王明峰 陳志文 蔣恩臣 任永志 韓 平 孫 焱
(1.華南農(nóng)業(yè)大學材料與能源學院, 廣州 510642; 2.東北農(nóng)業(yè)大學工程學院, 哈爾濱 150030)
木屑熱解揮發(fā)物冷凝特性研究
王明峰1陳志文1蔣恩臣1任永志1韓 平2孫 焱1
(1.華南農(nóng)業(yè)大學材料與能源學院, 廣州 510642; 2.東北農(nóng)業(yè)大學工程學院, 哈爾濱 150030)
在自行設(shè)計的生物質(zhì)熱解揮發(fā)物兩級冷凝特性參數(shù)測試系統(tǒng)上,進行了木屑在450、550、650℃下熱解揮發(fā)物冷凝特性研究,其中,一級冷凝采用空氣作為冷凝介質(zhì),二級冷凝采用水作為冷凝介質(zhì),計算了表面局部冷凝換熱系數(shù),以及冷凝液膜熱阻和厚度。結(jié)果表明:一級冷凝換熱系數(shù)隨著溫度的升高而減小,在熱解溫度為450℃時達到最大值671.02 W/(m2·K);二級換熱系數(shù)隨著溫度的升高先增大后減小,在熱解溫度為550℃時達到最大值1.484×105W/(m2·K)?;诶淠鲀?nèi)壁一維穩(wěn)態(tài)冷凝換熱特性,分析了冷凝液膜形成過程,存在3個階段:液膜形成、液膜積累、液膜流動。在液膜形成和積累階段,液膜厚度逐漸增大,熱阻變大;液膜厚度達到一定程度后,冷凝液產(chǎn)生流動,在液膜流動初期,液膜厚度逐漸減小,熱阻變??;在穩(wěn)定流動期,熱阻基本保持穩(wěn)定。
木屑; 熱解; 冷凝特性; 換熱系數(shù); 液膜模型
我國生物質(zhì)能源豐富[1-2]。近幾十年來熱解被認為是一種很有前景的生物質(zhì)利用技術(shù)[3]。不同的熱解條件能夠產(chǎn)生不同比例的氣、液、固三態(tài)產(chǎn)物:其中固體炭可以用作活性劑;含有CO、CO2、H2、CH4及飽和或不飽和烴類化合物等不可凝氣體[4]則可以用作工業(yè)或者民用燃氣;液態(tài)生物油可進一步分離和提取,制成燃料油和化工原料,具有很高的利用價值。因此國內(nèi)外研究人員針對熱解裝置和液體產(chǎn)物收集技術(shù)進行了相關(guān)研究,由于生物油主要由各類組分復(fù)雜的含氧不飽和烴類衍生物組成[5-10],目前分離生物油仍主要依靠常規(guī)冷凝手段。
分級冷凝是對生物油在線分離的手段之一,有研究人員通過研究水蒸氣的冷凝特性來研究生物油的冷凝特性[11-16],發(fā)現(xiàn)冷凝液膜熱阻以及不可凝氣體熱阻影響著冷凝過程,KIRAN等[17-19]通過歐拉方法對生物質(zhì)快速熱解氣中11種主要成分的水冷間接接觸式冷凝傳質(zhì)過程進行了數(shù)值模擬,建立了氣液兩相的多組分傳質(zhì)模型,結(jié)果表明,不同組分在不同冷凝時間的冷凝效率不同。MOHAN等[20-23]研究表明:分級冷凝技術(shù)可以有效收集生物油,提高生物油的品質(zhì),因此研究生物油在不同冷凝溫度區(qū)間的冷凝特性,對于有針對性地在線收集生物油有理論和應(yīng)用價值。
目前,針對生物質(zhì)熱解揮發(fā)物冷凝過程機理的研究較少,缺少生物油冷凝基礎(chǔ)參數(shù)研究,對冷凝過程中不凝氣的影響、氣液兩相傳熱傳質(zhì)特性問題研究不足。本文針對木屑在不同熱解溫度下產(chǎn)生的揮發(fā)物冷凝特性進行測試,計算冷凝換熱系數(shù)、冷凝液膜熱阻和厚度,為熱解揮發(fā)物冷凝工藝和裝置的設(shè)計提供理論基礎(chǔ)。
1.1 實驗原料
本文使用的生物質(zhì)木屑原料采自廣州市某木材廠,木屑原料進行干燥、粉碎和過30目篩處理后,經(jīng)工業(yè)分析測得其含水率為6.62%,灰分質(zhì)量分數(shù)為5.02%,揮發(fā)分質(zhì)量分數(shù)為75.06%,固定碳質(zhì)量分數(shù)為13.31%,量熱儀測得其低位熱值為15.77 MJ/kg。
1.2 冷凝特性測試裝置
熱解揮發(fā)物冷凝特性測試系統(tǒng)如圖1所示,該測試系統(tǒng)主要由連續(xù)熱解部分、測試管及數(shù)據(jù)記錄部分、冷卻水部分和冷凝液處理及排氣部分組成。其中,連續(xù)熱解反應(yīng)發(fā)生裝置為華南農(nóng)業(yè)大學生物質(zhì)能實驗室自主研制的變螺距連續(xù)熱解裝置[24]。
圖1 連續(xù)熱解揮發(fā)物冷凝測試系統(tǒng)Fig.1 Condensation testing system for volatile matter of consecutive pyrolysis1.輸送電動機 2.入料料斗 3.加熱爐體 4.粉塵過濾裝置 5.保溫層 6.溫度傳感器表頭 7.空氣出口 8.空氣入口 9.氣泵 10.取樣瓶 11.冷凝水出口 12.冷凝水入口 13.水泵 14.炭箱 15.變螺距螺旋輸送器
冷凝測試系統(tǒng)由三級直型冷凝系統(tǒng)組成(Φ29 mm/Φ24 mm),前兩級冷凝系統(tǒng)包括內(nèi)管熱解氣測試部分、冷凝介質(zhì)測試部分和溫度傳感器分布測試與數(shù)據(jù)采集部分,使用的傳感器為K型熱電偶,用于測定一、二級冷凝管進出口處(一級入口、一級出口、二級入口、二級出口,分別距離熱解氣入口0.105、0.32、0.565、0.825 m)的熱解氣溫度、冷凝管內(nèi)壁溫度、冷凝介質(zhì)溫度。
1.3 實驗方法
在冷凝測試裝置上對木屑進行熱解溫度為450、550、650℃的冷凝測試實驗,處理量為1 kg/h。木屑原料通過連續(xù)熱解裝置熱解后,產(chǎn)生的揮發(fā)分進入冷凝測試系統(tǒng)冷凝,不可凝氣體由尾端排出。一級冷凝以空氣作為冷凝介質(zhì),二級和三級冷凝則使用冷凍水,其中溫度為11℃的冷凝水質(zhì)量流量為1 200 kg/h,溫度25℃,空氣質(zhì)量流量為4.257 kg/h。三級冷凝管的下端出口設(shè)置有生物油收集瓶,用以收集液態(tài)產(chǎn)物。
1.4 換熱系數(shù)計算
冷凝系統(tǒng)局部表面換熱系數(shù)由局部熱流密度求出,局部熱流密度通過冷卻水側(cè)的溫度、流量和熱流量求出,局部熱流密度計算公式為[25]
(1)
式中m——冷凝介質(zhì)質(zhì)量流量C——冷凝介質(zhì)的比定壓熱容,J/(kg·K)T——軸向位置x處測得的水溫或氣溫,℃di——測試管內(nèi)徑,m
局部換熱系數(shù)計算公式為[26-27]
(2)
式中Tb——內(nèi)管揮發(fā)物溫度,℃Tw,i——內(nèi)管內(nèi)壁溫度,℃
1.5 液膜熱阻及厚度計算
液膜熱阻由熱流通量和液膜兩側(cè)溫度差計算得到[19],即
(3)
式中R——冷凝液膜熱阻,m2·K/WTG——冷凝管中熱解氣溫度,℃TW——冷凝管內(nèi)壁溫度,℃
液膜厚度通過生物油流體熱導(dǎo)率和液膜熱阻計算得到[28-29],即
d=λR
(4)
式中d——有效層流液膜厚度,mλ——流體熱導(dǎo)率,取0.24 W/(m·K)
2.1 熱解三態(tài)產(chǎn)率
熱解三態(tài)產(chǎn)物產(chǎn)率如表1所示。隨著熱解溫度的升高,炭產(chǎn)率減??;不凝氣產(chǎn)率升高,在熱解溫度為650℃時達到最大值60.02%;生物油產(chǎn)率則隨溫度升高先升后降,在550℃時達到最大值為42.82%,揮發(fā)物含量隨熱解溫度的升高而升高。
表1 不同熱解溫度時木屑的產(chǎn)物產(chǎn)率
Tab.1 Three states yield of sawdust pyrolysis
%
圖3 冷凝器局部表面換熱系數(shù)Fig.3 Local surface heat transfer coefficient of condenser
前兩級生物油產(chǎn)率如圖2所示。隨著熱解溫度升高,一級油產(chǎn)率逐漸減小,在熱解溫度為650℃時達到最小值1.72%;二級油產(chǎn)率則呈現(xiàn)先增后減的趨勢,在熱解溫度為550℃時達到最大值39.55%。
圖2 各級油產(chǎn)率分析Fig.2 Analysis of oil production at different levels
2.2 換熱系數(shù)計算結(jié)果
3個不同熱解溫度下的一、二級表面換熱系數(shù)如圖3所示。在450℃和550℃時,一級表面換熱系數(shù)在實驗前期波動較大,后期趨近于穩(wěn)定, 650℃時則全程呈現(xiàn)較大波動,這一現(xiàn)象也是木屑三態(tài)產(chǎn)物變化的直觀表現(xiàn),650℃揮發(fā)物產(chǎn)率最大,且不可凝氣體含量最大,產(chǎn)生這種情況可能是單獨受到冷凝生物油或者不凝氣的影響,也可能是二者的綜合影響,同時,450℃和550℃的一級油產(chǎn)率大于650℃,因此450℃和550℃時液膜更容易趨近穩(wěn)定流動,維持穩(wěn)定的局部換熱系數(shù);針對二級換熱系數(shù),550℃時的二級油產(chǎn)率最大,因此更能形成穩(wěn)定流動,其局部換熱系數(shù)相比其他2個熱解溫度下的局部換熱系數(shù)更趨于穩(wěn)定,650℃時熱解揮發(fā)物中含有大量的不可凝氣體成分,二級冷凝器中局部換熱系數(shù)波動情況更嚴重。木屑熱解揮發(fā)物冷凝平均局部表面換熱系數(shù)如圖4所示。隨著熱解溫度升高,一級換熱系數(shù)逐漸減小,450℃時為671.02 W/(m2·K),高于550℃時的402.89 W/(m2·K)和650℃時的380.20 W/(m2·K);二級換熱系數(shù)先增加后減小,550℃時取得最大值1.484×105W/(m2·K),高于450℃和650℃的相應(yīng)值。由此可見,冷凝換熱存在最大值,當超過冷凝換熱最大值時,繼續(xù)升溫增加熱解氣的流量,不能對熱解氣中的可凝成分進行有效的冷凝。
圖4 木屑熱解揮發(fā)物冷凝平均局部表面換熱系數(shù)Fig.4 Average local surface heat transfer coefficient of sawdust pyrolysis volatiles condensation
3.1 液膜模型
根據(jù)平壁一維穩(wěn)態(tài)傳熱的結(jié)論[19],忽略液膜可能存在的對流傳熱以及輻射傳熱,熱解氣在冷凝器中冷凝時,首先在壁面上形成液珠,當冷凝量較大時,液珠向下流動積累,最終在壁面上積累形成一層液膜。液膜冷凝過程分為:液膜形成、液膜積累、液膜流動3個階段,如圖5所示。
3.2 液膜熱阻及厚度計算結(jié)果
液膜熱阻計算結(jié)果如圖6所示。各個位置的冷凝液膜熱阻隨著實驗的進行呈現(xiàn)波動狀態(tài),說明隨著熱解的進行,熱解氣中的可凝成分在不斷變化,使得同一個位置上的液膜熱阻不斷變化,液膜厚度也相應(yīng)不斷變化。相同熱解溫度下,一級出口熱阻大于一級入口熱阻,冷凝液在一級出口積累,因此一級
圖5 熱解氣冷凝液膜形成過程示意圖Fig.5 Schematic of formation process of pyrolysis gas condensate film
出口的冷凝液流量比一級入口冷凝液流量大;二級出口熱阻小于二級入口熱阻,且更加穩(wěn)定。二級使用水冷,冷凝效果好,在二級入口處已經(jīng)有大量液珠的冷凝情況出現(xiàn),在二級出口時,由于冷凝液流量大,因此流動狀態(tài)更穩(wěn)定,熱阻也更為穩(wěn)定。
圖6 不同熱解溫度下木屑熱解揮發(fā)物的冷凝液膜熱阻Fig.6 Thermal resistance of condensation liquid film of sawdust pyrolysis volatiles at different pyrolysis temperatures
液膜熱阻隨著位置的變化如圖7所示。木屑熱解揮發(fā)物在不同熱解溫度下的冷凝熱阻隨位置的變化趨勢一致,呈現(xiàn)先增加后減小趨勢。由式(4)可知,液膜熱阻和液膜厚度隨位置的變化趨勢相同,熱阻和厚度增加段對應(yīng)液膜形成階段和液膜積累階段,熱阻和厚度減小段對應(yīng)液膜流動初期。在650℃時,二級入口液膜熱阻為2.68×10-5m2·K/W,二級出口為3.30×10-5m2·K/W ,對應(yīng)液膜厚度分別為6.69 μm和8.25 μm,熱阻近似相等,說明在650℃時,二級入口和二級出口之間的流動接近液膜流動穩(wěn)定期。
圖7 不同熱解溫度下木屑熱解揮發(fā)物的冷凝液膜平均熱阻Fig.7 Average thermal resistance of condensation liquid film of sawdust pyrolysis volatiles at different pyrolysis temperatures
(1)隨著熱解溫度不斷升高,冷凝器的一級換熱系數(shù)減小,在熱解溫度為450℃時達到最大值671.02 W/(m2·K),二級換熱系數(shù)先增后減,550℃時達到最大值1.484×105W/(m2·K)。對比一級和二級油產(chǎn)率,與換熱系數(shù)的變化趨勢相同,說明在一定的實驗條件下,冷凝器的冷凝能力存在最大值,當熱解揮發(fā)物流量超過冷凝能力最大值時便無法進行有效的冷凝。
(2)運用本文建立的冷凝液膜模型,對實驗值進行計算的結(jié)果表明,生物油在冷凝管中的冷凝符合建立的液膜模型,存在液膜形成、液膜積累、液膜流動3個階段。在液膜形成階段,液膜厚度開始增加,熱阻逐漸變大;在液膜積累階段,液膜持續(xù)變厚,熱阻持續(xù)變大,直到積累到極限厚度,靜止狀態(tài)開始轉(zhuǎn)為流動狀態(tài);在流動初期,液膜厚度逐漸變薄,液膜熱阻逐漸變小,距離足夠時,流動進入穩(wěn)定期,液膜厚度基本不變,液膜熱阻基本不變。
1 諶凡更,歐義芳.木質(zhì)纖維原料的熱化學液化[J].纖維素科學與技術(shù),2000,8(1):44-57. CHEN Fan’geng,OU Yifang.Thermochemical liquefaction of lignocellulosic materials [J].Journal of Cellulose Science and Technology,2000,8(1):44-57.(in Chinese)
2 潘小蘇.林木生物質(zhì)能源資源潛力評估研究[D].北京:北京林業(yè)大學,2014. PAN Xiaosu.Potential evaluation of woody biomass energy [D].Bejing:Beijing Forestry University,2014.(in Chinese)
3 林木森,蔣劍春.生物質(zhì)快速熱解技術(shù)現(xiàn)狀[J].生物質(zhì)化學工程,2006,40(1):21-26. LIN Musen,JIANG Jianchun.A review on fast pyrolysis of biomass [J].Biomass Chemical Engineering,2006,40(1):21-26.(in Chinese)
4 HORNE P A, WILLIAM P T.Influence of temperature on the products from the flash pyrolysis of biomass [J].Fuel,1996,75(9):1051-1059.
5 劉榮厚,張春梅.我國生物質(zhì)熱解液化技術(shù)的現(xiàn)狀[J].可再生能源,2004(3):11-14. LIU Ronghou,ZHANG Chunmei.The research status of biomass pyrolysis for liquid product in China[J].Renewable Energy,2004(3):11-14.(in Chinese)
6 易維明,柏雪源.利用熱等離子體進行生物質(zhì)液化技術(shù)的研究[J].山東工程學院學報,2000,14(1):9-12. YI Weiming,BAI Xueyuan.Biomass liquefaction in a high-temperature plasma jet flow [J].Journal of Shangdong Institute of Technology,2000,14(1):9-12.(in Chinese)
7 蔣恩臣,熊磊明,王明峰,等.生物質(zhì)熱解揮發(fā)物兩級冷凝器的設(shè)計[J].東北農(nóng)業(yè)大學學報,2014(5):110-115. JIANG Enchen,XIONG Leiming,WANG Mingfeng,et al.Development of biomass pyrolysis volatiles fractional condenser [J].Journal of Northeast Agricultural University,2014(5):110-115.(in Chinese)
8 SANTOS R M, SANTOS A O, SUSSUCHI E M,et al.Prolysis of mangaba seed: production and characterization of bio-oil [J].Bioresource Technology,2015,196:43-48.
9 陳漢平,楊海平,李斌,等.生物質(zhì)流化床氣化焦油析出特性的研究[J].燃料化學學報,2009,37(4):433-437. CHEN Hanping,YANG Haiping,LI Bin,et al.Evolving characteristics of tar during biaomass fluidized bed gasification [J].Journal of Fuel Chemistry and Technology,2009,37(4):433-437.(in Chinese)
10 李艷美,柏雪源,易維明,等.小麥秸稈熱解生物油主要成分分析與殘?zhí)勘碚鱗J].山東理工大學學報:自然科學版,2016,30(1):1-4. LI Yanmei,BAI Xueyuan,YI Weiming,et al.Analysis on the main chemical components in bio-oil pyrolysis from wheat straw and char characterization [J].Journal of Shandong University of Technology:Natural Science Edition,2016,30(1):1-4.(in Chinese)
11 AL-SHAMMARI S B, WEBB D R, HEGGS P.Condensation of steam with and without the presence of non-condensable gases in a vertical tube [J].Desalination,2004,169(2):151-160.
12 LEE K Y,KIM M H.Effect of an interfacial shear stress on steam condensation in the presence of a non-condensable gas in a vertical tube [J].International Journal of Heat and Mass Transfer,2008,51(21-22):5333-5343.
14 DEHBI A,GUENTAY S. A model for the performance of a vertical tube condenser in the presence of non-condensable gases [J].Nuclear Engineering and Design,1997,177(1-3):41-52.
15 KIM J,LEE Y,AHN H,et al.Condensation heat transfer characteristic in the presence of non-condensable gas on natural convection at high pressure [J].Nuclear Engineering and Design,2009,239(4):688-698.
16 李曉偉,吳莘馨,何樹延.含不凝性氣體冷凝對流傳熱傳質(zhì)過程的數(shù)值模擬[J].工程熱物理學報,2013,34(2):302-306. LI Xiaowei,WU Xinxin,HE Shuyan.Numerical simulation of the heat and mass transfer process of convective condensation with non-condensable gas [J].Journal of Engineering Thermophysics,2013,34(2):302-306.(in Chinese)
17 KIRAN Kumar Palla V S,PAPADIKIS K,GU S.Computational modelling of the condensation of fast pyrolysis vapours in a quenching column.Part A: hydrodynamics,heat transfer and design optimization [J].Fuel Processing Technology,2015,131:59-68.
18 KIRAN Kumar Palla V S,PAPADIKIS K,GU S.Computational modelling of the condensation of fast pyrolysis vapours in a quenching column.Part B: phase change dynamics and column size effects [J].Fuel Processing Technology,2015,144:42-55.
19 KIRAN Kumar Palla V S,PAPADIKIS K,GU S,et al.A numerical model for the fractional condensation of pyrolysis vapours [J].Biomass and Bioenergy,2015,74:180-192.
20 MOHAN D,PITTMAN C U,STEELE P H.Pyrolysis of wood/biomass for bio-oil: a critical review [J].Energy & Fuels,2006,20(3): 848-889.21 左武,金保昇,黃亞繼,等.分級冷凝回收城市污泥熱解油[J].東南大學學報:自然科學版,2013,43(1):125-129. ZUO Wu,JIN Baosheng,HUANG Yaji,et al.Pyrolysis oil retrieving from sewage sludge by fractional condensation [J].Journal of Southeast University:Natural Science Edition,2013,43(1):125-129.(in Chinese)
22 張志強,姜翠玉,宋林花,等.苯乙烯-順酐共聚物的合成優(yōu)化及其降黏效果[J].化學工業(yè)與工程,2012,29(2):9-14. ZHANG Zhiqiang,JIANG Cuiyu,SONG Linhua,et al.Synthesis of styrene vlaleic anhydride copolymer and its effect on viscosity reduction [J].Chemical Industry and Engineering,2012,29(2):9-14.(in Chinese)
23 龍?zhí)叮镔|(zhì)熱解氣冷凝及生物油燃燒的實驗研究與數(shù)學模擬[D].合肥:中國科學技術(shù)大學,2014. LONG Tan.Experimental research and mathematical simulation of biomass pyrolysis condensation and bio-oil combustion [D].Hefei:University of Science & Technology China,2014.(in Chinese)
24 王明峰,蔣恩臣,李伯松,等.稻殼連續(xù)熱解特性研究[J].太陽能學報,2012,33(1):168-172. WANG Mingfeng,JIANG Enchen,LI Bosong,et al.Study on continious pyrolysis of rice dusk [J].Acta Energiae Solaris Sinica,2012,33(1):168-172.(in Chinese)
25 楊世銘,陶文銓.傳熱學[M].北京:高等教育出版社,2006:370-420.
26 蔣恩臣,郭信輝,王明峰,等.木屑熱解揮發(fā)物冷凝特性及實驗研究[J].可再生能源,2015,33(11):1712-1716. JIANG Enchen,GUO Xinhui,WANG Mingfeng,et al.Condensation characteristics and experimental research of sawdust pyrolysis volatiles [J].Renewable Energy,2015,33(11):1712-1716.(in Chinese)
27 蔣恩臣,郭信輝,王明峰,等. 油茶殼連續(xù)熱解揮發(fā)物冷凝特性研究[J/OL]. 農(nóng)業(yè)機械學報,2015,46(9):206-210. http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20150929&flag=1. DOI: 10.6041/j.issn.1000-1298.2015.09.029. JIANG Enchen, GUO Xinhui, WANG Mingfeng, et al. Condensation characteristic of continuous pyrolysis volatiles of oil-tea camellia shell [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9):206-210. (in Chinese)
28 鐘理,伍欽,馬四朋.化工原理[M].北京:高等教育出版社,2008:135-212.
29 程文龍,陳靜,陶應(yīng)東,等.基于連續(xù)熱力學修正算法的生物油熱物性研究[J].太陽能學報,2013, 34(2):312-317. CHENG Wenlong,CHEN Jing,TAO Yingdong,et al.Research of bio-oil thermal properties based on the modified method of continuous thermodynamics [J].Acta Energiae Solaris Sinica,2013, 34(2):312-317.(in Chinese)
Condensation Characteristics of Volatile Matter from Sawdust Pyrolysis
WANG Mingfeng1CHEN Zhiwen1JIANG Enchen1REN Yongzhi1HAN Ping2SUN Yan1
(1.CollegeofMaterialandEnergy,SouthChinaAgriculturalUniversity,Guangzhou510642,China2.CollegeofEngineering,NortheastAgriculturalUniversity,Harbin150030,China)
Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio-oil, biochar and syngas. While the intention of slow pyrolysis is to produce mainly charcoal, fast pyrolysis is meant to convert biomass to a maximum quantity of liquids (bio-oil). Biochar can be used with existing infrastructure as a replacement for pulverized coal, bio-oil can be used as a fuel in existing industrial boilers. The pyrolysis of sawdust contains volatile bio-oil and non-condensing gas, so the condensation characteristics are different from those of other simple mixture. Based on the test system of biomass pyrolysis volatile matter condensation characteristic parameter, the experiment of condensation characteristics of pyrolysis volatile was carried out at 450℃, 550℃ and 650℃. The condensation characteristics of volatile matter produced at different pyrolysis temperatures were tested, and the heat transfer coefficient, the thermal resistance and thickness of condensation liquid film were calculated. Based on the one-dimensional heat transfer characteristics of liquid condensation, the condensate film formation process had three stages: formation, accumulation and flow of liquid film. The results showed that the first stage condensation heat transfer coefficient was decreased with the increase of temperature, biomass volatile surface heat transfer coefficient at 450℃ was the highest,which was 671.02 W/(m2·K); with the increase of temperature, the heat transfer coefficient of the second stage was increased first and then decreased, biomass volatile surface heat transfer coefficient at 550℃ was the highest, which was 1.484×105W/(m2·K). According to the experimental value and the hypothesis of condensate film, in the film formation and accumulation stage, the film thickness was gradually increased and the thermal resistance was decreased; early in the liquid film flow stage, with the decrease of the film thickness, the thermal resistance was decreased; in the steady flow stage, resistance was remained stable. The research result can provide reference for the on-line collection of bio-oil and the design of bio-oil condenser in continuous pyrolysis equipment.
sawdust; pyrolysis; condensation characteristics; heat transfer coefficient; liquid film model
10.6041/j.issn.1000-1298.2017.04.035
2016-07-28
2016-10-13
科技部農(nóng)業(yè)科技成果轉(zhuǎn)化資金項目(20150237)和廣東省科技計劃項目(20160221)
王明峰(1982—),男,講師,主要從事生物質(zhì)能利用工程研究,E-mail: wangmingfeng@scau.edu.cn
蔣恩臣(1960—),男,教授,博士生導(dǎo)師,主要從事生物質(zhì)能利用工程研究,E-mail: ecjiang@scau.edu.cn
S216; TQ026
A
1000-1298(2017)04-0271-05