以O(shè)A為邊作四邊形OABC.又設(shè)區(qū)域G~為正方形OABC內(nèi)部的點(diǎn)及OA,OC邊上的點(diǎn)(但不包括A點(diǎn)和C點(diǎn))中的全體高斯整數(shù)點(diǎn),則G~內(nèi)恰有a2+b2個(gè)高斯整數(shù)點(diǎn).

        證明 作正方形OABC的外接正方形EFGH,易知,正方形EFGH中所含的高斯整數(shù)點(diǎn)為(a+b)2=(a2+b2+2ab)個(gè).長(zhǎng)方形HCQB及PAGB中所含有的高斯整數(shù)點(diǎn)均為ab個(gè),其中包括A,C點(diǎn).三角形BPA與三角形CEO內(nèi)所含的高斯整數(shù)點(diǎn)相同.三角形AOF與三角形BCQ內(nèi)所含的高斯整數(shù)點(diǎn)相同.所以正方形EFGH-長(zhǎng)方形HCQB-長(zhǎng)方形PAGB中所含的高斯整數(shù)點(diǎn)的個(gè)數(shù)=G~中所含的高斯整數(shù)點(diǎn)的個(gè)數(shù).故|G~|=a2+b2+2ab-2ab=a2+b2得證.

        命題2 如果分別作平行于正方形OABC的各邊的平行線且相鄰的平行線間的距離相同,設(shè)G為所有平行于OA與OC的線束的交點(diǎn)的全體,則G僅含有點(diǎn)(a+bi)(c+di)=(ac-bd)+(ad+bc)i,這里c+di是任意整數(shù)點(diǎn).

        證明 設(shè)G1={(a+bi)(c+di)=(ac-bd)+(ad+bc)i|c+di∈Z[i]}.欲證G1=G.設(shè)GG1.對(duì)x+yi∈G,lA:y=abx與OA平行的直線族lA:y=bax+ma2+b2a(m∈Z).

        lC:y=-abx與OC平行的直線族lC:y=-abx+na2+b2b(n∈Z),故交點(diǎn)為y=bax+ma2+b2a,y=-abx+na2+b2b,

        故(x,y)=(na-mb,am+bn),

        取c=nd=m,知(x,y)=(ac-bd,ad+bc),

        即x+yi=(a+bi)(c+di),c,d∈Z.

        故x+yi∈G1,故GG1.

        下證:G1G.

        對(duì)x+yi∈G1.即存在c+di∈Z[i].s.t.x+yi=(a+bi)(c+di),即x=ac-bdy=ad+bc.由上知:

        直線y=bax+da2+b2a與直線y=-abx+ca2+b2b的交點(diǎn)為(ac-bd,ad+bc),

        即交點(diǎn)為(x,y),故x+yi∈G.

        故G1G,故G1=G.得證.

        命題3 對(duì)任意高斯整數(shù)點(diǎn)x+yi存在唯一的高斯整數(shù)點(diǎn)c+di,e+fi滿足x+yi=(a+bi)(c+di)+(e+fi),其中e+fi∈G~.

        證明 設(shè)M點(diǎn)坐標(biāo)為x+yi,其在正方形NSTR上,但不在ST,RT邊上,設(shè)向量OMMN對(duì)應(yīng)的復(fù)數(shù)為e+fi,因OM=ON+NM.由命題2知,|c+di∈Z[i].s.t.ON=(a+bi)(c+di),故由命題1知x+yi=(a+bi)(c+di)+(e+fi),故e=x-(ac-bd),f=y-(ab+bc).由于x,y,a,b,c,d∈Z.故e,f∈Z,且由向量平移知e+fi∈G~.由于ON確定(OM的唯一分解),故e+fi唯一確定.得證.

        定理 商環(huán)Z[i]/(a+bi)含有a2+b2個(gè)元素.

        證明 現(xiàn)利用命題1,2,3.證明a≠0,b≠0的情況(對(duì)于a=0,b=0同理可證).

        首先做如下說明:易知

        a+bi={(c+di)(a+bi)|c+di∈Z[i]}.

        令[t=x1+y1i]=t+(a+bi)=x1+y1i+(a+bi),即Z[i]/(a+bi)={[t],t∈Z[i]}.

        同理有[t=x1+y1i]=[s=x2+y2i]t-s∈(a+bi)a+bi|t-st,s被a+bi整除時(shí)有相同余數(shù).

        由命題3知:x+yi∈Z[i].有x+yi=(a+bi)(c+di)+(e+fi).e+fi∈G~.

        故a+bi|x+yi-(e+fi),故x+yi與e+fi被整除時(shí)有相同的余數(shù).

        即[x+yi]=[e+fi],

        故Z[i]/(a+bi)={[e+fi],e+fi∈G~.}

        由于G~中所含元素個(gè)數(shù)為a2+b2個(gè).

        故|Z[i]/(a+bi)|=a2+b2.

        結(jié)論 本文給出了高斯整數(shù)環(huán)其商環(huán)元素個(gè)數(shù)的幾何求解方法,通過對(duì)本課題的研究,加深對(duì)高斯整數(shù)環(huán)的了解,推出定理.在研究本課題的過程中,學(xué)會(huì)在借鑒前人研究成果的基礎(chǔ)上,通過科學(xué)的分析和嚴(yán)格的推理,得出新的理論成果.一方面,磨煉自己堅(jiān)持不懈、百折不撓的頑強(qiáng)意志;另一方面,培養(yǎng)在科學(xué)研究的道路上勇攀高峰的奮斗精神.同時(shí),在深刻領(lǐng)悟人類智慧成果的基礎(chǔ)上,不斷提高自身的數(shù)學(xué)素質(zhì)和科研能力,為今后的學(xué)習(xí)和工作奠定基礎(chǔ).

        好吊妞视频这里有精品| 丰满人妻一区二区乱码中文电影网| 亚洲伊人成综合人影院| 男女调情视频在线观看| 国产精品毛片一区二区三区| 欧美成a人片在线观看久| 亚洲国产一区二区三区在线视频| 国产精品视频白浆免费看| 日本三级香港三级人妇99| 永久免费观看国产裸体美女| 国产一级免费黄片无码AV| 一区二区亚洲精美视频| 日本精品视频免费观看| 精品淑女少妇av久久免费| 欧美一级人与嘼视频免费播放| 一本久久伊人热热精品中文| 国产情侣自拍一区视频| 久久亚洲色www成人欧美| 91精品全国免费观看青青| 日韩人妻大奶子生活片| 亚洲另类无码专区首页| 狼色精品人妻在线视频| 免费a级毛片无码a∨免费| 国产一区二区三区青青草| 美女网站免费福利视频| 国产福利免费看| av福利资源在线观看| 蜜桃18禁成人午夜免费网站| 日本黄页网站免费观看| 国产主播无套内射一区| 青青草视频在线观看精品在线| 黑人巨茎大战俄罗斯美女| 精品国产a∨无码一区二区三区 | 国产真实露脸4p视频| 国产av在线观看91| 日韩av无码中文字幕| 亚洲爆乳少妇无码激情| 无码天堂在线视频| 青青草视频在线观看色| 久久亚洲色www成人欧美| av中文字幕少妇人妻|