亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Existence of Positive Solutions and Multiple Results for Nonlinear Eigenvalue Problems on Time Scales

        2017-06-05 15:09:36LUHaixia
        關鍵詞:連通分支零解解性

        LU Haixia

        (School of Arts and Science, Suqian College, Suqian 223800, Jiangsu)

        Existence of Positive Solutions and Multiple Results for Nonlinear Eigenvalue Problems on Time Scales

        LU Haixia

        (SchoolofArtsandScience,SuqianCollege,Suqian223800,Jiangsu)

        In this paper, we discuss the nonlinear eigenvalue problem on time scalesT

        eigenvalue problems; time scales; global bifurcation; positive solutions

        1 Introduction

        In this paper, we study the following nonlinear eigenvalue problem on time scales

        (1)

        where λ is a positive parameter, andTis a closed subset of the interval [0,1] with 0,1∈T.

        The concept of time scales was created by Hilger[1]in order to unify continuous and discrete calculus. Some other early papers in this area include Agarwal and Bohner[2], Aulbach and Hilger[3]and Erbe and Hilger[4]. In recent years, much research has been done for the existence of solutions of boundary value problems on time scales by Krasnoselskii fixed point theorems, Leggett-williams theorem, upper and lower solution method and so on(see [5-14]). By using the global bifurcation theory and the results in [16], Luo and Ma[15]obtained the existence of solutions of the nonlinear eigenvalue problem (1) in the case that the nonlinear term f(u(t)) satisfied

        sf(s)>0, ?s≠0.

        (2)

        Inthispaper,wediscussnonlineardifferentialequation(1)byusingRabinowitz’sbifurcationtheoremsfromboththetrivialsolutionandinfinity.Theexistenceofpositivesolutionsandmultiplicityofsolutionsof(1)areprovedinthecasethat(2)isnotsatisfied.Themethodandresultsinthispaperimprovethosegivenin[13-15].

        2 Preliminaries

        LetTbe a closed subset of the interval [0,1] with 0,1∈T. For completeness and convenience, we recall the following concepts related to the notation of the time scales.

        Definition 2.1 Define the forward jump operator and backward jump operatorσ,ρ:T→Tby

        σ(t)=inf{s∈T:s>t}, ρ(t)=sup{s∈T:s

        for anyt∈T. The pointt∈Tis said to be left-dense, left-scattered, right-dense, right-scattered ifρ(t)=t,ρ(t)t, respectively.

        We assume throughout that,σ(0)=0 andρ(1)=1.

        Definition 2.2 Letu:T→R andt∈T.uis said to be differentiable attif there exists a number, denoted byuΔ(t), with the property that for eachε>0 there is a neighborhoodU∈Toftsuch that

        |u(σ(t))-u(s)-uΔ(t)(σ(t)-s)|≤ε|σ(t)-s|

        foralls∈U.

        Ifuis differentiable at everyt∈Tthenuis said to be differentiable onT. The second derivative ofuattis defined to beuΔΔ(t):=(uΔ)Δ(t). We also define the functionuσ:=u°σ.

        Definition 2.3 A functionu:T→R is said to be rd-continuous onTif it is continuous at all right-dense points and has finite left-sided limit at each left-dense point inT.

        ‖u‖1=‖u‖+‖uΔ‖,

        LetX=C0(T),

        E={u∈C1(T)∶u(0)=u(1)=0},

        Letφ(t), ψ(t)betheuniquesolutionoftheequationLu(t)=0onTsatisfyingtheboundaryconditions

        FromLemma3.3in[16],thereexistsaconstantω≠ 0suchthatω=ψ(t)φΔ(t)-φ(t)ψΔ(t)forallt∈T.For(s, t)∈T×T,let

        Theboundaryvalueproblem(1)isequivalenttothefollowingintegralequation

        (3)

        for some t0∈T.Thenu0≡0.

        Forconvenience,welistthefollowingconditionswhichwillbeusedinthispaper.

        (H4) There existsr>0 such thatf(r)<0 andf(-r)>0.

        Letζ,ξ∈C(R, R) satisfy

        f(s)=f0s+ζ(s), f(s)=f∞s+ξ(s).

        By the conditions (H2) and (H3), we have

        (4)

        Now (1) can be rewritten in the form either

        Lu=λ f0uσ+λζ(uσ),

        (5)

        or

        Lu=λ f∞uσ+λξ(uσ).

        (6)

        Definition 2.4 Suppose thatu∈C1(T) andt∈T. Ifu(t)=0, thentis a zero ofu. Ifu(t)=0 anduΔ(t)≠ 0, thentis a simple zero ofu. Ifu(t)uΔ(t)<0 (and henceσ(t)>t), then we say thatuhas a generalized zero at the point

        Simple zeross∈Tand generalized zeross?T, as defined above, are often referred to as simple generalized zeros.

        (i) the only zeros ofuinTare simple;

        (ii)uhas exactlyk-1 simple generalized zeros in (0, 1);

        (iii) ±uΔ(0)>0.

        Letλkbe thekth eigenvalue of the linear eigenvalue problem

        It is known from [16, Lemma 5.1] and [17, Lemma 2.6] that

        0<λ1<λ2<λ3<…, uk∈Sk, k=1, 2, 3,…,

        and eachλkhas algebraic multiplicity one.

        LetΓdenote the closure of the set of nontrivial solutions of (3) in R×E. A continuum ofΓis a maximal closed connected subset.

        Hσ=GEζσ:R×E→E.

        We see from (3) and (5) that finding a solution (λ,u)∈Γis equivalent to finding a solution (λ,u)∈R×Eof the equation

        It follows from the definition ofHσthatHσis compact and continuous. In addition, it follows from (4) thatHσ(λ,u)=°(|u|) forunear zero, uniformly on boundedλintervals. Therefore, following the arguments in the proof of Theorem 7.1 in [16] Lemma 2.2 holds.

        Fσ=GEξσ: R×E→E.

        We see from (6) that (3) is equivalent to the following equation

        (7)

        ItfollowsfromthedefinitionofFσthatFσiscompactandcontinuous.Andby(4)wehavethatFσ(λ,u)=°(|u|)forunear∞,uniformlyonboundedλintervals.Hence(7)isoftheformdiscussedin[18].

        Let Г1denotetheclosureofthesetofnontrivialsolutionsof(3)inR×X. Obviously, from the point of the set, Г=Г1. Hence, in the sense of the set, we denoteΓandΓ1byΓ.

        Lemma 2.4[14, 19]LetMbe a subset ofΓ. Then

        (i)Mis a closed set in R×XiffMis a closed set in R×E;

        (ii)Mis a connected component set in R×XiffMis a connected component set in R×E;

        (iii)Mis a unbounded set in R×XiffMis a unbounded set in R×E.

        3 Main results

        In this section we give our main results.

        Theorem 3.1 Let (H1)-(H3) hold. Assume for some integerk≥1, one of the following conditions is satisfied:

        Then (1) has two solutionsu+kandu-ksuch thatu+khas exactlyk-1 simple generalized zeros inTwith (u+k)Δ(0)>0,u-khas exactlyk-1 simple generalized zeros inTwith (u-k)Δ(0)<0.

        Theorem 3.2 Let (H1)-(H3) hold. Suppose that there exist two integersk≥ 1 andj≥0 such that one of the following conditions is satisfied:

        λAu≠u, ?λ>0,u∈?Br,

        (8)whereAisdenotedby(3), Br={u∈X| ‖u‖

        Otherwise,thereexistλ0>0andu0∈?Brsuchthatu0=λ0Au0.Since‖u0‖=r,thenthereexistst0∈Tsuchthatu0(σ(t0))=r (theproofforu0(σ(t0))=-rissimilar).

        Butitfollowsfrom(H4)that

        Lu0(t0)=λ0f(u0(σ(t0)))=λ0f(r)<0,

        whichisacontradiction.

        Then

        [1] HILGER S. Analysis on measure chains-a unified approach to continuous and disrete calculus[J]. Results Math,1990,18(1):18-56.

        [2] AGARWAL R P, BOHNER M. Basic calculus on time scales and some of its applications[J]. Results Math,1999,35(1):3-22.

        [3] AULBACH B, HILGER S. Linear Dynamic Processes with in Homogeneous Time Scale, Nonlinear Dynamics and Quantum Dynamical System[M]. Berlin:Akademic Verlag,1990.

        [4] ERBE L H, HILGER S. Sturmian theory on measure chains[J]. Differential Equations Dynam System,1993,1(3):223-246.

        [5] AGARWAL R P, O'REGAN D. Nonlinear boundary value problem on a measure chain[J]. Nonlinear Anal,2001,44(4):527-535.

        [6] ANDERSON D R. Eigenvalue intervals for a two-point boundary value problem on a measure chain[J]. J Comput Appl Math,2002,141(1/2):57-64.

        [7] CHEN H H, CHEN C. Positive solutions for eigenvalue problems on a measure chain[J]. Nonlinear Anal,2002,51(3):499-507.

        [8] CHYAN C J, HENDERSON J. Eigenvalue problems for differential equations on a measure chain[J]. J Math Anal Appl,2000,245(2):547-559.

        [9] CHYAN C J, HENDERSON J. Twin solutions of boundary value problems for differential equations on a measure chain[J]. J Comput Appl Math,2002,141(1/2):123-131.

        [10] ERBE L H, PETERSON A. Positive solutions for a nonlinear differential equation on a measure chain[J]. Math Comput Modelling,2000,32(5/6):571-585.

        [11] ERBE L H, PETERSON A, MATHSEN R. Existence, multiplicity and nonexistence of positive solutions to a differential equation on a measure chain[J]. J Comput Appl Math,2000,113(1/2):365-380.

        [12] LI W T, SUN H R. Multiple Positive solutions for nonlinear dynamic systems on a measure chain[J]. J Comput Appl Math,2004,162(2):421-430.

        [13] SONG C X. Positive solutions for first-order PBVPs on time scales[J]. Chin Quart J Math,2012,27(3):337-343.

        [14] LI H Y, DAI L M. Positive solutions for nonlinear differential equations with sign changing nonlinearity on a measure chain[J]. J Math,2012,32(1):9-16.

        [15] LUO H, MA R Y. Nodal solutions to nonlinear eigenvalue problems on time scales[J]. Nonlinear Anal,2006,65(4):773-784.

        [16] DAVIDSON F A, RYNNE B P. Global bifurcation on time scales[J]. J Math Anal Appl,2002,267(1):345-360.

        [17] DAVIDSON F A, RYNNE B P. Curves of positive solution of boundary value problems on time scales[J]. J Math Anal Appl,2004,300(2):491-504.

        [18] RABINOWITZ P H. On bifurcation from infinity[J]. J Differential Equations,1973,14(3):462-475.

        [19] CUI Y J, SUN J X, ZOU Yumei. Global bifurcation and multiple results for Sturm-Liouville problems[J]. J Comput Appl Math,2011,235(8):2185-2192.

        (編輯 陶志寧)

        時標上非線性特征值問題正解的存在性和多解性

        陸海霞

        (宿遷學院 文理學院, 江蘇 宿遷 223800)

        討論時標T上非線性特征值問題其中λ是正參數(shù).運用全局分歧理論,研究在一定條件下上述特征值問題發(fā)自u=0和(或)u=∞非零解的連通分支,得到此特征值問題正解的存在性和多解性結果,推廣和改進了一些已有結果.

        特征值問題; 時標; 全局分歧; 正解.

        O175.8

        A

        1001-8395(2017)03-0289-06

        Foundation Items:This work is supported by the National Science Foundation of China (No. 11501260) and Natural Science Foundation of Suqian city(No. Z201444)

        10.3969/j.issn.1001-8395.2017.03.002

        Received date: 2016-05-25.

        whereλis a positive parameter. Using the global bifurcation theory, we study the continua of its nontrivial solutions bifurcating fromu=0 and/oru=∞ under some conditions. In addition, the existence of positive solutions and the multiplicity of solutions of this nonlinear eigenvalue problem are obtained. Our results generalize and improve some known results.

        2010 MSC:34B15

        猜你喜歡
        連通分支零解解性
        偏序集的序連通關系及其序連通分支
        Matlab在判斷平面自治系統(tǒng)零解穩(wěn)定性中的應用
        關于圖的距離無符號拉普拉斯譜半徑的下界
        k-Hessian方程徑向解的存在性與多解性
        R2上對偶Minkowski問題的可解性
        非線性中立型積分微分方程零解的全局漸近穩(wěn)定性
        方程的可解性
        關于非自治系統(tǒng)零解的穩(wěn)定性討論
        一個圖論問題的簡單證明
        新課程(下)(2015年9期)2015-04-12 09:23:30
        ∑*-嵌入子群對有限群的可解性的影響
        亚洲一区二区在线| 久久久久久av无码免费网站下载| 日本肥老妇色xxxxx日本老妇 | 伊人色综合九久久天天蜜桃| 91中文人妻丝袜乱一区三区 | 日韩人妻无码中文字幕一区| 国产女人乱码一区二区三区| 免费a级毛片在线播放不收费| 亚洲欧洲无码一区二区三区| 日本专区一区二区三区| 久久精品国产黄片一区| 亚洲福利视频一区二区三区| 国产欧美精品aaaaaa片| 曰韩无码无遮挡a级毛片| 精品国产18久久久久久| АⅤ天堂中文在线网| 亚洲综合视频一区二区| 轻点好疼好大好爽视频| 国产精品免费精品自在线观看| 精品国内自产拍在线视频| 国产精品三级国产精品高| 国产女人精品视频国产灰线| 麻豆一区二区99久久久久| 亚洲中文久久久久无码| 91精品人妻一区二区三区水蜜桃| 文字幕精品一区二区三区老狼| 最近中文字幕完整版免费| 青春草国产视频| 亚洲av第二区国产精品| 免费无码专区毛片高潮喷水| 18禁美女裸身无遮挡免费网站| 区无码字幕中文色| 日本午夜伦理享色视频| 18国产精品白浆在线观看免费| 国产熟妇搡bbbb搡bb七区| 一本色道久久综合狠狠躁中文| 伊人青青草综合在线视频免费播放| 亚洲欧洲精品无码av| 亚洲色图在线观看视频| 天堂av一区二区在线| 婷婷四虎东京热无码群交双飞视频|