王亞莉,何 珂,于 靜,楊松柏,趙阿勇
(浙江農(nóng)林大學(xué) 動(dòng)物科技學(xué)院,浙江 臨安 311300)
靶向豬CLTC基因miRNA的預(yù)測(cè)與驗(yàn)證
王亞莉,何 珂,于 靜,楊松柏,趙阿勇
(浙江農(nóng)林大學(xué) 動(dòng)物科技學(xué)院,浙江 臨安 311300)
網(wǎng)格蛋白介導(dǎo)的胞吞是病毒侵入細(xì)胞的重要途徑,網(wǎng)格蛋白重鏈(clathrin heavy chain,CLTC)是形成網(wǎng)格蛋白小窩結(jié)構(gòu)的重要組成部分。針對(duì)CLTC基因的轉(zhuǎn)錄后調(diào)控特別是調(diào)控豬Sus scrofa CLTC的miRNA目前還不太清楚。本研究旨在篩選出調(diào)控豬CLTC基因的miRNA。利用生物信息學(xué)方法預(yù)測(cè)出6個(gè)靶向豬CLTC基因的miRNA,將豬CLTC基因3′UTR克隆至雙熒光素酶報(bào)告基因載體psiCHECK2中獲得雙熒光素酶報(bào)告基因重組載體psiCHECK2-CLTC-3′UTR。將預(yù)測(cè)得到的miRNA分別和重組載體psiCHECK2-CLTC-3′UTR共轉(zhuǎn)染到細(xì)胞中,以亂序序列作為陰性對(duì)照(NC),檢測(cè)miRNA對(duì)重組質(zhì)粒熒光素酶活性的影響。結(jié)果發(fā)現(xiàn)miR-205,miR-1,miR-129-5p和miR-206均能夠顯著抑制熒光素酶活性(P<0.05)。在豬腎上皮細(xì)胞系PK15細(xì)胞中超表達(dá)miR-1和miR-129-5p后,定量PCR(q-PCR)結(jié)果顯示:豬CLTC基因的表達(dá)量顯著下調(diào)。突變了psiCHECK2-CLTC-3′UTR載體中這4個(gè)miRNA的種子序列的結(jié)合位點(diǎn)發(fā)現(xiàn):miR-1對(duì)突變質(zhì)粒中的熒光素酶無顯著抑制作用。表明miR-1與豬CLTC基因有直接的靶向關(guān)系,并通過其種子序列抑制CLTC基因的表達(dá)。圖6表2參23
豬;CLTC;miRNA;胞吞;雙熒光素酶報(bào)告基因載體
miRNA是一類小的單鏈非編碼核糖核酸序列,長度為22~24個(gè)核苷酸,通過與靶基因3′UTR區(qū)域結(jié)合進(jìn)而抑制靶基因的表達(dá)[1-3]。miRNA具有高度的保守性、時(shí)序性和組織特異性,能夠調(diào)控生物體特定的生理功能,在生物體生長、發(fā)育和疾病發(fā)生等過程中發(fā)揮著重要的作用[4]。網(wǎng)格蛋白(clathrin)介導(dǎo)的胞吞是信號(hào)分子進(jìn)入細(xì)胞的主要途徑,也是病毒進(jìn)入細(xì)胞的重要途徑。病毒侵入細(xì)胞是病毒增殖最為關(guān)鍵的一步,而網(wǎng)格蛋白介導(dǎo)的胞吞是病毒侵入細(xì)胞最主要也是最為典型的一種細(xì)胞胞吞途徑。網(wǎng)格蛋白又稱籠形蛋白[5],由PEARSE在1975年首次分離得到并命名[6]。網(wǎng)格蛋白的1個(gè)重鏈(clathrin heavy chain,CLTC)和1個(gè)輕鏈組成一個(gè)二聚體,3個(gè)二聚體組成三聯(lián)體骨架結(jié)構(gòu),多個(gè)三聯(lián)體骨架結(jié)構(gòu)組成五邊形或六邊形網(wǎng)格結(jié)構(gòu)的包被亞基,最后由這些包被亞基構(gòu)成多面體的網(wǎng)格蛋白包被的囊泡結(jié)構(gòu)-小窩,病毒即是通過與小窩蛋白上的病毒受體結(jié)合進(jìn)入細(xì)胞的[7]。如登革病毒(dengue virus,DNV)[8-9],猴出血熱病毒(simian hemorrhagic fever virus,SHFV)[10],丙型肝炎病毒(hepatitis C virus,HCV)[11-13],乙型腦炎病毒(japanese encephalitis virus,JEV)[14],藍(lán)耳病毒(porcine reproductive and respiratory syndrome, PRRSV)[15],腸道病毒71型(enterovirus 71,EV-71)[16]等。該途徑的抑制能夠有效阻止病毒的感染,如用siRNA敲低CLTC基因,能夠有效阻斷乙腦病毒對(duì)豬Sus scrofa腎上皮細(xì)胞PK15的感染[14]。本研究旨在篩選出一批能夠靶向豬CLTC基因miRNA,從而為篩選廣譜抗病毒因子提供基礎(chǔ)。鑒于雙熒光素酶報(bào)告分析法的常規(guī)性和熒光定量的靈敏性,本研究結(jié)合2種方法,以增加基因篩選的可靠性。利用雙熒光素酶報(bào)告系統(tǒng)獲得靶向豬CLTC基因的miRNA:miR-205,miR-1,miR-129-5p和miR-206,并以點(diǎn)突變實(shí)驗(yàn)鑒定出miR-1通過種子區(qū)結(jié)合靶向作用于豬CLTC基因3′UTR。
1.1 主要試劑和載體
幼小倉鼠Mesocricetus auratus腎細(xì)胞系(BHK-21)和豬腎上皮細(xì)胞系(PK15)購自中國典型培養(yǎng)物保藏中心;雙熒光素酶檢測(cè)試劑盒和psiCHECK2載體均購自Promega;miRNA模擬物(miRNA mimics)購自上海吉瑪制藥技術(shù)有限公司;Lipofectamine 2000購自Invitrogen;T4 DNA連接酶,DNA片段,限制性內(nèi)切酶XholⅠ和NotⅠ購自Fermentas公司;SYBR Green試劑購自TOYOBO公司;HiFiScript cDNA第一鏈合成試劑盒購自北京康為世紀(jì)生物科技有限公司;引物由上海博尚生物技術(shù)有限公司合成。
1.2 實(shí)驗(yàn)方法
1.2.1 靶向豬CLTC基因miRNA的預(yù)測(cè) 根據(jù)miRBase(http://www.mirbase.org)數(shù)據(jù)庫公布的豬miRNA(Release 21,2014),利用Targetscan(http://www.targetscan.org),BioGps(http://www.biogps.org)軟件進(jìn)行miRNA的靶向分析;使用miRNAMap(http://mirnamap.mbc.nctu.edu.tw)軟件鑒定miRNA的表達(dá)特異性,篩選出靶向豬CLTC基因3′UTR序列的miRNA,并合成相應(yīng)的豬miRNA模擬物(上海吉瑪制藥技術(shù)有限公司)。
1.2.2 重組質(zhì)粒的構(gòu)建 利用美國生物技術(shù)信息中心(NCBI)數(shù)據(jù)庫中豬CLTC基因序列,設(shè)計(jì)引物并擴(kuò)增豬CLTC基因3′UTR序列;采用XholⅠ和NotⅠ酶切位點(diǎn),與psiCHECK2載體連接獲得雙熒光素酶報(bào)告載體,命名為Wild Type(WT)。設(shè)計(jì)miRNA種子區(qū)和豬CLTC基因3′UTR結(jié)合區(qū)的突變引物(表1),使用引物重疊聚合酶鏈?zhǔn)椒磻?yīng)(PCR)的方法,以豬CLTC基因3′UTR片段為模板,擴(kuò)增得到CLTC基因3′UTR的上下游片段;再以上下游同源臂的混合物作為模板,PCR擴(kuò)增得到含有突變結(jié)合位點(diǎn)的CLTC基因3′UTR目的片段;與psiCHECK2載體連接,經(jīng)測(cè)序驗(yàn)證后獲得CLTC靶位點(diǎn)突變報(bào)告載體,命名為Mutant Type(MT)。
1.2.3 雙熒光素酶報(bào)告基因?qū)嶒?yàn) 用含10%胎牛血清(體積分?jǐn)?shù))的MEM(minimum essential media)培養(yǎng)基于體積分?jǐn)?shù)為5%二氧化碳,37℃的環(huán)境條件下培養(yǎng)BHK-21細(xì)胞,并進(jìn)行細(xì)胞傳代。轉(zhuǎn)染前一天將細(xì)胞接種至24孔板,接種密度為2.5×105個(gè)·孔-1,培養(yǎng)過夜后按照Lipofectamine 2000的說明書進(jìn)行細(xì)胞瞬時(shí)轉(zhuǎn)染。設(shè)置8個(gè)實(shí)驗(yàn)組:①無miRNA無轉(zhuǎn)染試劑的空白對(duì)照;②陰性對(duì)照(NC),WT;③miR-205,WT;④miR-1,WT;⑤miR-129-5p,WT;⑥miR-206,WT; ⑦miR-19a,WT;⑧miR-19b,WT。轉(zhuǎn)染24 h后,收集細(xì)胞,按照雙熒光檢測(cè)試劑盒說明書進(jìn)行熒光檢測(cè),計(jì)算螢火蟲熒光素酶和海腎熒光素酶活性的比值,確定不同樣品之間報(bào)告基因的激活程度。同時(shí)測(cè)定每組3個(gè)平行孔之間的相對(duì)發(fā)光比率(RLU),計(jì)算標(biāo)準(zhǔn)誤差,統(tǒng)計(jì)不同轉(zhuǎn)染組之間的差異。
1.2.4 熒光定量PCR 以豬cDNA為模板設(shè)計(jì)擴(kuò)增CLTC基因的定量引物,12孔板培養(yǎng)PK15細(xì)胞,接種密度為5×105個(gè)·孔-1,培養(yǎng)過夜后對(duì)細(xì)胞進(jìn)行轉(zhuǎn)染。設(shè)置8個(gè)實(shí)驗(yàn)組:①NC,WT;②miR-205,WT;③miR-1,WT;④miR-129-5p,WT;⑤miR-206,WT;⑥miR-19a,WT;⑦miR-19b,WT;⑧無miRNA無轉(zhuǎn)染試劑的空白對(duì)照。轉(zhuǎn)染48 h后收集細(xì)胞,Trizol試劑提取細(xì)胞總RNA,并反轉(zhuǎn)錄成cDNA,定量PCR檢測(cè)CLTC基因的mRNA的表達(dá)變化,統(tǒng)計(jì)每組CLTC基因的表達(dá)差異。
1.2.5 點(diǎn)突變雙熒光素酶報(bào)告基因檢測(cè) 用雙熒光素酶檢測(cè)試劑盒檢測(cè)miRNA對(duì)點(diǎn)突變重組載體熒光素酶活性值的影響,實(shí)驗(yàn)組設(shè)置如下:①無miRNA無轉(zhuǎn)染試劑的空白對(duì)照;②NC,WT;③miR-205,WT;④miR-205,MT;⑤miR-1,WT;⑥miR-1,MT;⑦miR-206,WT;⑧miR-206,MT;⑨miR-129-5p,WT;⑩miR-129-5p,MT。按照1.2.3進(jìn)行雙熒光素酶報(bào)告基因檢測(cè)實(shí)驗(yàn)。
1.3 數(shù)據(jù)分析
所有數(shù)據(jù)均以 “平均數(shù)±標(biāo)準(zhǔn)差”表示。統(tǒng)計(jì)學(xué)分析方法采用SAS 8.0的t檢驗(yàn)和GLM方差分析,P<0.05表示差異顯著,P<0.01表示差異極顯著。為消除誤差,設(shè)置重復(fù)3次·實(shí)驗(yàn)組-1,取平均值。
2.1 生物信息學(xué)預(yù)測(cè)靶向豬CLTC基因的miRNA
利用生物信息學(xué)分析軟件,初步預(yù)測(cè)出與豬CLTC基因3’UTR有互補(bǔ)結(jié)合位點(diǎn)的6條miRNA:miR-205,miR-1,miR-129-5p,miR-206,miR-19a,miR-19b(表2),進(jìn)行后續(xù)實(shí)驗(yàn)驗(yàn)證。
2.2 豬CLTC基因3′UTR雙熒光素酶報(bào)告基因載體與突變載體的構(gòu)建
將豬CLTC基因3′UTR片斷和CLTC-3′UTR點(diǎn)突變片斷分別克隆至雙熒光酶報(bào)告基因載體psiCHECK2中,獲得重組質(zhì)粒psiCHECK2-CLTC-3′UTR(圖1),并以鑒定引物進(jìn)行菌液PCR鑒定。檢測(cè)長度為1 200 bp的豬CLTC基因3′UTR的雙熒光素酶載體(圖2)和豬CLTC基因3′UTR的雙熒光素酶靶標(biāo)突變載體psiCHECK2-3′UTR-MT(圖3),測(cè)序驗(yàn)證后提取質(zhì)粒備用。
2.3 靶向豬CLTC-3′UTR的miRNA的篩選
雙熒光酶報(bào)告基因載體(WT)分別與6種miRNA模擬物共轉(zhuǎn)染BHK-21細(xì)胞,以NC為陰性對(duì)照,細(xì)胞培養(yǎng)24 h以后,雙熒光素酶檢測(cè)試劑盒檢測(cè)熒光素酶活性(圖4)。結(jié)果顯示:miR-205,miR-1,miR-206和 miR-129-5p能顯著降低熒光素酶活性值。miRNA模擬物轉(zhuǎn)染PK15細(xì)胞以后,熒光定量PCR檢測(cè)CLTC基因的表達(dá)量(圖5),結(jié)果顯示:miR-1和miR-129-5p能夠顯著降低CLTC基因mRNA的表達(dá)水平,而miR-205和miR-206與對(duì)照組相比,差異不顯著。
表2 與豬CLTC基因3′UTR可能結(jié)合的miRNATable 2 Potential miRNA targeting 3′UTR of porcine CLTC gene
2.4 靶向豬CLTC-3′UTR的miRNA的進(jìn)一步確認(rèn)
為了進(jìn)一步驗(yàn)證各miRNA與豬CLTC-3′UTR結(jié)合的靶位點(diǎn),我們選取篩選出的miR-205,miR-1,miR-206,miR-129-5p做下一步的點(diǎn)突變實(shí)驗(yàn)。將miRNA對(duì)豬CLTC基因3′UTR靶位點(diǎn)進(jìn)行突變,其中miR-206和miR-1的靶位點(diǎn)相同,所以突變載體相同,分別構(gòu)建miR-205,miR-129-5p,miR-1/ssc-miR-206對(duì)應(yīng)CLTC靶點(diǎn)的突變載體。miRNA與突變載體(MT)或雙熒光報(bào)告基因載體(WT)共轉(zhuǎn)染BHK-21細(xì)胞后檢測(cè)熒光素酶活性。結(jié)果顯示:突變質(zhì)粒psiCHECK2-CLTC-3′UTR和miR-1共轉(zhuǎn)染細(xì)胞后,與對(duì)照組相比,其熒光素酶活性得以恢復(fù)(圖6),說明miR-1通過種子區(qū)域作用于豬CLTC基因的3′UTR抑制其表達(dá)。
圖1 CLTC-3′UTR雙熒光素酶報(bào)告基因載體的構(gòu)建圖譜Figure 1 Constructing ofluciferase reportergene vectors or porcine CLTC-3′UTR vectors
圖2 菌液PCR驗(yàn)證豬CLTC-3′UTR雙熒光素酶報(bào)告基因載體Figure 2 Microbialvalidation ofluciferase reporter gene vectors
圖3 菌液PCR鑒定豬CLTC-3′UTR雙熒光素酶靶位點(diǎn)突變載體Figure 3 Microbial validation of porcine CLTC-3′UTR mutation vectors
miRNA廣泛存在于生物體內(nèi),對(duì)生物體的轉(zhuǎn)錄后基因表達(dá)調(diào)控起著關(guān)鍵的作用[17]。在植物細(xì)胞中,成熟的miRNA先與一種稱為RNA誘導(dǎo)沉默復(fù)合體(RNA-induced silencing complex,RISC)的復(fù)合物結(jié)合,再特異性地與目標(biāo)mRNA結(jié)合,引起mRNA的降解;動(dòng)物細(xì)胞中,大部分的miRNA與其靶mRNA不完全互補(bǔ),miRNA則通過與對(duì)應(yīng)的mRNA的3′端非翻譯區(qū)(3′UTR)結(jié)合阻止轉(zhuǎn)錄后的翻譯,起到調(diào)節(jié)基因表達(dá)的作用[18]。愈來愈多的研究證實(shí),miRNA一般通過2種方式調(diào)控病毒在宿主細(xì)胞內(nèi)的增殖,一種是miRNA直接靶向病毒的mRNA序列,抑制病毒相關(guān)基因的表達(dá),這類miRNA已有相關(guān)的研究報(bào)道,如miR-323,miR-491,miR-654靶向甲型H1N1流感病毒(H1N1 subtype influenza A virus)[20],miR-24和miR-93靶向水泡口炎病毒(vesicular stomatitis virus, VSV)[21]。另一種是miRNA通過靶向宿主基因調(diào)節(jié)細(xì)胞內(nèi)的信號(hào)通路進(jìn)而阻止病毒的增殖,這類miRNA的研究集中在脂質(zhì)代謝方面,如miR-27a通過靶向控制脂質(zhì)合成和運(yùn)輸?shù)幕蚓S甲酸X受體α(RXRα)和ATP結(jié)合盒轉(zhuǎn)運(yùn)子A1(ABCA1)調(diào)控脂質(zhì)代謝,從而抑制丙型肝炎病毒的復(fù)制[22]。截至目前,在miRBase數(shù)據(jù)庫軟件中已鑒定出的人類miRNA有1 881種,小鼠的有1 193種[19],豬的有382種,但對(duì)豬miRNA的生物學(xué)功能尚不清楚。本研究利用生物信息學(xué)軟件預(yù)測(cè)出能夠與豬CLTC基因3′UTR靶向結(jié)合的6條miRNA:miR-205, miR-1,miR-206,miR-129-5p,miR-19a,miR-19b,利用雙熒光素酶報(bào)告基因法和熒光定量PCR法進(jìn)一步篩選出能夠靶向配對(duì)的miRNA。結(jié)果顯示:miR-129-5p,miR-1在雙熒光報(bào)告基因?qū)嶒?yàn)和熒光定量PCR中都能夠顯著降低CLTC基因的表達(dá)量,而miR-205,miR-206在雙熒光報(bào)告基因?qū)嶒?yàn)中能夠顯著降低CLTC基因的表達(dá)量,但在熒光定量PCR中差異不顯著。為進(jìn)一步驗(yàn)證靶向豬CLTC基因的miRNA,我們?cè)O(shè)計(jì)了點(diǎn)突變載體,將miRNA和其對(duì)應(yīng)點(diǎn)突變載體共轉(zhuǎn)染細(xì)胞檢測(cè)熒光素酶表達(dá)活性。結(jié)果顯示:miR-1通過種子區(qū)的結(jié)合而抑制靶基因豬CLTC基因的表達(dá),miR-129-5p能夠抑制CLTC基因的表達(dá),但突變載體的熒光活性并沒有得到恢復(fù),說明miR-129-5p可能不是因?yàn)榘谢蚍N子區(qū)的結(jié)合而抑制CLTC基因的表達(dá),推測(cè)可能存在其他的靶作用位點(diǎn)。截至目前,有關(guān)miR-129-5p對(duì)病毒侵入細(xì)胞的研究鮮有報(bào)道,前期研究發(fā)現(xiàn)蝦miR-1通過抑制CLTC基因的表達(dá)調(diào)控細(xì)胞的吞噬作用[23],推測(cè)本研究鑒定出的miR-129-5p可能在病毒侵入細(xì)過程中發(fā)揮重要作用。
圖4 miRNA模擬物與psiCHECK2-CLTC-3′UTR共轉(zhuǎn)染BHK-21細(xì)胞的相對(duì)熒光素酶活性Figure 4 Relative luciferase activity of psiCHECK2-CLTC-3′UTR reporter cotransfected with miRNA mimics in BHK-21 cells
圖5 定量PCR檢測(cè)miRNA模擬物轉(zhuǎn)染PK15細(xì)胞后CLTC基因的表達(dá)量Figure 5 CLTC gene expression was detected by q-PCR method after transfecting with miRNA mimics in PK15 cells
圖6 種子區(qū)突變前后4種miRNA模擬物對(duì)熒光素酶表達(dá)的影響Figure 6 Relative luciferase activity of different reporters in the presence or absence of miRNA seed sequence in BHK-21 cell
本研究成功構(gòu)建了包含豬CLTC基因3′UTR的雙熒光酶報(bào)告基因載體和不同miRNA種子區(qū)域所對(duì)應(yīng)的點(diǎn)突變報(bào)告載體,成功篩選出靶向豬CLTC基因的miR-1和miR-129-5p,利用點(diǎn)突變實(shí)驗(yàn)最終確定miR-1通過種子區(qū)靶向結(jié)合豬CLTC基因并抑制其表達(dá),研究結(jié)果為探究miRNA-CLTC基因-clathrin胞吞通路在抵抗病毒侵入宿主細(xì)胞的研究打下基礎(chǔ),也為抗病候選基因的篩選提供了新的素材。
[1] WANG Yang,STRICKER H M,GUO Deming,et al.MicroRNA:past and present[J].Front BioSci,2007,12(6):2316-2329.
[2] MOORE M J,SCHEEL T K,LUNA J M,et al.miRNA-target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity[J].Nat Commun,2015,6:8864.doi:10.1038/ncomms 9864.
[3] ROY-CHAUDHURI B,VALDMANIS P N,ZHANG Y,et al.Regulation of microRNA-mediated gene silencing by microRNA precursors[J].Nat Struct Mol Biol,2014,21(9):825-832.
[4] KETTING R F.MicroRNA biogenesis and function:an overview[J].Adv Exp Med Biol,2011,700:1-14.
[5] BRODSKY F M.Diversity of clathrin function:new tricks for an old protein[J].Annu Rev Cell Dev Biol,2012,28(1):309-336.
[6] PEARSE B M.Clathrin:a unique protein associated with intracellular transfer of membrane by coated vesicles[J]. Proc Nat Acad Sci,1976,73(4):1255-1259.
[7] McMAHON H T,BOUCROT E.Molecular mechanism and physiological functions of clathrin-mediated endocytosis[J].Nat Rev Mol Cell Biol,2011,12(8):517-533.
[8] ACOSTA E G,CASTILLA V,DAMONTE E B.Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis[J].J Gen Virol,2008,89(Pt 2):474-484.
[9] PICCINI L E,CASTILLA V,DAMONTE E B.Dengue-3 virus entry into vero cells:role of clathrin-mediated endocytosis in the outcome of infection[J].PLoS One,2015,10(10):e0140824.doi:10.1371/journal.pone.0140824.
[10] CAI Yingyun,POSTNIKOVA E N,BERNBAUM J G,et al.Simian hemorrhagic fever virus cell entry is dependent on CD163 and uses a clathrin-mediated endocytosis-like pathway[J].J Virol,2015,89(1):844-856.
[11] BLAISING J,LéVY P L,GONDEAU C,et al.Silibinin inhibits hepatitis C virus entry into hepatocytes by hindering clathrin-dependent trafficking[J].Cell Microbiol,2013,15(11):1866-1882.
[12] BENEDICTO I,GONDAR V,MOLINA-JIMéNEZ F,et al.Clathrin mediates infectious hepatitis C virus particle egress[J].J Virol,2015,89(8):4180-4190.
[13] BLANCHARD E,BELOUZARD S,GOUESLAIN L,et al.Hepatitis C virus entry depends on clathrin-mediated endocytosis[J].J Virol,2006,80(14):6964-6972.
[14] YANG Songbai,HE Minhui,LIU Xiangdong,et al.Japanese encephalitis virus infects porcine kidney epithelial PK15 cells via clathrin-and cholesterol-dependent endocytosis[J].Virol J,2013,10(1):258.doi:10.1186/1743-422X-10-258.
[15] HUANG Li,ZHANG Yuanpeng,YU Yaling,et al.Role of lipid rafts in porcine reproductive and respiratory syndrome virus infection in MARC-145 cells[J].Biochem Biophys Res Commun,2011,414(3):545-550.
[16] HUSSAIN K M,LEONG K L,NG M M,et al.The essential role of clathrin-mediated endocytosis in the infectious entry of human enterovirus 71[J].J Biol Chem,2011,286(1):309-321.
[17] HUNTZINGER E,IZAURRALDE E.Gene silencing by microRNAs:contributions of translational repression and mRNA decay[J].Nat Rev Genet,2011,12(2):99-110.
[18] 姜雪鷗,鐘金城.miRNA的研究進(jìn)展及其展望[J].中國草食動(dòng)物,2011,31(4):63-67.
JIANG Xueou,ZHONG Jincheng.Progress in miRNA research and its prospect[J].China Herbivore Sci,2011,31(4):63-67.
[19] 戴麗荷,褚曉紅,路伏增,等.靶向豬ATGL基因的miRNA預(yù)測(cè)及鑒定[J].畜牧獸醫(yī)學(xué)報(bào),2015,46(8):1281-1289.
DA Lihe,CHU Xiaohong,LU Fuzeng,et al.Prediction and validation of miRNA targeting porcine ATGL gene[J]. Acta Vet Zootech Sin,2015,46(8):1281-1289.
[20] SONG Liping,LIU He,GAO Shijuan,et al.Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells[J].J Virol,2010,84(17):8849-8860.
[21] OTSUKA M,JING Qing,GEORGEL P,et al.Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression[J].Immunity,2007,27(1):123-134.
[22] SHIRASAKI T,HONDA M,SHIMAKAMI T,et al.MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells[J].J Virol,2013,87(9):5270-5286.
[23] LIU Cuilian,WANG Jiajia,ZHANG Xiaobo.The involvement of miR-1-clathrin pathway in the regulation of phagocytosis[J].PLoS One,2014,9(6):e98747.doi:10.1371/joumal.pone.0098747.
Prediction and validation of miRNA targeting the porcine CLTC gene
WANG Yali,HE Ke,YU Jing,YANG Songbai,ZHAO Ayong
(College of Animal Science and Technology,Zhejiang A&F University,Lin’an 311300,Zhejiang,China)
Clathrin heavy chain (CLTC),an important component of clathrin-coated pits,plays an important role with virus invasion of cells;however,post-transcriptional gene regulation of the CLTC gene,especially porcine CLTC gene regulation by miRNA has not yet been clearly elucidated.This study aimed to screen miRNAs that target the CLTC gene.First,bioinformatics predicted that miR-205,miR-1,miR-129-5p,miR-206,miR-19a,and miR-19b targeted the porcine CLTC gene.Then porcine CLTC 3′UTR was cloned into the psiCHECK2vector,and the dual luciferase reporter recombinant vector psiCHECK2-3′UTR was constructed. The prediction of miRNA and the recombinant vector psiCHECK2-3′UTR were co-transfected into cells, respectively,with the scramble sequence of miRNA as a negative control(NC);then the luciferase activity was detected.A quantitative PCR(q-PCR)was also used to determine the expression of CLTC mRNA levels.Then to verify whether miRNA regulated the porcine CLTC gene through seed sequences,binding sites of psiCHECK2-3′UTR with seed sequence were mutated.Results showed that miR-205,miR-1,miR-129-5p,and miR-206 were able to significantly inhibit luciferase activity (P<0.05).At the same time there was an overexpression of miR-1 and miR-129-5p in PK15 cells,and the q-PCR showed that the expression of CLTC mRNA level was significantly reduced (P<0.05).Verification of whether the four miRNA (miR-205,miR-1,miR-129-5p,and miR-206) regulated the porcine CLTC gene through seed sequences showed that miR-1 mutant plasmid did not inhibit the luciferase activity.Thus,the results demonstrated that miR-1 inhibited porcine CLTC gene expression through its seed sequence binding with CLTC 3′UTR.[Ch,6 fig.2 tab.23 ref.]
porcine;CLTC;miRNA;endocylosis;dual luciferase reporter gene vector
S852
A
2095-0756(2017)03-0389-06
浙 江 農(nóng) 林 大 學(xué) 學(xué) 報(bào),2017,34(3):389-394
Journal of Zhejiang A&F University
10.11833/j.issn.2095-0756.2017.03.002
2016-05-31;
2016-07-13
國家自然科學(xué)基金青年基金資助項(xiàng)目(31501921);浙江省自然科學(xué)基金青年基金資助項(xiàng)目(LQ15C170001);浙江農(nóng)林大學(xué)科研發(fā)展基金資助項(xiàng)目(2014FR068)
王亞莉,從事豬分子育種研究。E-mail:wangyali19890204@163.com。通信作者:趙阿勇,教授,博士,從事動(dòng)物數(shù)量遺傳與分子育種研究。E-mail:zay503@zafu.edu.cn。楊松柏,博士,從事分子生物學(xué)與豬育種研究。E-mail:sbyang@zafu.edu.cn