亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Existence of Positive Solutions and Multiple Results for Nonlinear Eigenvalue Problems on Time Scales

        2017-06-05 15:09:36LUHaixia
        關鍵詞:連通分支零解解性

        LU Haixia

        (School of Arts and Science, Suqian College, Suqian 223800, Jiangsu)

        Existence of Positive Solutions and Multiple Results for Nonlinear Eigenvalue Problems on Time Scales

        LU Haixia

        (SchoolofArtsandScience,SuqianCollege,Suqian223800,Jiangsu)

        In this paper, we discuss the nonlinear eigenvalue problem on time scalesT

        eigenvalue problems; time scales; global bifurcation; positive solutions

        1 Introduction

        In this paper, we study the following nonlinear eigenvalue problem on time scales

        (1)

        where λ is a positive parameter, andTis a closed subset of the interval [0,1] with 0,1∈T.

        The concept of time scales was created by Hilger[1]in order to unify continuous and discrete calculus. Some other early papers in this area include Agarwal and Bohner[2], Aulbach and Hilger[3]and Erbe and Hilger[4]. In recent years, much research has been done for the existence of solutions of boundary value problems on time scales by Krasnoselskii fixed point theorems, Leggett-williams theorem, upper and lower solution method and so on(see [5-14]). By using the global bifurcation theory and the results in [16], Luo and Ma[15]obtained the existence of solutions of the nonlinear eigenvalue problem (1) in the case that the nonlinear term f(u(t)) satisfied

        sf(s)>0, ?s≠0.

        (2)

        Inthispaper,wediscussnonlineardifferentialequation(1)byusingRabinowitz’sbifurcationtheoremsfromboththetrivialsolutionandinfinity.Theexistenceofpositivesolutionsandmultiplicityofsolutionsof(1)areprovedinthecasethat(2)isnotsatisfied.Themethodandresultsinthispaperimprovethosegivenin[13-15].

        2 Preliminaries

        LetTbe a closed subset of the interval [0,1] with 0,1∈T. For completeness and convenience, we recall the following concepts related to the notation of the time scales.

        Definition 2.1 Define the forward jump operator and backward jump operatorσ,ρ:T→Tby

        σ(t)=inf{s∈T:s>t}, ρ(t)=sup{s∈T:s

        for anyt∈T. The pointt∈Tis said to be left-dense, left-scattered, right-dense, right-scattered ifρ(t)=t,ρ(t)t, respectively.

        We assume throughout that,σ(0)=0 andρ(1)=1.

        Definition 2.2 Letu:T→R andt∈T.uis said to be differentiable attif there exists a number, denoted byuΔ(t), with the property that for eachε>0 there is a neighborhoodU∈Toftsuch that

        |u(σ(t))-u(s)-uΔ(t)(σ(t)-s)|≤ε|σ(t)-s|

        foralls∈U.

        Ifuis differentiable at everyt∈Tthenuis said to be differentiable onT. The second derivative ofuattis defined to beuΔΔ(t):=(uΔ)Δ(t). We also define the functionuσ:=u°σ.

        Definition 2.3 A functionu:T→R is said to be rd-continuous onTif it is continuous at all right-dense points and has finite left-sided limit at each left-dense point inT.

        ‖u‖1=‖u‖+‖uΔ‖,

        LetX=C0(T),

        E={u∈C1(T)∶u(0)=u(1)=0},

        Letφ(t), ψ(t)betheuniquesolutionoftheequationLu(t)=0onTsatisfyingtheboundaryconditions

        FromLemma3.3in[16],thereexistsaconstantω≠ 0suchthatω=ψ(t)φΔ(t)-φ(t)ψΔ(t)forallt∈T.For(s, t)∈T×T,let

        Theboundaryvalueproblem(1)isequivalenttothefollowingintegralequation

        (3)

        for some t0∈T.Thenu0≡0.

        Forconvenience,welistthefollowingconditionswhichwillbeusedinthispaper.

        (H4) There existsr>0 such thatf(r)<0 andf(-r)>0.

        Letζ,ξ∈C(R, R) satisfy

        f(s)=f0s+ζ(s), f(s)=f∞s+ξ(s).

        By the conditions (H2) and (H3), we have

        (4)

        Now (1) can be rewritten in the form either

        Lu=λ f0uσ+λζ(uσ),

        (5)

        or

        Lu=λ f∞uσ+λξ(uσ).

        (6)

        Definition 2.4 Suppose thatu∈C1(T) andt∈T. Ifu(t)=0, thentis a zero ofu. Ifu(t)=0 anduΔ(t)≠ 0, thentis a simple zero ofu. Ifu(t)uΔ(t)<0 (and henceσ(t)>t), then we say thatuhas a generalized zero at the point

        Simple zeross∈Tand generalized zeross?T, as defined above, are often referred to as simple generalized zeros.

        (i) the only zeros ofuinTare simple;

        (ii)uhas exactlyk-1 simple generalized zeros in (0, 1);

        (iii) ±uΔ(0)>0.

        Letλkbe thekth eigenvalue of the linear eigenvalue problem

        It is known from [16, Lemma 5.1] and [17, Lemma 2.6] that

        0<λ1<λ2<λ3<…, uk∈Sk, k=1, 2, 3,…,

        and eachλkhas algebraic multiplicity one.

        LetΓdenote the closure of the set of nontrivial solutions of (3) in R×E. A continuum ofΓis a maximal closed connected subset.

        Hσ=GEζσ:R×E→E.

        We see from (3) and (5) that finding a solution (λ,u)∈Γis equivalent to finding a solution (λ,u)∈R×Eof the equation

        It follows from the definition ofHσthatHσis compact and continuous. In addition, it follows from (4) thatHσ(λ,u)=°(|u|) forunear zero, uniformly on boundedλintervals. Therefore, following the arguments in the proof of Theorem 7.1 in [16] Lemma 2.2 holds.

        Fσ=GEξσ: R×E→E.

        We see from (6) that (3) is equivalent to the following equation

        (7)

        ItfollowsfromthedefinitionofFσthatFσiscompactandcontinuous.Andby(4)wehavethatFσ(λ,u)=°(|u|)forunear∞,uniformlyonboundedλintervals.Hence(7)isoftheformdiscussedin[18].

        Let Г1denotetheclosureofthesetofnontrivialsolutionsof(3)inR×X. Obviously, from the point of the set, Г=Г1. Hence, in the sense of the set, we denoteΓandΓ1byΓ.

        Lemma 2.4[14, 19]LetMbe a subset ofΓ. Then

        (i)Mis a closed set in R×XiffMis a closed set in R×E;

        (ii)Mis a connected component set in R×XiffMis a connected component set in R×E;

        (iii)Mis a unbounded set in R×XiffMis a unbounded set in R×E.

        3 Main results

        In this section we give our main results.

        Theorem 3.1 Let (H1)-(H3) hold. Assume for some integerk≥1, one of the following conditions is satisfied:

        Then (1) has two solutionsu+kandu-ksuch thatu+khas exactlyk-1 simple generalized zeros inTwith (u+k)Δ(0)>0,u-khas exactlyk-1 simple generalized zeros inTwith (u-k)Δ(0)<0.

        Theorem 3.2 Let (H1)-(H3) hold. Suppose that there exist two integersk≥ 1 andj≥0 such that one of the following conditions is satisfied:

        λAu≠u, ?λ>0,u∈?Br,

        (8)whereAisdenotedby(3), Br={u∈X| ‖u‖

        Otherwise,thereexistλ0>0andu0∈?Brsuchthatu0=λ0Au0.Since‖u0‖=r,thenthereexistst0∈Tsuchthatu0(σ(t0))=r (theproofforu0(σ(t0))=-rissimilar).

        Butitfollowsfrom(H4)that

        Lu0(t0)=λ0f(u0(σ(t0)))=λ0f(r)<0,

        whichisacontradiction.

        Then

        [1] HILGER S. Analysis on measure chains-a unified approach to continuous and disrete calculus[J]. Results Math,1990,18(1):18-56.

        [2] AGARWAL R P, BOHNER M. Basic calculus on time scales and some of its applications[J]. Results Math,1999,35(1):3-22.

        [3] AULBACH B, HILGER S. Linear Dynamic Processes with in Homogeneous Time Scale, Nonlinear Dynamics and Quantum Dynamical System[M]. Berlin:Akademic Verlag,1990.

        [4] ERBE L H, HILGER S. Sturmian theory on measure chains[J]. Differential Equations Dynam System,1993,1(3):223-246.

        [5] AGARWAL R P, O'REGAN D. Nonlinear boundary value problem on a measure chain[J]. Nonlinear Anal,2001,44(4):527-535.

        [6] ANDERSON D R. Eigenvalue intervals for a two-point boundary value problem on a measure chain[J]. J Comput Appl Math,2002,141(1/2):57-64.

        [7] CHEN H H, CHEN C. Positive solutions for eigenvalue problems on a measure chain[J]. Nonlinear Anal,2002,51(3):499-507.

        [8] CHYAN C J, HENDERSON J. Eigenvalue problems for differential equations on a measure chain[J]. J Math Anal Appl,2000,245(2):547-559.

        [9] CHYAN C J, HENDERSON J. Twin solutions of boundary value problems for differential equations on a measure chain[J]. J Comput Appl Math,2002,141(1/2):123-131.

        [10] ERBE L H, PETERSON A. Positive solutions for a nonlinear differential equation on a measure chain[J]. Math Comput Modelling,2000,32(5/6):571-585.

        [11] ERBE L H, PETERSON A, MATHSEN R. Existence, multiplicity and nonexistence of positive solutions to a differential equation on a measure chain[J]. J Comput Appl Math,2000,113(1/2):365-380.

        [12] LI W T, SUN H R. Multiple Positive solutions for nonlinear dynamic systems on a measure chain[J]. J Comput Appl Math,2004,162(2):421-430.

        [13] SONG C X. Positive solutions for first-order PBVPs on time scales[J]. Chin Quart J Math,2012,27(3):337-343.

        [14] LI H Y, DAI L M. Positive solutions for nonlinear differential equations with sign changing nonlinearity on a measure chain[J]. J Math,2012,32(1):9-16.

        [15] LUO H, MA R Y. Nodal solutions to nonlinear eigenvalue problems on time scales[J]. Nonlinear Anal,2006,65(4):773-784.

        [16] DAVIDSON F A, RYNNE B P. Global bifurcation on time scales[J]. J Math Anal Appl,2002,267(1):345-360.

        [17] DAVIDSON F A, RYNNE B P. Curves of positive solution of boundary value problems on time scales[J]. J Math Anal Appl,2004,300(2):491-504.

        [18] RABINOWITZ P H. On bifurcation from infinity[J]. J Differential Equations,1973,14(3):462-475.

        [19] CUI Y J, SUN J X, ZOU Yumei. Global bifurcation and multiple results for Sturm-Liouville problems[J]. J Comput Appl Math,2011,235(8):2185-2192.

        (編輯 陶志寧)

        時標上非線性特征值問題正解的存在性和多解性

        陸海霞

        (宿遷學院 文理學院, 江蘇 宿遷 223800)

        討論時標T上非線性特征值問題其中λ是正參數(shù).運用全局分歧理論,研究在一定條件下上述特征值問題發(fā)自u=0和(或)u=∞非零解的連通分支,得到此特征值問題正解的存在性和多解性結果,推廣和改進了一些已有結果.

        特征值問題; 時標; 全局分歧; 正解.

        O175.8

        A

        1001-8395(2017)03-0289-06

        Foundation Items:This work is supported by the National Science Foundation of China (No. 11501260) and Natural Science Foundation of Suqian city(No. Z201444)

        10.3969/j.issn.1001-8395.2017.03.002

        Received date: 2016-05-25.

        whereλis a positive parameter. Using the global bifurcation theory, we study the continua of its nontrivial solutions bifurcating fromu=0 and/oru=∞ under some conditions. In addition, the existence of positive solutions and the multiplicity of solutions of this nonlinear eigenvalue problem are obtained. Our results generalize and improve some known results.

        2010 MSC:34B15

        猜你喜歡
        連通分支零解解性
        偏序集的序連通關系及其序連通分支
        Matlab在判斷平面自治系統(tǒng)零解穩(wěn)定性中的應用
        關于圖的距離無符號拉普拉斯譜半徑的下界
        k-Hessian方程徑向解的存在性與多解性
        R2上對偶Minkowski問題的可解性
        非線性中立型積分微分方程零解的全局漸近穩(wěn)定性
        方程的可解性
        關于非自治系統(tǒng)零解的穩(wěn)定性討論
        一個圖論問題的簡單證明
        新課程(下)(2015年9期)2015-04-12 09:23:30
        ∑*-嵌入子群對有限群的可解性的影響
        日本黄色影院一区二区免费看 | 久久人人97超碰超国产| 无码超乳爆乳中文字幕| 国产超碰在线91观看| 熟女体下毛荫荫黑森林| 午夜福利麻豆国产精品| 亚洲无码夜夜操| 亚洲中文字幕高清在线视频一区 | 青青草视频在线免费观看91| 日本一区二区三区视频网站| 亚洲成a v人片在线观看| 国产免费一区二区三区最新不卡| 北岛玲亚洲一区二区三区| 亚洲中文字幕日产无码| 夜夜高潮夜夜爽夜夜爱爱| 国产精品视频免费的| 中文字幕有码久久高清| 国产亚洲美女精品久久久2020 | 欧美一区二区三区视频在线观看| 巨大欧美黑人xxxxbbbb| 国产丝袜高跟美腿一区在线| 日韩精品一区二区三区在线视频| 五月综合激情婷婷六月色窝| 久久亚洲AV无码精品色午夜| 亚洲高清精品一区二区| 隔壁老王国产在线精品| 国产极品久久久久极品| 免费观看视频在线播放| 亚洲中文av中文字幕艳妇| av无码人妻中文字幕| 日韩精品网| 美女被黑人巨大入侵的的视频 | 亚洲国产午夜精品理论片在线播放| 亚洲AV伊人久久综合密臀性色| 自拍av免费在线观看| 真实国产乱子伦精品视频| 亚洲精品无码av片| 国产麻豆一区二区三区在线播放 | 日韩精品免费在线视频| 久久精品熟女亚洲av麻| 国产亚洲人成a在线v网站|